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Abstract
Through the use of a device called an Electromagnetic Artic-
ulograph, it is possible to measure the locations of a person’s
articulators during speech. As more of this data becomes avail-
able, one important question is how it can be used. In this paper,
we demonstrate that it can improve performance for the recog-
nition of some phonetic features. As articulatory position data
is scarce, we also describe experiments that use articulatory po-
sition data from one speaker with another and provide results.
These experiments use cross-speaker articulatory positions to
predict phonetic features.

1. Introduction
The primary parameterizations of speech used in automatic
speech recognition and synthesis are based on DSP techniques.
MFCC, LPCC, and derived features can be readily extracted
from acoustic signals and allow the construction of relatively
high-performance speech systems. However, these features
(though related) are a bit removed from the actual physical pro-
cess of speaking. When a person speaks, the produced sound
is the result of respiration and voicing, combined with the mo-
tions of articulators, which affect the shape of the vocal tract.
The locations of these articulators should also be useful for the
parameterization of speech, and should enable the construction
of new models. Recently, such data has been made available
in the MOCHA database [1] through the use of a device called
an Electromagnetic Articulograph (EMA). So far, this data and
similar data from other groups having EMAs have been used
to perform a variety of experiments. Some concern relation-
ships between articulatory positions and acoustic features de-
rived from speech signals [2] [3] [4] [5] [6]. Others use articu-
latory positions to aid in speech recognition [7] [8].

At the same time, there have been other lines of work
concerned with what have traditionally been called “acoustic-
phonetic” features [9], but are occasionally referred to as “ar-
ticulatory” features [10] [11] [12]. These features are categorial
and describe phones when taken together. Some examples in-
clude voicing and placement of articulation. To minimize con-
fusion, we will refer to such features as “phonetic” features in
this paper. Recent work has included an attempt to go beyond
the “beads-on-a-string” approach to modeling speech [13] to
models based on parallel streams of phonetic features. Such an
approach has been demonstrated to improve speech recognition
[10].

As many of the traditional phonetic features are related to
notions of placement in the vocal tract, it seems natural to con-
sider the connection between them and actual positions of artic-
ulators as measured by an EMA. This paper will discuss a num-
ber of experiments investigating this relationship. It is hoped
that mappings from articulatory positions to phonetic features
will enable the extension of current speech models and the con-
struction of new ones.

Unfortunately, articulatory position data is difficult to col-
lect. In the past, it has been obtained through intrusive, and
sometimes dangerous means. As a result, articulatory position
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s only available for a few speakers. One natural question
ether this data can be leveraged for more general use with
speakers. This paper will also describe some novel ap-
hes to using articulatory position data from one speaker
nother.

. Predicting Phonetic Features from
Articulatory Positions

Phonetic Features

er to predict phonetic features from articulatory positions,
rst necessary to determine which phonetic features to pre-
One strategy is to use a set of multi-valued features, such

manner, place, voicing, rounding, front-back, and static
es described in [11]. A potential complication of this ap-
h is that such multi-valued phonetic features are typically
ived of in a hierarchical manner. For instance, some fea-
such as high and low are typically considered only for
ls, while other features such as labial and velar are typi-
considered only for consonants. In [11], all of these val-
re possible for the place feature. The model used in [11]
aches this problem by conditioning the place value on the
er value, which can be vowel, silence, or one of a num-
consonant types. Without some sort of hierarchy, though,
values associated with vowels may be confusable with
values for consonants. This may degrade performance.
nother strategy is to use a set of binary features that are
present or absent as in [10]. In this approach, a hierarchy
tures is not necessary, but one potential complication is
any more features are needed to describe the phone set,
e cross-product of the values can be quite large. Based on
he features are used, however, this may not be a problem.

