
11-752, LTI, Carnegie Mellon

Linguistic Analysis

From lists of words to how to say them:
– segments, duration, F0.

2 Lexical look up

2 Prosody generation:
– phrasing
– intonation: accents and F0 contours
– durations
– power

11-752, LTI, Carnegie Mellon

Part of speech tagging

2 Nouns, verbs, etc

2 Needed for lexical lookup

2 Needed for phrase prediction

2 Most likely POS tags for a word gives:
– 92% correct (+/-)

2 Content/function word distinction easy
– (and maybe sufficient)

11-752, LTI, Carnegie Mellon

Use standard Ngram model

find T1, . . . , Tn that maximize P (T1, . . . , Tn | W1, . . . , Wn)

≈
n∏

k=1

P (Tk | Tk−1, . . . , Tk−N+1)P (Wk | Tk)

P (Wk)

2 Lexical Probabilities
– For each Wk hold converse probability P (Wk | Tk).

2 Ngram
– P (Tk | Tk−1, . . . , Tk−N+1)

2 Viterbi decoder to find best tagging

11-752, LTI, Carnegie Mellon

Building a tagger

2 From existing tagged corpus:
– find P (T | W) by counting occurrences
– Build trigram from data

2 But if no existing tagged corpus exists:
– tag one by hand, or ...
– tag it with naive method
– collect stats for probabilistic tagger
– re-label and re-collect stats
– repeat until done

11-752, LTI, Carnegie Mellon

What tag set?

But in synthesis we only need n,v,adj

Reduce → build models → predict
build models → predict → reduce

Tagset POS Ngram model
uni bi tri quad

ts45 90.59% 94.03% 94.44% 93.51%
ts22 95.22% 96.08% 96.33% 96.28%
45/22 97.04% 96.37%

11-752, LTI, Carnegie Mellon

Lexicon

2 Pronounciation from words plus POS tag

2 In Festival includes stress and syllabification:
– ("project" n (((p r aa jh) 1) ((eh k t) 0)))

– ("project" v (((p r ax jh) 0) ((eh k t) 1)))

2 But need extra flags for (some homographs)

11-752, LTI, Carnegie Mellon

Lexicon

2 Lexicon must give pronunciation:
– what about morphology

2 Festival lexicons have three parts:
– a large list of words
– a (short) addenda of words
– letter to sound rules for everything else

11-752, LTI, Carnegie Mellon

Different languages

2 (US) English:
– 100,000 words (CMUDICT)
– 50 words in addenda (modes modify this)
– Statistically trained LTS models

2 Spanish:
– 0 words in large list
– 50 words (symbols) in addenda
– Hand written LTS rules

11-752, LTI, Carnegie Mellon

Letter to Sound rules

If language is “easy” do it by hand

2 ordered set of rules
(LEFTCONTEXT [ITEMS] RIGHTCONTEXT = NEWITEMS)

2 For example:
(edge [c h] C = k)

(edge [c h] = ch)

2 Often rules are done in multiple-passes:
– case normalization
– letter to phones
– syllabification

11-752, LTI, Carnegie Mellon

Letter to Sound rules

If language is “hard” train them

2 For English rules by hand can be done but
– its is a skilled job
– time consuming
– rule interactions are a pain

2 Need it for new languages/dialects NOW

11-752, LTI, Carnegie Mellon

Letter to phone alignment

What is the alignment for

checked - ch eh k t

one-to-one letter/phone pairs desirable

c h e c k e d
ch eh k t

Need to find best alignment automatically

11-752, LTI, Carnegie Mellon

Letter to phone alignment algorithms

Epsilon scattering algorithm (expectation maximization)

2 find all possible alignments

2 estimate prob(L,P) on each alignment

2 iterate

Hand seeded approach

2 Identify all valid letter/phone pairs e.g.
– c → k ch s sh
– w → w v f

2 find all alignments (within constraints)

2 find score of L/P

2 find alignment with best score

SMT type alignment

2 Use standard IBM model 1 alignment

2 Works “reasonably” well

11-752, LTI, Carnegie Mellon

Alignments – comments

2 Sometimes letters go to more than one phone, e.g.
– x → k-s, cf. “box”
– l → ax-l, cf. “able”
– e → y-uw, cf. “askew”
dual-phones added as phones

2 Some alignments aren’t sensible
– dept → d ih p aa r t m ah n t
– lieutenant → l eh f t eh n ax n t
– CMU → s iy eh m y uw
But less than 1%

11-752, LTI, Carnegie Mellon

Alignment comparison

Models (described next) on OALD held-out test data

Method Letters Words
Epsilon scattering 90.69% 63.97%
Hand-seeded 93.97% 78.13%

Hand-seeded takes time, and a little skill so
fully automatic would be better.

11-752, LTI, Carnegie Mellon

Training models

2 We use decision trees (CART/C4)

2 Predict phone (dual or epsilon)

2 window of 3 letters before, 3 after

c h e c → ch

c h e c k e d →

11-752, LTI, Carnegie Mellon

Results

On held out test (every 10th word)

Correct
Lexicon Letters Words
OALD 95.80% 74.56%
CMUDICT 91.99% 57.80%
BRULEX 99.00% 93.03%
DE-CELEX 98.79% 89.38%
Thai 95.60% 68.76%

Reflects language and lexicon coverage.

