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ABSTRACT

This paper introduces a new optimization technique for

moving segment labels (phone and subphonetic) to optimize

statistical parametric speech synthesis models. The choice

of objective measures is investigated thoroughly and listen-

ing tests show the results to significantly improve the quality

of the generated speech equivalent to increasing the database

size by 3 fold.

Index Terms— Speech Synthesis, Parametric Speech

Synthesis, Label Boundary Optimization

1. INTRODUCTION

Building synthetic voices has become an almost automatic

process with a number of toolkits available to aid the pro-

cess [1] [2]. Modern techniques fall into two categories: unit

selection [3] where appropriate sub-word units are selected

from large databases of natural speech; and statistical para-

metric synthesis [4] where generative parametric models are

trained from databases of natural speech. In both cases a well-

labeled database is necessary to build good synthesis. Al-

though hand labeling (or more often hand correction) can be

used on a database, the human effort is expensive so fully au-

tomatic labeling techniques (previously developed) have been

applied. Building on top of speech recognition techniques,

HMM-based segment labeling is typically used to get initial

labeling. For example [5], [6], [7] are toolkits available to

automatically label the data. However hand label corrections

can improve the quality of the synthesized voices. There has

also been work in trying to improve these automatic labels

[8]. However in most of these cases no explicit resynthesis is

done to prove the label improvements help the synthesis.

In this work we present a label moving optimization tech-

nique that includes a synthesis quality measure as an inherent

part of the optimization. We show the technique on a large

number of databases and justify the objective measure, mean

Mel-Cepstral Distortion [9], as a reasonable measure.

2. CLUSTERGEN

CLUSTERGEN [10] is a statistical parametric synthesizer that

Thanks to NSF for funding grant number 0415021, SPICE: Speech Pro-

cessing Interactive Creation and Evaluation Toolkit for new Languages.

is part of the FestVox suite of voice building tools [1]. Fol-

lowing the work on HMM-generation synthesis in HTS [2],

CLUSTERGEN offers a similar framework for development of

voices. CLUSTERGEN requires a database to be labeled with

HMM-state sized segments. Each phone model consists of 3

states. We use EHMM [5] in these experiments, but have also

used JANUS [11] and SPHINX [6].

Once the states are labeled, feature vectors are computed

for each 5ms frame. The vector includes MELCEP, delta MEL-

CEP, F0 (interpolated through unvoiced regions), and proba-

bility of voicing.

The frames from the same segment type are clustered us-

ing CART indexed by contextual features. In addition to the

standard phonetic, metrical, and phrase based features, we

have found that position in phrase, phoneme, and most impor-

tantly position within the state itself has a significant improve-

ment on quality. Thus the clusters are dependent on where in

the state they are.

At synthesis time the frames are generated from the clus-

ter tree. The frames consist of F0, MELCEP plus deltas, and

voicing, and importantly variances for each of these coeffi-

cients. We then apply maximum likelihood parameter gener-

ation (MLPG) that we have adopted from HTS [2] into CLUS-

TERGEN. MLPG finds the optimal path through the CART-tree

generated parameters, taking into account the prediction vari-

ance of each frame and the inter-frame deltas [12]. MLPG if

effectively a smoothing filter, and we have found it improves

quality significantly. Once the MELCEP parameters are pre-

dicted we use the MLSA [13] parameter inversion filter to gen-

erate the waveform file. Excitation of the filter is controlled

by the probability-of-voicing feature that is a component of

each predicted frame.

3. MOVE LABEL SEGMENT BOUNDARIES

CLUSTERGEN is a robust voice building technique that has

been used on a wide range of speech databases, from stan-

dard and non-standard English in the ARCTIC databases [14],

to databases collected in different languages as part of the

CMU SPICE project [15]. However we are still looking for

better quality synthesis, especially when dealing with small

databases (less than 30 minutes of speech).

We are aware that HMM-based labeling techniques are

never ideal for synthesis, and that locating better boundaries
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could improve models. Thus we decided to look at techniques

to improve segment labeling that could improve our synthesis.

The core idea is to examine each segment boundary and

consider moving it forward or back one frame if that would

improve the prediction of the frame, i.e. by decreasing the

distance between the predicted and original frame. The al-

gorithm examines each label boundary in the database once

before rebuilding the models and iterating again.

MLSB: Move Label Segment Boundaries

For each segment and HMM-state boundary

Pi = predicted frame coeffs before boundary

Pi+1 = predicted frame coeffs after boundary

Ai = actual frame coeffs before boundary

Ai+1 = actual frame coeffs after boundary

if dist(Ai,Pi+1) < dist(Ai,Pi)

move boundary -1 frame

elif dist(Ai+1,Pi) < dist(Ai+1,Pi+1)

move boundary +1 frame

else

no movement

Rebuild the voice models with new labels.

Repeat until convergence criterion is reached.

This algorithm is not recommended for attempting flat-

start labeling of a speech database. Rather, it is perturba-

tion mechanism. It assumes a starting point that is reasonably

good, but is not optimal.

