New language

 \Box New language:

- currently supported (or not)

 \square Diphone scheme and collected data

 \square Prosody by rule or from data

 \Box Lexicon:

- (don't collect your own)

– letter to sound rules

 \Box Orthographic processing:

– maybe from roman characters

Doing all parts is probably too much work Do one part well and rest with simple rules

Limited domain synthesizer

 \Box Existing dialog system:

- check its language output distribution
- is it limited

 \square Possible domains:

– Roomline

– Bus schedules.

New prosodic style

 \Box Record data in one (or more) style:

- build prosodic models for an existing voice
- build prosodic models for an supported language

 \square Show it sounds "better" than default

Information presentation

 \Box Get data from resource and say it

 \Box Three stages:

- get data (from web)
- massage it into usable form
- modify synthesizer to say it well

 \square Possible areas:

- mapquest.com

– stock quotes

- Dictionary lookup (m-w.com)

 \Box Techniques:

– text analysis

- multiple voices, other noises
- speed, style, etc
- as Sable markup ?

New voice for new language

 \Box Phone set

 \Box Token processing rules (numbers etc)

 \square Prosodic phrasing method

 \Box Word pronunciation (lexicon and/or letter to sound rules)

 \Box Intonation (accents and F0 contour)

 \Box Durations

 \square Waveform synthesizer

 \square plus something hard you forgot about

http://festvox.org

Phoneset

 \Box Can't do anything without this

 \Box Choose an existing one:

– note dialect of your speaker

 \Box May be defined by your lexicon/diphone db

 \Box may be other factors:

- lexical stress (accents)

- allophones (flaps, voicing etc)

Tokenization

 \Box Start from native character sets:

 $-\operatorname{its}$ not a TTS engine if you don't

- (maybe a romanized-only form is useful)

– maybe ASCII-ized version is required too

 \Box Word boundaries:

– Chinese, Japanese

 $- \operatorname{complex} morphology$

 \Box Numbers, symbols

 \Box Homographs:

- no vowels (?)

– Kanji

Prosodic phrasing

 \Box Part of speech tagging:

- statistically trained phrasing model

 \Box Hand written rule:

– but test this

 \Box Just use punctuation

 \Box New techniques (Parikar)

– Induced POS tags and Phrase Parsing

Word pronunciation

 \Box Find an existing lexicon:

– note its copyright

 \Box Write letter to sound rules:

- often easy (though may need native speaker)
- may be something missing (stress)

 \square Only have small tailored lexicon

 \square Use lexicon bootstrapping technique

Intonation

 \Box Get data and train from it:

- requires some framework
- require labeling

 \square Simple rules do work well on simple sentences

 \Box Use an existing model from other language:

– often works better than writing rules

Durations

 \Box Fixed or average

 \Box Train from data

 \Box Borrow models from other languages:

- has some justification
- often works quite well

Waveform Synthesizers

 \square Collect your own diphones

 \square Use existing MBROLA database:

- Faculte Polytechnique de Mons
- many diphone synthesizers

 \Box Borrow diphones from another language:

- often works, esp for minority languages
- givens you something quickly

 \square Build a cluster gen voice from data

Other considerations

 \Box Testing and evaluation:

- synthesis in other languages always sounds better
- get *native* speakers to evaluate it

 \Box Ensure you have copyright:

- if you want to use the voice, make sure
- you have permission to use *all* parts

 \Box What you think sound good:

– still sounds awful to others

using festvox.org

- \square detailed documentation
- \Box mailing list for similar projects
- \Box example databases
- \Box Scripts:
 - diphone_setup cmu nl jan
 - creates directory structure
 - diphone lists
 - basic .scm files

but diphones are boring ...

