Statistical Parametric Synthesis And voice conversion techniques

Unit Selection

Parametric Synthesis

Unit Selection vs SPS

- Unit Selection
 - Can be very good
 - Requires large databases
 - One error can destroy a whole sentence
- Statistical Parametric Synthesis
 - Never very bad
 - Shown to be overall better (on average)
 - Resynthesis is problematic

Nitech's HTS

- HTS from Nagoya Institute Technology
 - HMM generation synthesis
 - Train models from speech corpora
 - Cluster resulting HMM-states into trees
 - Generate parameters from trees
 - MLPG: find "best" generation path with dynamics
 - MLSA: Mel Cep resynthesis
 - (Fully Supported in Festival)

Analysis/Resynthesis

- Require reversible parameterization
 - MEL CEP (MLSA)
 - LSP
 - STRAIGHT (with residual models)
 - HNM (with noise/excitation models)
- Resynthesis:
 - Can sound buzzy and muffled

Resynthesis by Vocoder

Mel-cepstal vocoder with pulse/noise excitation

Old vs New

Unit Selection:

large carefully labelled database quality good when good examples available quality will sometimes be bad no control of prosody

Parametric Synthesis:

smaller less carefully labelled database quality consistent resynthesis requires vocoder, (buzzy) can (must) control prosody model size much smaller than Unit DB

Synthesizer

Requires:

Prompt transcriptions (txt.done.data)

Waveform files (well recorded)

FestVox Labelling

EHMM (Kishore)

Context Independent models and forced alignment (Have used Janus labels too).

Parameter extraction:

(HTS's) melcep/mlsa filter for resynthesis F0 extraction

Clustering

Wagon vector clustering for each HMM-state name

Clustering by CART

Update to Wagon (Edinburgh Speech Tools).

Tight coupling of features with FestVox utts

Support for arbitrary vectors

Define impurity on clusters of N vectors

$$(\sum\limits_{i=1}^{24}\sigma_i)*N$$

Clustering

F0 and MCEP

Tested jointly and separately

Features for clustering (51):

phonetic, syllable, phrasal context

Training Output

Three models:

Spectral (MCEP) CART tree F0 CART tree Duration CART tree

F0 model:

Smoothed extracted F0 through all speech (i.e. unvoiced regions get F0 values)
Chose voicing at runtime phonetically

CLUSTERGEN Synthesis

Generate phoneme strings (as before)

For each phone:

Find HMM-state names: ah_1, ah_2, ah_3

Predict duration of each

Create empty mcep vector to fill duration

Predict mcep values from cluster tree

Predict F0 value from cluster tree

Use MLSA filter to regenerate speech

Example CG Voices

7 Arctic databases:

1200 utterances, 43K segs, 1hr speech

awb bdl clb jmk ksp rms slt

Scoring the results

Unit selection:

comparative listening tests

CLUSTERGEN

Mean Mel Cepstral Distortion over test set

$$10/\ln 10\sqrt{2\sum_{d=1}^{24} \left(mc_d^{(t)} - mc_d^{(e)}\right)^2}$$

MCD: Voice Conversion ranges 4.5-6.0

MCD: CG scores 5.0-8.0

smaller is better

Making it Actually Work

Engineering takes most of the time

Making it work for 10,000 utterances

Finding the best options:

- N Using the most predictive samples score samples based on predictability
- N Stepwise training
- Y Ensure mcep and F0 are aligned
- Y Use state duration in MCEP prediction

. . .

Data size vs Quality

slt_arctic data size

Utts	Clusters	RMS F0	MCD	
50	230	24.29	6.761	
100	435	19.47	6.278	
200	824	17.41	6.047	
500	2227	15.02	5.755	
1100	4597	14.55	5.685	

More Examples

Cepstral: larger voices (3.5K utts)

David •

Diane 🍕

Joint voices

awbslt 4

rmsksp 🍕

Non-English

German 4

French

SPS Advantages

- More stable
 - Smaller dbs, and less accurate labeling
 - End footprint much smaller
- Parametric Domain
 - Adaptation: small amounts of data covert larger databases
 - Style, emotion, dialect, language
- ICASSP2007
 - Special session of SPS (6 papers from around the world)

Voice Transformation

- Don't collect lots of data
 - Collect 50 or so utterances
 - Convert an existing databases
- Requires (probably) parallel audio
 - But one side can be synthesized
- Can be used as a post-filter on a synthesizer

Standard VC

- Collect parallel examples
- Align them at the frame level
 - Using DTW
- Learn GMM (joint) model
 - From aligned parameters
- Requires vocoder resynthesis (buzzy)

Building a VC model

- As post-filter to diphone (kal) voice
- See festvox/src/vc/HOWTO
- From Festvox Transformation Voice
 - Ensure ESTDIR and FESTVOXDIR are set
 - mkdir cmu_us_me
 - \$FESTVOXDIR/src/unitsel/setup_clunits cmu us me
 - \$FESTVOXDIR/src/vc/build_transform setup
 - \$FESTVOXDIR/src/vc/build_transform default_us
 - Record files in etc/txt.transform.data
 - Use prompt_them or ensure waves in wav/*.wav
 - \$FESTVOXDIR/src/vc/build_transform train (about 60 minutes)
 - \$FESTVOXDIR/src/vc/build_transform festvox
 - festival festvox/cmu_us_me_transform.scm
 festival> (voice_cmu_us_me_transform)
 festival> (SayText "This is an example of the transformed voice")

Voice Transformation

- Collect small amount of data
 - 50 utterances
- Adapt existing voice to target voice
- Adaptation: What makes a voice:
 - Lexical choice
 - Phonetic variation
 - Prosody
 - Spectral/vocal tract/articulatory movement
 - Excitation mode
- Use articulatory modeling for transformation (Toth)

Voice Transformation

- Festvox GMM transformation suite (Toda)

	awb	bdl	jmk	slt
awb	()		()	O
bdl	4	$\mathbf{Q}_{\mathbb{R}}$	$\mathbf{Q}(\mathbf{x})$	()
jmk	()	()	()	()
slt			()	

Voice Transterpolation

- Incremental conversion between voices
 - □ bdl-slt (male to female)

Electromagneticarticulatograph

