Waveform Generation

From phones, durations, F0 to waveforms

Types of synthesis

Articulartory: model the human vocal tract
Formant: model the voice signal
Concatenative: diphones, unit selection
Statistical Parametric Synthesis
Canned speech

Waveform generation

- \square Formant synthesis
- \square Random word/phrase concatenation
- \square Phone concatenation
- \square Diphone concatenation
- \square Sub-word unit selection
- \square Cluster based unit selection
- \square Clustergen SPS synthesis

Concatenative synthesis

 \square Select appropriate speech unit

 \Box Impose desired prosody

 \square Reconstruct signal from modifed parts

Quality is usually good, but less flexible than formant or articulatory.

Diphone synthesis

 \square mid-phone is more stable than edge

 \square Need phone² number of units:

- some combinations don't exist (hopefully)
- may include stress, consonant clusters
- lots of phonetic knowledge in design

 \square Database relatively small (by today's standards)

- around 8 meg for English (16KHz 16bit)

Designing a diphone inventory

Nonsense words

 \Box Build set of carrier words:

– pau t aa b aa b aa pau

– pau t aa m aa m aa pau

– pau t aa m iy m aa pau

– pau t aa m ih m aa pau

 \Box Advantages:

– easy to get all diphones

- will be pronounced consistently

- (no lexical interferance)

 \square Disadvantages:

– (possibly) bigger db

- will be pronounced consistently

- (speaker becomes bored)

As we will be randomly joining these units consistency is probably key

Designing a diphone inventory

Natural words

 \square Greedily select sentences/words:

- quebecois arguments (19)

- brouhaha abstractions (18)
- arkansas arranging (11)

 \Box Advantages:

- will be pronounced naturally
- easier for speaker to pronounce
- smaller db? (505 pairs vs 1345 words)

 \square Disadvantages:

- will be pronounced naturally
- may not be pronounced correctly

Diphone distribution in natural text is very variable

Making recordings consistent

Natural words

 \square Diphone should come from mid-word

– help ensure full articulation

 \square Performed consistently

– constant pitch, power, duration

 \Box Use (synthesized) prompts:

- help avoid pronunciation problems
- keep speaker consistent
- used for alignment in labelling

Building diphone schema

 \Box Find list of phones in language:

- plus interesting allophones
- stress, tones, clusters, onset/coda etc
- foreign (rare) phones,

 \Box Build carriers for:

- consonant-vowel, vowel-consonant,
- $\ vowel-vowel, \ consonant-consonant,$
- silence-phone, phone-silence,
- other special cases

 \Box Check the output:

- list *all* diphones and justify missing ones
- every diphone list has mistakes

Recording conditions

 \Box Ideal:

- anechoic chamber
- studio quality recording
- EGG signal

 \Box What we put up with:

- quiet room
- cheap microphone/sound blaster
- no EGG
- headmounted microphone
- \Box What we can do
 - repeatable conditions
 - careful setting on audio levels

Labelling Diphones

 \Box Much easier than phonetic labelling:

- the phone sequence is defined
- they are clearly articulated
- if its wrong, its wrong
- \square Phone boundaries less important
 - + /- 10 ms is okay.
- \square Midphone boundaries important
 - where is the stable part
 - can it be automatically found

Dynamic Time Warping

Find shortest euclidean distance through table

Simple autoalignment

Much easier than full autolabelling

 \square Synthesizer phone string

 \square Time align prompt to spoken form

– using euclidean distance

 \Box Works very well 95%+

- errors are typically large (easy to fix)

– maybe even automatically detected

 \Box This works cross-language too:

– even when phones don't exist

– e.g. English prompts with Korean spoken form

Malfrere and Dutoit 97

Diphone alignment

Does it work?

 \Box DP align MFCC prompt to spoken word

 \Box test against hand labelled

	type	RMSE	stddev
KED-KED	self	14.77ms	17.08
MWM-KED	US-US	27.23ms	28.95
GSW-KED	UK-US	25.25ms	23.92
KED-WHY	US-Kor	28.34ms	27.52

Stable part in phones

 \Box Middle of phone:

- one third in for stops
- one quarter in for phone-silence
- half way for rest

 \Box In time alignment case:

- Add explicit diphone boundaries
- (only need to hand correct once)
- \Box Optimal coupling (Conkie and Isard 96)
 - automatically find them
 - using Euclidean distance of cepstrum
 - find minimum join point over all phone-phone
 - or find best for each phone-phone

 \Box Hand check each one:

– what "real" companies do

Autolabelling vs Hand labelling

Recorded KAL (US male)
around 15-20 examples wrong (KED-KAL)
As good as first pass by human labellers
45 mins vs 2 weeks hand labelling
Whole voice in under 2 days
recording 3-4 hours
pitch mark extraction 3 hours
alignment 1 hour
hand correction and tuning (3 hours)