11-752, LTI, Carnegie Mellon

Results (2)

Correct
Stop Letters Words Size
8 92.89% 59.63% 9884
6 93.41% 61.65% 12782
5 93.70% 63.15% 14968
4 94.06% 65.17% 17948
3 94.36% 67.19% 22912
2 94.86% 69.36% 30368
1 95.80% 74.56% 39500

11-752, LTI, Carnegie Mellon

An example tree

For letter V:
if (n.name is v)

return
if (n.name is #)

if (p.p.name is t)
return f

return v

if (n.name is s)
if (p.p.p.name is n)

return f

return v

return v

11-752, LTI, Carnegie Mellon

Stress assignment

The phone string isn’t enough
– train separate stress assignment
– make stressed/unstressed phones (eh/eh1)

LTP+S LTPS
L no S 96.36% 96.27%
Letter — 95.80%
W no S 76.92% 74.69%
Word 63.68% 74.56%

– includes POS in LTPS (71.28% word, without)
– still missing morphological information though

11-752, LTI, Carnegie Mellon

Does it really work

Analysis real unknown words

In 39923 words in WSJ (Penn Treebank),
1775 (4.6%) not in OALD

Occurs %
names 1360 76.6
unknown 351 19.8
American spelling 57 3.2
typos 7 0.4

11-752, LTI, Carnegie Mellon

“Real” unknown words

Synthesize them with LTS models and listen.

Lexicon Unknown
Stop Test set Test set size
1 74.56% 62.14% 39500
4 65.17% 67.66% 17948
5 63.15% 70.65% 14968
6 61.65% 67.49% 12782

Best lex test is not best for unknown

11-752, LTI, Carnegie Mellon

Bootstrapping Lexicons

2 Lexicon is largest (size/expensive) part of system

2 If you don’t have one:
– use someone else’s

2 Building your own takes time

11-752, LTI, Carnegie Mellon

Bootstrapping Lexicons

2 Find 250 most frequent words:
– build lexical entries for them
– ensure letter coverage in base set
– Build lts rules from this base set

2 Select articles of text

2 Synthesis each unknown word
– listen to the synthesized version
– add correct words to base list
– correct incorrect words and add to base list
– rebuild lts rules with larger list
– repeat

11-752, LTI, Carnegie Mellon

Bootstrapping Lexicons: tests

2 Using CMUDICT as “oracle”
– start with 250 common words
– 70% accuracy
– 25 iterations gives 97% accuracy (24,000 entries)

2 Using DE-CELEX:
– base 350 words: 35% accurate
– ten iterations ot 90% accurate

2 Real “new” lexicons:
– Nepali
– Ceplex (English) 12,000 entries at 98%

11-752, LTI, Carnegie Mellon

Dialect Lexicons

2 Need new lexicons for each dialect:
– expensive and difficult to maintain

So build dialect independent lexicon

2 Build lexicon with “key vowels”:
– the vowel in coffee

2 vowels in pUll and pOOl:
– In Scots English map to same
– In Southern (UK) English map to different

2 word-final ‘r”
– delete in Southern UK English

2 Plus specific pronucniation differences:
– leisure, route, tortoise, poem

11-752, LTI, Carnegie Mellon

Post-lexical rules

2 Some pronunciations require context

2 For example “the”
– before vowel dh iy
– before consonant dh ax

2 Taps in US English

2 nasals in Japanese (“san” to “sam”)

2 Liaison in French

2 Speaker/style specific rules:
– vowel reduction
– contractions
– and others

11-752, LTI, Carnegie Mellon

Exercises for April 1st

3 is optional

1. Add a post-lexical rule to modify the pronunciation of “the”
before vowels, can you make it work for UK and US English.

2. Use SABLE markup to tell a joke.

3. Write letter to sound rules to pronounce Chinese proper
names (in romanized form) in (US) English.

Variable poslex rules hooks is list of functions run on utterance after lexical
lookup

(define (postlex_thethee utt)

(mapcar

(lambda (seg)

(if word is the, this is last segment,

and next segment is a vowel

change vowel in segment)

)

(utt.relation.items utt ’Segment)))

(set! postlex_rules_hooks (cons postlex_thethee postlex_rules_hooks))

Features are:

R:SylStructure.parent.parent.name

R:SylStructure.n.name

n.name

Test is with

(set! utt1 (SayText "The oval table."))

(set! utt2 (SayText "The round table."))

(utt.features utt1 ’Segment ’(name))

11-752, LTI, Carnegie Mellon

Telling a joke

They say telling a joke is in the timing.

2 Use different speakers, breaks, etc to get the joke over.

2 A sample joke is in
http://www.cs.cmu.edu/~awb/11752/joke.txt

2 A useful audio clip is in
http://www.cs.cmu.edu/~awb/11752/laughter.au