Articulatory Position Features

selecting the phonetic features, it is necessary to decide
articulatory position features to use. The articulatory po-
data used in this paper comes from the msak0 and fsew0
ra from the MOCHA database [1]. These each consist of
ritish TIMIT utterances. The msak0 utterances were spo-
y a male with a Northern English accent, and the fsew0
nces were spoken by a female with a Southern English
t. For each utterance, a number of files were recorded, in-
g acoustic signal files consisting of 16-bit values sampled
Hz, and EMA files consisting of 10 (x,y) coordinate pairs

led at 500Hz. Of these coordinate pairs, 7 are useful and
spond to the positions in the mid-sagittal plane of the up-
p, lower lip, lower incisor, tongue tip, tongue blade, tongue
m, and velum.

Model

ise CART was used to construct models for predicting 18
y phonetic features from the articulatory positions. This
ewer than the full set of 76 binary features used in [10]
fficient for the purpose of demonstrating a relationship



between the phonetic and articulatory position features.
Stepwise CART was chosen as a model because it can ig-

nore predictor features when it does not find a high correlation
with the predictee. This was considered important because it is
believed that the positions of some articulators may be irrele-
vant to the values of some phonetic features. The stop-size for
the trees was determined by cross-validation. For each speaker,
8/10 of the utterances were used for training, with an additional
1/10 used as a held-out set for the stepwise processing. The
remaining 1/10 were used for testing. A few utterances were
not used due to corrupt data. During training, as suggested by
[10], only the center frames of the phones were used in order
to minimize the effects of co-articulation. The centers of the
phones were derived by automatically labeling the boundaries
with SphinxTrain [14]. The center of each phone was labeled
with the phone’s canonical phonetic features.

Other work [10] has used MFCCs to predict binary pho-
netic features. This work used different corpora that weren’t
“phonetically balanced” like the MOCHA data and only pro-
vided overall accuracies for the phonetic feature recognizers, so
the results cannot be compared. However, this work does raise
the question that MFCCs may have predictive value for pho-
netic features. As this appears to be the case, we decided to also
conduct experiments that would predict phonetic features from
MFCCs and from a combination of articulatory positions and
MFCCs. Because MFCCs are readily derived from the speech
signal, using articulatory positions to predict phonetic features
would only be useful in cases where the performance was im-
proved or the speech signal was not available. The trials in the
following experiments used the 0th through 24th MFCCs.

2.4. msak0 Phonetic Feature Prediction Results

Table 1: msak0 Binary Phonetic Feature Prediction

Feature MFCC EMA Both
unvoiced 0.683 0.203 0.683
stop 0.386 0.254 0.573
vowel 0.511 0.407 0.511
lateral 0.028 0.136 0.136
nasal 0.280 0.234 0.287
fricative 0.447 0.507 0.515
labial 0.175 0.457 0.457
palatal 0.037 0.368 0.037
velar 0.088 0.550 0.408
glottal undef. undef. undef.
high vow. 0.270 0.132 0.132
mid vow. 0.205 0.197 0.205
low vow. 0.333 0.201 0.259
front vow. 0.198 0.184 0.406
back vow. 0.062 0.141 0.062
diphthong 0.072 0.182 0.072
round 0.154 0.139 0.256
alv. fric. 0.586 0.338 0.601

The results of the trials for the msak0 utterances from the
MOCHA database are listed in Table 1. The listed results are
f-scores that were derived by combining precision and recall.
An alpha value of 0.5 was used to equally weight them.

For the 18 features that were tried, 5 were better predicted
from MFCCs (unvoiced, vowel, high vowel, mid vowel, low
vowel), 6 were better predicted from articulatory positions (lat-
eral, labial, palatal, velar, back vowel, diphthong), and 6 were
better predicted from a combination of the two (stop, nasal,
fricative, front vowel, round, alveolar fricative). None of the
approaches had a true-positive while predicting the glottal fea-
ture, so its prediction was considered unsuccessful.
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he experimental results demonstrate that the prediction of
phonetic features was indeed improved by using articu-
positions as predictors. Most of the features that were
predicted by articulatory positions were related to place-
which was expected. The MFCCs were much better at

cting whether a phone was unvoiced. This is not surpris-
ecause voicing is controlled by the larynx, which was not
d as an articulator in these experiments.