The MLSB algorithm incorporates a shortcut to speed

computation in that the distance calculation dist(Ai,Pi+1)

compares the actual MCEP features at frame i (left of the

boundary) with the predicted features at frame i+1 (right of

boundary). Strictly speaking, the dist(Ai,Pi) should be com-

puted a second time after label under examination has been

(tentatively) moved. This is because moving the label bound-

ary increases or decreases the segment length, and segment

length influences the prediction of frame values. However the

majority of prediction features remain unchanged. The inac-

curacy of this approximation is small, and makes it possible

to predict the frames of a wavefile only once per iteration.

Even this this shortcut, the algorithm is a fairly compu-

tationally expensive operation, as it requires checking each

boundary in the databases. In a one-hour database there will

be about 120K state boundaries. Rebuilding the models takes

about 90% of the time to complete an iteration, while move-

ing the labels is about 10%. A 20 iteration pass of a full Arctic

database (1132 utterances, which is around an hour of speech)

take about 3 days on a 3GHz Xeon. A databases of only 100

uterances (5 minutes of speech) takes only 90 minutes for 10

iterations including initial labeling.

There are choices particularly regarding the distance met-

ric, as well when to stop iterating and the maximum number

of frames that a boundary may be allowed to move. We chose

to optimize MCD on the grounds that this is a commonly used

objective measure of voice quality. The result is a local opti-

mization the prediction models according to measure used to

evaluate the models. This is in contrast to the original embed-

ded Baum-Welsh labeling, which optimize the likelihood of

the =small HMM-based models given the data.

4. LABEL MOVEMENT USING MCD

As an initial test of the technique we used unnormalized MCD,

a Euclidean distance including the C0 and C1-C24 terms, but

no deltas. We applied this to the ARCTIC rms voice (a stan-

dard clearly articulated US English databases of about 1 hours

of speech). The database was split into training and test sets,

every tenth utterance was put into the test set. The MCD mea-

sure is given for the test set. The model does not include any

of the test sentences, but the move labels algorithm was ap-

plied to the test sentences too. This is necessary to keep the

data consistent. Excluding the test set from label movement

would cause the the labeling to diverge in unknown ways.

Pass Moves MCD Pass Moves MCD

0 0 5.253

1 48130 5.126 6 29523 5.062

2 40896 5.088 7 28792 5.049

3 35560 5.071 8 27481 5.041

4 32816 5.064 9 26739 5.035

5 31086 5.060 10 26075 5.037

There are around 120K state boundaries per database. A

boundary may only move once per iteration, but may move

during more than one iteration. In the above test about 25% of

the labels never move. Of those that do move 25% move only

once, while only 2.5% of the labels move in all 10 iterations.

Although some labels move back and forth every iteration,

many move only (or almost only) in one direction.

If the process is run for many more iterations after settling

down, MCD jitters about 0.02 over at least the next 40 itera-

tions. The number of moves progressively gets smaller, im-

plying that the process is converging on some local optimum.

Yet the number of label movements per iteration remains rel-

atively high (20%) after no significant improvement is seen

in MCD. Allowing double moves at each pass does not seem

to make much difference in the speed of convergence, though

the MCD does drop quicker in the initial iterations.

In listening to the 9th iteration (MCD=5.035), the voice

sounded better than the initial model. This encouraged us to

expand listening tests to other members of our group, which

are reported below in Section 7. The qualitative impression

has that there are fewer inappropriately abrupt transitions. We

found that the phonemes with highest MCD include the stop

consonants and affricatives with a release component, such as

/ch, dh, jh/. Sustainable fricatives are the easiest category to

predict.
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MCD

Rank Phone Before After Gain Frames

1 f 4.459 4.378 0.081 1801

2 sh 4.662 4.518 0.144 742

3 s 4.668 4.563 0.105 4122

4 zh 4.762 4.825 -0.063 21

38 dh 6.053 5.805 0.248 1983

39 k 6.334 5.891 0.443 1570

40 jh 6.359 5.787 0.572 614

41 g 6.938 6.703 0.235 885

5. ALL ARCTIC DATABASES

Previously we have collected a number of single speaker well

recorded phonetically balanced speech databases [14]. This

set has increased to include 9 different databases. We applied

our standard CLUSTERGEN build to these voices and applied

MLSB to the labels. All these databases are in English though

some are (fluent) non-natives. DBs clb and slt are female, all

the others are male.

English Size MCD

DB Dialect mm:ss Base Best Gain Pass

ahw German 30:50 5.254 5.019 0.235 15

awb Scottish 55:32 4.677 4.532 0.145 10

bdl American 50:53 5.671 5.454 0.217 10

clb American 64:08 4.838 4.667 0.171 11

jmk Canadian 53:47 5.400 5.208 0.192 17

ksp Indian 59:20 5.285 5.111 0.174 17

rms American 66:10 5.253 5.012 0.241 17

rxr Israeli 43:38 5.298 5.120 0.178 15

slt American 56:35 5.170 4.964 0.206 20

The average improvement is 0.195. If we use the results

from [16] where a doubling of data improved MCD by 0.12,

MLSB effectively improves a voice as much as increasing the

data by 325%.

