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Abstract
We propose a cascaded multimodal abstractive speech sum-

marization model that generates semantic concepts as an inter-
mediate step towards summarization. We describe a method
to leverage existing multimodal dataset annotations to curate
groundtruth labels for such intermediate concept modeling. In
addition to cascaded training, the concept labels also provide
an interpretable intermediate output level that helps improve
performance on the downstream summarization task. On the
open-domain How2 data, we conduct utterance-level and video-
level experiments for two granularities of concepts: Specific
and Abstract. We compare various multimodal fusion models
for concept generation based on the respective input modali-
ties. We observe consistent improvements in concept modeling
by using multimodal adaptation models over unimodal models.
Using the cascaded multimodal speech summarization model,
we see a significant improvement of 7.5 METEOR points and
5.1 ROUGE-L points compared to previous methods of speech
summarization. Finally, we show the benefits of scalability of
the proposed approaches on 2000 h of video data.
Index Terms: speech summarization, semantics, concept learn-
ing

1. Introduction
Summarization generates a condensed and comprehensive ver-
sion of the input information and has been widely studied for
textual documents [1, 2, 3]. Summarization assists users in under-
standing large content in a shorter time period while maintaining
its informativeness. Most of the work on text summarization
has focused on single-document news domain summarization
[4, 5] with some work on multi-document summarization [6, 7].
Correspondingly, video summarization produces a compact ver-
sion of the video (visual summary) by encapsulating the most
informative parts either as a shorter video or a textual summary
[8, 9, 10, 11].

With the abundance of videos uploaded online, there has
been an increase in demand for efficient ways to search and
retrieve relevant videos [12, 13, 14]. Cross-modal search appli-
cations often rely on text metadata associated with the video to
find relevant content, but this is often missing or cannot repre-
sent subtle differences in related videos [13]. More importantly,
the speech modality, which contains detailed information about
the video, is not leveraged due to lack of availability of similar
representation methods as for text or video.

Prior work has studied multimodal summarization [11] with
speech as just an auxiliary modality. Speech summarization has
been approached via pipeline models that first perform speech-
to-text to convert spoken language into automatic speech recog-
nition based preditected text, followed by textual summarization
approaches mentioned above [15, 16, 17, 18]. Although this
approach is widely used currently, there are considerable draw-
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Figure 1: Two phase cascaded model for speech summarization
via multimodal semantic concept learning.

backs to this approach such as the compounding of errors across
ASR [19] and the loss of speech and audio-based context such
as the prosody, audio events, speaker information, etc [20].

Semantic concept learning is similar to other multimodal
categorization tasks such as object recognition [21, 22], scene
recognition [23, 24], action recognition [25, 26], or video tagging
[27, 28]. Most of these methods are classification-based, with
labels often human annotated from scratch or cleaned-up.

Instead of humanly-interpretable categories, there has also
been work on latent semantic representation learning, especially
to train general purpose embeddings for other downstream tasks
[29, 30, 31]. While these embeddings have shown strong per-
formance on downstream tasks [32, 31], being latent and non-
observable, they do not provide the necessary controllability for
generation-based tasks like summarization.

Text generation from multimodal data involves tasks such
as video captioning [33, 34], question answering [35, 36], or
summarization [37, 11] aimed towards generating a shorter, com-
pressed textual description as compared with video transcription
(ASR). Speech summarization by itself has largely been a uni-
modal effort that often represents input speech by auto-generated
ASR transcripts [15, 16, 17, 18].

In this work, we address these two problems: (1) generating
interpretable and semantically relevant concept representations
for given speech (or video), Phase I, and (2) improvement over
the pipeline approach for speech summarization via grounding
in the said interpretable semantic concepts (cascaded model),
Phase II. Figure 1 shows a pictorial depiction of the cascaded
multimodal speech summarization model, trained in two phases.