Cross-Speaker Articulatory Positions
entioned previously, articulatory position data would be
useful if there were a way to use it with speakers for
it has not been collected. To these ends, we experimented

approaches to map from one speaker’s MFCCs to another
er’s articulatory positions and back. Then these predicted
latory positions could be used in other models.

Corpora

er to map between two speakers, we needed data from
For our initial cross-speaker experiments, we chose the
usly mentioned msak0 data and the Facts and Fables

) data [15]. The FAF data is quite different from the
0 data. The FAF corpus consists of 107 utterances of para-

or multi-paragraph length which contain a total of over
0 words. The utterances consist of public domain text
Project Gutenberg [16]: excerpts from Aesop’s Fables and
IA World Factbook (2000). The speaker was a male with
western American accent. For each utterance, there was

bit acoustic file sampled at 16kHz, but no EMA file. This
s was created to study prominence and super-sentential
dy, so it is a bit different from the MOCHA msak0 and
corpora.

Cross-Speaker Mapping Approaches

re unaware of anybody else trying to map from one
er’s acoustic data to another speaker’s articulatory posi-
ata, so we experimented with a few approaches, which we
e baseline approach, the z-score mapping approach, and

TW direct approach.

Baseline Cross-Speaker Mapping

baseline approach, the MFCCs of one speaker are treated
ing in the same space as those of another, and thus map-

between MFCCs and articulatory positions trained on
ne speaker can then be applied to the MFCCs of another.

Z-Score Mapping Cross-Speaker Mapping

z-score mapping approach, the MFCCs of one speaker
z-score mapped to the range of the other speaker before
-speaker MFCC-to-articulatory-position mappings were
d.

DTW Direct Cross-Speaker Mapping

DTW direct approach, Dynamic Time Warping (DTW)
the Itakura rule [17] was used to select the source-speaker
s with the closest MFCCs (in terms of Euclidean distance)
se of the target speaker, and then mappings were learned
ly between the selected frames from the first speaker and
ticulatory positions of the second speaker. DTW was used
se the recordings made by different speakers were typi-
of different durations.

Cross-Speaker MFCC/Articulatory Position Results

hree cross-speaker mapping approaches were tried using
inear regression and CART for the sub-mappings between



Table 2: Cross-Speaker MFCC/Articulatory Position Mappings

Baseline Z-Score DTW
FAF to msak0 RMSE (mm)
Lin. Reg. 2.30 2.13 2.26
CART 2.49 2.21 2.23
msak0 to FAF MCD mean ± std
Lin. Reg. 9.43 ± 2.73 7.63 ± 2.29 7.90 ± 3.05
CART 9.48 ± 2.78 7.87 ± 2.40 7.89 ± 3.16
Roundtrip MCD mean ± std
Lin. Reg. 9.38 ± 2.44 7.27 ± 2.13 7.40 ± 2.55
CART 10.03 ± 2.46 9.92 ± 2.43 7.41 ± 2.69

MFCCs and articulatory positions. The mappings were per-
formed between utterances from the Facts and Fables (FAF)
database and the msak0 speaker from the MOCHA database.
Because the Facts and Fables text was different, a unit-selection
synthesizer based on the Facts and Fables recordings was used
to produce British TIMIT utterances to match the msak0 data.
The results are reported in Table 2. Average RMSE per articu-
lator is used as the error metric for trials that predict articulatory
positions, and Mel-Cepstral Distortion (MCD) mean and stan-
dard deviation are used as the error metric for MFCCs. These
measures are used and described in [5] [6].