Building unit selection synthesizers

 \Box Select text with rich phonetic coverage:

- optimize for diphone coverage
- or use acoustic modeling techniques

 \Box record very carefully

 \Box label *very* carefully

 \Box tune and build clunit synthesizer

Building General SPS Voice

□ SPPPDIR/src/festvox/src/clustergen/setup_cg

- setup_cg INST LANG VOX
- setup_cg cmu de hans

 \Box Instatiates language files:

- Need to fill in some things by hand
- $-festvox/*_phoneset.scm$
- $-festvox/*_durdata.scm$
- festvox/*_lexicon.scm

Phonetic based data selection

 \Box From a large set text:

- select "nice" utterances
- -5 to 15 words long
- all in lexicon, no homographs
- -text
2utts -dbname txt_ text.txt -o text.data

 \square Convert text to phone mes:

- -text
2
utts -level Segment -itype data $\$ text.data -
otext.seg.data
- \Box Select utterances with maximal (di)phone coverage:
 - dataset_select text.seg.data
- \square Extract the selected utts from text. data:
 - dataset_subset text.data text.seg.data.selected
- \Box use make_nice_prompts

Selection Example

```
\Boxalice<br/>30.txt (152k)
```

□ text2utts -dbname alice_ alice30.txt -o
 alice.data

-1920 total utterances

-668 "nice" utterances

(<code>alice_00003</code> "THE MILLENNIUM FULCRUM EDITION 3.0")

(alice_00011 "I shall be late!")

(alice_00025 "Would the fall NEVER come to an end!")

□ text2utts -level Segment -itype data
alice.data -o alice.seg.data

(alice_00003 "pau dh ax m ax l eh n iy ax m f uh l k r ax m ax d ih sh ax n th r iy p oy n t z ih r ow pau")

 \Box data_select alice.seg.data - 189 utterances

□ dataset_subset alice.data

alice.seg.data.selected >alice1.data

Prompt Selection: new languages

 \square Get large amount of text

 \Box Build word list:

– find word frequencies

 \Box Use "nice" sentences:

– contain only frequency words

-5 to 15 words

 \square To select "phone" coverage:

– select based on letter context

Synthesis without a Phoneme Set

Use the *letters* as phones

 \Box 26 "phonemes":

-("alan" n (a l a n))

-("black" n (b l a c k))

 \square Spanish example (Castillain and Columbian)

- 419 utterances selected from new spapers

– SphinxTrain HMM-based acoustic modeling (cf ISL/ASR)

– Simple pronunciation lexicon:

 $- policia \rightarrow p$ o l i c i1 a

 $- cuatro \rightarrow c u a t r o$

Spanish "letter" synthesizer

Word	Castillian	gloss
casa	$/\mathbf{k} a s a/$	house
cesa	$/\mathbf{th} e s a/$	stop
\mathbf{c} ine	$/{f th}$ ine/	cinema
cosa	$/\mathbf{k} \text{ o s a}/$	thing
cuna	/ k u n a/	cradle
hechizo	/e \mathbf{ch} i th o/	charm, spell

In Spanish the letter "c" may be pronounced /k/, /ch/ and /th/ or /s/ (depending on dialect). The choice of phone is determined by the letter context.

English "letter" synthesizer?

Use the *letters* as phones

 \square 26 "phonemes":

-("alan" n (a l a n))

 $-\left(\text{``black''} n (b \ l \ a \ c \ k)\right)$

 \square Build SphinxTrain models

- "This is a pen."
- "We went to the church at Christmas."
- Festival intro "do eight meat"

CMU ARCTIC Databases

 \Box Use Gutenberg out-of-copyright texts:

- mostly "northern" stories (hence "ARCTIC")

 \square 53996 Nice utterances

 \square Selection based on phones:

- set A 593 utterances

– set B 539 utterances

 \Box Studio recording:

- 32KHz, EGG, automatically labeled

 \square Four DBs released:

- slt US female

– bdl US male

– jmk Canadian male

– awb Scottish male

– plus rms US male, clb US female

– plus non-natives: french, japanese, indian

CMU SPICE Project

Build ASR and TTS models for new languages
Web-based

No speech expertise required (sort of)

http://plan.is.cs.cmu.edu/Spice
used in 11-733