Linguistic Analysis

From lists of words to how to say them:

– segments, duration, F0.

 \Box Lexical look up

 \Box Prosody generation:

- phrasing

 $-\operatorname{intonation:}$ accents and F0 contours

- durations

– power

Part of speech tagging

 \Box Nouns, verbs, etc

 \square Needed for lexical lookup

 \square Needed for phrase prediction

 \square Most likely POS tags for a word gives: -92% correct (+/-)

 \Box Content/function word distinction easy

- (and maybe sufficient)

Use standard Ngram model

find T_1, \ldots, T_n that maximize $P(T_1, \ldots, T_n \mid W_1, \ldots, W_n)$

$$\approx \prod_{k=1}^{n} \frac{P(T_k \mid T_{k-1}, \dots, T_{k-N+1}) P(W_k \mid T_k)}{P(W_k)}$$

 \Box Lexical Probabilities

- For each W_k hold converse probability $P(W_k \mid T_k)$.

□ Ngram

 $-P(T_k \mid T_{k-1}, \ldots, T_{k-N+1})$

 \Box Viterbi decoder to find best tagging

Building a tagger

 \Box From existing tagged corpus:

- find $P(T \mid W)$ by counting occurrences
- Build trigram from data

 \Box But if no existing tagged corpus exists:

- tag one by hand, or \ldots
- tag it with naive method
- collect stats for probabilistic tagger
- re-label and re-collect stats
- repeat until done

What tag set?

But in synthesis we only need n,v,adj

Reduce \rightarrow build models \rightarrow predict build models \rightarrow predict \rightarrow reduce

Tagset	POS Ngram model			
	uni	bi	tri	quad
ts45	90.59%	94.03%	94.44%	93.51%
ts22	95.22%	96.08%	96.33%	96.28%
45/22			97.04%	96.37%

Lexicon

 \Box Pronounciation from words plus POS tag

 \square In Festival includes stress and syllabilication:

-("project" n (((p r aa jh) 1) ((eh k t) 0)))

-("project" v (((p r ax jh) 0) ((eh k t) 1)))

 \Box But need extra flags for (some homographs)

Lexicon

 \Box Lexicon *must* give pronunciation:

– what about morphology

 \square Festival lexicons have three parts:

- a large list of words
- -a (short) addenda of words
- letter to sound rules for everything else

Different languages

 \Box (US) English:

-100,000 words (CMUDICT)

- -50 words in addenda (modes modify this)
- Statistically trained LTS models

 \Box Spanish:

- $\ 0$ words in large list
- -50 words (symbols) in addenda
- Hand written LTS rules

Letter to Sound rules

```
If language is "easy" do it by hand
□ ordered set of rules
  ( LEFTCONTEXT [ ITEMS ] RIGHTCONTEXT = NEWITEMS )
□ For example:
  ( _edge_ [ c h ] C = k )
  ( _edge_ [ c h ] = ch )
```

 \square Often rules are done in multiple-passes:

- case normalization
- letter to phones
- syllabification

Letter to Sound rules

If language is "hard" train them

 \square For English rules by hand can be done but

- its is a skilled job
- time consuming
- rule interactions are a pain

 \Box Need it for new languages/dialects NOW

Letter to phone alignment

What is the alignment for

checked - ch eh k t

one-to-one letter/phone pairs desirable

с	h	е	С	k	е	d
ch	_	eh	_	k		t

Need to find *best* alignment automatically

Letter to phone alignment algorithms

Epsilon scattering algorithm (expectation maximization)

 \Box find all possible alignments

 \Box estimate prob(L,P) on each alignment

 \Box iterate

Hand seeded approach

 \square Identify all valid letter/phone pairs e.g.

 $-c \rightarrow _{-}k ch s sh$

 $- w \rightarrow _{-} w v f$

 \Box find all alignments (within constraints)

 \Box find score of L/P

 \Box find alignment with best score

SMT type alignment

 \square Use standard IBM model 1 alignment

 \Box Works "reasonably" well

Alignments – comments

□ Sometimes letters go to more than one phone, e.g.
- x → k-s, cf. "box"
- l → ax-l, cf. "able"
- e → y-uw, cf. "askew"
dual-phones added as phones
□ Some alignments aren't sensible
- dept → d ih p aa r t m ah n t
- lieutenant → l eh f t eh n ax n t
- CMU → s iy eh m y uw
But less than 1%

Alignment comparison

Models (described next) on OALD held-out test data

Method	Letters	Words
Epsilon scattering	90.69%	63.97%
Hand-seeded	93.97%	78.13%

Hand-seeded takes time, and a little skill so fully automatic would be better.