Although it is possible to compare these results to single-
speaker results, there are some inherent difficulties. For the
mappings from FAF MFCCs to msak0 articulatory positions,
it is possible to compare the results to single-speaker mappings
from msak0 MFCCs to msak0 articulatory positions, but it is
harder to determine what the true values should be. Questions
arise such as: “Where should one person’s articulators be when
another person speaks?” For the mappings from msak0 articula-
tory positions to FAF MFCCs, there are similar considerations.
When considering the “roundtrip” mapping from FAF MFCCs
to msak0 articulatory positions and back to FAF MFCCs, there
is a notion of truth for the final result, because we want the out-
put of the composed map to match the input, but that alone is
not sufficient for good results, because we would like the inter-
mediate results to behave like articulatory positions. It would
be possible to construct an identity map that would give per-
fect end results, but not produce anything useful for articulatory
positions. For these reasons, it would be good to have another
measure of the quality of articulatory position predictions. If
there is another quantity that is correlated with articulatory po-
sitions, this may potentially be used as a measure.

4. Cross-Speaker Phonetic Feature
Prediction

Phonetic feature prediction is one possible candidate for mea-
suring the usefulness of cross-speaker articulatory position pre-
diction because articulatory positions have been demonstrated
to be useful for predicting some phonetic features in the single-
speaker case.

We investigated this possibility by conducting experiments
using the fsew0 and FAF data to predict msak0 articulatory po-
sitions, which were then used to predict phonetic features.

4.1. fsew0 Phonetic Feature Prediction

For the first cross-speaker phonetic feature prediction experi-
ments, msak0 articulatory positions were predicted from the
fsew0 MFCCs using the z-score mapping technique that was
previously described. These articulatory positions were then
used to learn decision trees that predicted phonetic features. The
results are compared to prediction of fsew0 phonetic features
based on actual fsew0 articulatory positions in Table 3. The re-
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Table 3: fsew0 Binary Phonetic Feature Prediction

ure MFCC EMA Both pEMA Both
iced 0.645 0.356 0.598 0.318 0.681

0.580 0.198 0.569 0.183 0.550
el 0.603 0.519 0.653 0.428 0.603
al 0.060 0.067 0.060 undef. 0.040
l 0.088 0.209 0.481 0.099 0.400
tive 0.562 0.466 0.539 0.217 0.496
l 0.052 0.436 0.429 0.097 0.053

tal 0.429 0.145 0.595 0.047 0.086
r 0.136 0.328 0.460 0.016 0.042
tal 0.067 undef. undef. undef. undef.
vow. 0.383 0.254 0.339 0.102 0.383
vow. 0.273 0.194 0.273 0.197 0.273
vow. 0.298 0.377 0.298 0.262 0.411
t vow. 0.379 0.446 0.451 0.130 0.310
vow. 0.206 0.082 0.206 0.130 0.206

thong 0.047 0.163 0.047 0.081 0.045
d 0.086 0.052 0.086 0.058 0.027
fric. 0.705 0.514 0.680 0.269 0.705

listed in the EMA column were for predictions from actual
articulatory positions from the 7 EMA (x,y)-coordinate
The results listed in the pEMA column were predicted

articulatory position predictions for the msak0 speaker
on the fsew0 MFCCs using the z-score mapping cross-

er approach. Again, the reported results are f-scores based
ecision and recall, using an alpha value of 0.5.
or the cases using actual fsew0 articulatory positions, four
tic features were best predicted by articulatory position

alone (lateral, labial, low vowel, diphthong). This was
r to the msak0 trials in Table 1 where lateral, labial, and

hong were also best predicted by articulatory position data
. Although palatal and velar were best predicted by artic-
y positions alone for msak0, they were best predicted by
mbination of articulatory positions and MFCCs for fsew0.
e phonetic features best predicted by articulatory position
for msak0, only back vowel was best predicted by MFCCs
for fsew0. However, actual articulatory data predicted low
l better than MFCCs for fsew0, which was not the case for
0.
onsidering the cases that used cross-speaker articulatory
on predictions, labial, diphthong and round were the only
where only using cross-speaker predicted articulatory po-
s was not improved by adding actual fsew0 MFCCs. The
ination of cross-speaker predicted articulatory positions
ctual MFCCs gave the best results overall for unvoiced
ow vowel. In the cases of high vowel, mid vowel, back
l, and alveolar fricative, this combination tied the best per-
nce, but that was because the MFCCs were responsible
at performance, and the cross-speaker articulatory posi-
were allowed to be ignored in the CART framework.