One database awb did not perform as expected. It had

an increase in MCD after the first pass. Closer examination

suggested that the relatively large amount of initial and final

silences was the problem. We trimmed the silences on the

utterances and re-ran the MLSB process, the results of which

are contained in the above table. After proper trimming the

abnormal behavior went away.

6. VARYING MCD

When using unnormalized 25-D mel cepstral feature vectors,

the magnitude of variation is largest in the C0 term, and de-

creases to the C24 term, where the variation is smallest. Be-

cause C0 corresponds to log power, while C1-24 corresponds

to the spectral components, it is a reasonable choice to sepa-

rate out this term. We show this for the first six iterations.

Optimize C0-24 Optimize C1-24

Pass C0-24 C1-24 C0 C0-24 C1-24 C0

1 5.162 4.472 2.125 5.260 4.496 2.332

2 5.121 4.454 2.073 5.262 4.477 2.365

3 5.112 4.462 2.041 5.280 4.469 2.405

4 5.080 4.450 1.997 5.278 4.453 2.417

5 5.078 4.451 1.993 5.286 4.453 2.432

6 5.070 4.459 1.962 5.278 4.444 2.427

In the left half of this table we see that most of improve-

ment in C0-24 may be attributed to a decease in C0. One

may conclude that MLSB primarily improves power model-

ing, with some improvement in spectral modeling. In the right

side of the table MLSB has been altered to optimize C1-24.

This gain in C1-24 is 4x better (0.52 vs. 0.13). The price paid

is that C0-24 and C0 go up, and as the next section reveals,

user preference goes down.

7. LISTENING TESTS

Our objective in conducting listening tests was to assess the

contribution of MLSB, determine what MCD variant is best,

and to place these results in context. Two useful frames of

reference are a) the benefit of MLPG over a baseline system

without it, and b) the addition of natural durations to improve

prosodic quality. This gives six voice configurations. To

get a relative ranking we conducted AB listening tests with

five users. The users were presented with a randomized se-

lection of the 113 test utterances, distributed among the 15

possible pairwise comparisons. As described in [17] solving

a Bradley-Terry statistical model produces a rating for each.

The table below includes 90% confidence bounds on the rat-

ings, and the likelihood of superiority (LOS, a percentage) that

the system with MLSB is superior to the others. These num-

bers are based on 356 AB comparisons made using identical

playback equipment.

System Configuration Rating +/- LOS

with natural durations 72 45 10

with MLSB 30 40 –

with MLPG 15 38 69

baseline voice (no MLx) 0 39 83

with MLSB, optimize C0 -13 58 85

with MLSB, optimize C1-24 -32 51 95

The rating separation between MLSB and MLPG is 15

points, which is exactly the advantage MLPG holds over the

baseline. While more user tests are required to tighten the

bounds, these results say there is a 69% likelihood that MLSB

is a verifiable improvement. Combining these two techniques,

a rating difference of 30 points approaches the 42 point ad-

vantage observed by the system with natural prosody (i.e. of

copy synthesis). Also, we can definitively state that C0-24 is

the form of MCD that should be optimized.
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8. DISCUSSION AND CONCLUSIONS

One interesting question about our technique is what actu-

ally happens to the labels. We have not yet reached a defini-

tive answer, but note that the labels do drift away from where

an expert human labeler would place them. We hypothesize

that in order to better model power, the segments are mov-

ing from being HMM-states to something more like di-states

(from middle of one state to middle of another – cf. diphones).

This does seem to happen with phrase final states, and nasals,

though it is not universal.

We have noticed that some segments become very short,

and are in fact errors in the labeling. This is particualrly

true of silences automatically inserted during initial labeling.

These progressively get shorter with MLSB. Segment dele-

tion is currently prohibited, but should be performed under

the right conditions.

Our technique for adjusting labels bears resemblance to

context-dependent labeling. Yet our clusters care about not

just standard tri-phone contexts, but includes stress and higher

level features, plus sub-state positional features. We plan to

try seeding the system with context-dependent labels. Our ex-

pectation is that the solution will converge to a similar point.

Similarities exist to discriminative training, as we are op-

timizing our models based on the predictive error. But there

are substantial differences between ASR discriminative train-

ing and what we are doing, so it would be confusing to refer to

it by that name. MLSB is also different from the discrimitive

training technique of minimum generation error MGE [18].

With MLSB we are optimizing the label boundaries with

respect to a speech synthesis sensitive measure, and hence

see improvement on that measure. Our label-refinement tech-

nique is metric-aware. We believe other parametric synthesis

techniques such as HTS can benefit from this approach. Unit

selection synthesis may potentially benefit as well.

Our listening results help establish that MCD is a reason-

able subsitute for subjective tests. An open line of research is

to hunt for an even better objective measure. Even if this is

not immediately forthcoming, one can identify other aspects

of training that can benefit by being directly optimized against

the evaluation metric.
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