Training models

```
We use decision trees (CART/C4)
Predict phone (dual or epsilon)
window of 3 letters before, 3 after
```

c h e c \rightarrow ch c h e c k e d \rightarrow _

Results

On held out test (every 10th word)

	Correct		
Lexicon	Letters	Words	
OALD	95.80%	74.56%	
CMUDICT	91.99%	57.80%	
BRULEX	99.00%	93.03%	
DE-CELEX	98.79%	89.38%	
Thai	95.60%	68.76%	

Reflects language and lexicon coverage.

Results (2)

	Cor		
Stop	Letters	Words	Size
8	92.89%	59.63%	9884
6	93.41%	61.65%	12782
5	93.70%	63.15%	14968
4	94.06%	65.17%	17948
3	94.36%	67.19%	22912
2	94.86%	69.36%	30368
1	95.80%	74.56%	39500

An example tree

```
For letter V:

if (n.name is v)

return _

if (n.name is #)

if (p.p.name is t)

return f

return v

if (n.name is s)

if (p.p.p.name is n)

return f

return v

return v
```

Stress assignment

The phone string isn't enough

– train separate stress assignment

- make stressed/unstressed phones (eh/eh1)

	LTP+S	LTPS
L no S	96.36%	96.27%
Letter		95.80%
W no S	76.92%	74.69%
Word	63.68%	74.56%

- includes POS in LTPS (71.28% word, without)

– still missing morphological information though

Does it really work

Analysis real unknown words

In 39923 words in WSJ (Penn Treebank), 1775 (4.6%) not in OALD

	Occurs	%
names	1360	76.6
unknown	351	19.8
American spelling	57	3.2
typos	7	0.4

"Real" unknown words

Synthesize them with LTS models and *listen*.

	Lexicon	Unknown	
Stop	Test set	Test set	size
1	74.56%	62.14%	39500
4	65.17%	67.66%	17948
5	63.15%	70.65%	14968
6	61.65%	67.49%	12782

Best lex test is not best for unknown

Bootstrapping Lexicons

 \Box Lexicon is largest (size/expensive) part of system

 \Box If you don't have one:

– use someone else's

 \square Building your own takes time

Bootstrapping Lexicons

 \Box Find 250 most frequent words:

- build lexical entries for them
- ensure letter coverage in base set
- Build lts rules from this base set

 \square Select articles of text

 \square Synthesis each unknown word

- listen to the synthesized version
- add correct words to base list
- correct incorrect words and add to base list
- rebuild lts rules with larger list
- repeat

Bootstrapping Lexicons: tests

 \square Using CMUDICT as "oracle"

 $-\operatorname{start}$ with 250 common words

-70% accuracy

-25 iterations gives 97% accuracy (24,000 entries)

 \Box Using DE-CELEX:

– base 350 words: 35% accurate

- ten iterations of 90% accurate

 \Box Real "new" lexicons:

– Nepali

– Ceplex (English) 12,000 entries at 98%

Dialect Lexicons

Need new lexicons for each dialect:

 – expensive and difficult to maintain

 So build dialect independent lexicon
 Build lexicon with "key vowels":

 – the vowel in coffee

 \Box vowels in $p\mathit{Ull}$ and $p\mathit{OOl}$:

– In Scots English map to same

– In Southern (UK) English map to different

 \Box word-final 'r"

– delete in Southern UK English

 \Box Plus specific pronucniation differences:

- leisure, route, tortoise, poem

Post-lexical rules

 \square Some pronunciations require context

 \Box For example "the"

– before vowel dh iy

– before consonant dh ax

 \Box Taps in US English

 \Box nasals in Japanese ("san" to "sam")

 \Box Liaison in French

 \Box Speaker/style specific rules:

- vowel reduction
- contractions
- and others

Exercises for April 1st

3 is optional

- 1. Add a post-lexical rule to modify the pronunciation of "the" before vowels, can you make it work for UK and US English.
- 2. Use SABLE markup to tell a joke.
- 3. Write letter to sound rules to pronounce Chinese proper names (in romanized form) in (US) English.

Variable **poslex_rules_hooks** is list of functions run on utterance after lexical lookup

```
(define (postlex_thethee utt)
  (mapcar
    (lambda (seg)
        (if word is the, this is last segment,
            and next segment is a vowel
            change vowel in segment)
    )
    (utt.relation.items utt 'Segment)))
```

(set! postlex_rules_hooks (cons postlex_thethee postlex_rules_hooks))
Features are:

```
R:SylStructure.parent.parent.name
R:SylStructure.n.name
n.name
Test is with
(set! utt1 (SayText "The oval table."))
(set! utt2 (SayText "The round table."))
(utt.features utt1 'Segment '(name))
```

Telling a joke

They say telling a joke is in the timing.

 \Box Use different speakers, breaks, etc to get the joke over.

 \Box A sample joke is in

http://www.cs.cmu.edu/~awb/11752/joke.txt

 \Box A useful audio clip is in

http://www.cs.cmu.edu/~awb/11752/laughter.au