FAF Phonetic Feature Prediction

he next round of cross-speaker phonetic feature experi-
, msak0 articulatory positions were predicted from the
FCCs using the z-score mapping technique. Again, these

then used to learn decision trees that predicted phonetic
es. The f-score results are listed in Table 4. These ex-
ents differed from the fsew0 experiments in that no ac-
rticulatory position data was available for the FAF utter-
. Thus the results listed in the pEMA and Both columns
cross-speaker articulatory position predictions. The cross-
er articulatory features were better at predicting stop,
, palatal, high vowel, and mid vowel, and the MFCCs



Table 4: FAF Binary Phonetic Feature Prediction

Feature MFCC pEMA Both
unvoiced 0.291 0.237 0.237
stop 0.179 0.180 0.180
vowel 0.431 0.421 0.431
lateral 0.051 0.022 0.022
nasal 0.124 0.082 0.082
fricative 0.186 0.116 0.116
labial 0.083 0.125 0.125
palatal 0.109 0.125 0.125
velar 0.113 0.051 0.113
glottal 0.133 0.111 0.111
high vow. 0.110 0.130 0.130
mid vow. 0.240 0.247 0.247
low vow. 0.168 0.044 0.044
front vow. 0.124 0.112 0.112
back vow. 0.161 0.099 0.099
diphthong 0.123 0.079 0.079
round 0.135 0.044 0.044
alv. fric. 0.096 0.045 0.045

were better at predicting the remaining features. For FAF, there
weren’t any cases where the combination outperformed the in-
dividual feature sets.

5. Discussion
Overall, it appears that articulatory position data can be used to
improve the prediction of phonetic features. For one speaker
(msak0), the addition of articulatory position data improved
the recognition of 12 out of 18 phonetic features. For another
speaker (fsew0), its addition improved the recognition of 9 out
of 18 phonetic features. There is a considerable degree of over-
lap between the phonetic features that were best predicted for
both speakers by adding articulatory position data.

This paper introduces some novel techniques for leverag-
ing articulatory position data for use with speakers for whom
it has not been collected. One of these approaches was used
to predict phonetic features for two speakers (fsew0 and FAF)
based on the articulatory position of a third speaker (msak0) and
mappings between the speakers’ data. For one speaker (fsew0),
adding cross-speaker articulatory positions gave the best results
for 2 out of 18 phonetic features. For another speaker (FAF),
adding cross-speaker articulatory features gave the best results
for 5 out of 18 phonetic features. These results are a bit less
consistent than the results from using actual articulatory posi-
tion data but show some promise.

6. Conclusions
There are numerous future directions for this work. One possi-
bility is to see how well articulatory features can predict multi-
valued phonetic features. As mentioned earlier, the model
would probably need to be augmented to allow for some no-
tion of hierarchy. Another possible direction is to expand the
number of articulatory features. Perhaps using positions alone
is not enough. It may be more important in some cases to con-
sider distances between different articulators or even features
that consider the locations of multiple articulators. Yet another
direction is the improvement of cross-speaker mappings. It ap-
pears that the sub-mappings can be improved using techniques
such as voice conversion and GMM mapping. Improving sub-
mappings may improve the overall mappings. Finally, there is
the question of what can be done with phonetic features. As
mentioned earlier, work has been done which showed they can
be used to improve speech recognition performance. This and
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applications for phonetic recognition not only serve as po-
l benchmarks for the quality of cross-speaker articulatory
on predictions, but may demonstrate examples where ar-
tory position data can be leveraged for general use with
ers for whom it has not been collected.
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