2. Task Formulation
Figure 2 shows the flowchart of the proposed approach. Inputs
to the Concept Extraction Model are the various modalities: im-
ages, videos, and speech. The outputs of this model are either
the Specific or the Abstract concepts. These are then inputs to
the summarization model which is used to generate a natural
language video summary. To curate labels for semantic concept
extraction, the annotated text is passed through a concept curator.
Specific concepts are obtained from the human-annotated video
transcript and Abstract concepts from the human-annotated ab-
stractive summary.
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Figure 2: Figure shows the system flowchart. The concept cu-
rator curates the groundtruth concepts (true labels Y1) from
existing annotated text. Speech and Video modalities are inputs
to the Semantic Concepts Model that predicts concepts (Y ′

1 ). The
Summarization model takes the predicted concepts as inputs to
generate a natural language Video Summary (Y ′

2 ).

Specific concepts are semantically-rich content words that
represent low-level fine-grained details of the task. These are
curated from the utterance-level transcript of the video. These
are highly domain-specific and their vocabulary may contain
rare but important domain words (e.g. tensioning, spoke, etc.).

Abstract concepts are higher-level coarse-grained concepts
that broadly represent the contents of the video, i.e. oil, spokes,
bike, sports. These are curated from the human-annotated video
summaries and are more generic and topic-based.

Video Summary is the natural language summary that pro-
vides a single sentence overview of the video. This summary
consists of information gathered from all video modalities in-
cluding speech, video, and text transcript.

2.1. Groundtruth Concept Curation

For the proposed concept extraction task, we use automatic meth-
ods to curate Specific and Abstract concept labels as collecting
human annotation at this scale and granularity is expensive and
difficult to standardize across annotators. For multimodal data
such as videos that have multiple views of the same information,
some information might be repeated (hence redundant) across
modalities, for e.g. no necessity for captions if you understand
the spoken language. This information redundancy brings forth
an opportunity to automatically create groundtruth labels for
tasks where data annotation is expensive. Part-of-speech tags
in a sentence form a major portion of meaningful and domain-
specific actions and content words, as used in [28]. We use
spaCy to extract nouns and noun phrases as that worked best for
both Specific (short segmented speech utterances) and Abstract
concept modeling (long textual summaries of the video).

3. Models
We develop a cascaded input-to-concept and concept-to-
summary model in two phases. Phase I is the concept generation
model that takes various multimodal inputs. Phase II is the
concept-to-summary model that takes as inputs the concepts gen-
erated in Phase I. Phase I Concept models are modality-specific
fusion models that are trained towards generating contextual se-
mantic concepts. Phase II Summarization models are text-to-text
generation models for unstructured to structured generation.

3.1. Phase I: Concept Models

Speech-to-Concept (S2C) We use a Bidirectional Long Short
Term Memory [38] encoder with pyramidal subsampling and
an attention decoder (LSTM) for concept generation with
speech inputs [39, 40]. This model learns to directly map
speech to corresponding concepts, extending the work on
direct acoustic-to-word speech recognizers [41] to directly
generate concepts from speech (much like spoken language
understanding). Speech inputs are very dense sequence vectors;
using a pyramidal BiLSTM encoder converts low-level speech
signals into higher-level features with input subsampling,
a common technique for sequence-based speech models
[40]. Additionally, we also use weights from a pre-trained
acoustic-to-word speech recognizers in a transfer learning
approach to boost speech-based model performance for direct
speech-to-concept mapping.

Visual Adaptive Training (VAT) Visual Adaptive Training is a
multimodal adaptation model to combine the speech and vision
modalities. We adapt the S2C model using the VAT strategy
previously applied to multimodal speech recognition [42, 43].
The VAT model learns an embedding shift transform between
the low-level input speech signals and the corresponding
video features leading to a transformed low-level audio-visual
multimodal signal, which then proceeds through the pyramidal
BiLSTM encoder (and decoder) of the S2C model. The VAT
submodule is trained end-to-end with the S2C model.

VideoRNN The given sequence of features from multiple
frames for every utterance or video are represented into
higher-level features using a BiLSTM encoder.

Hierarchical Attention (HierAttn) Hierarchical Attention is a
multimodal adaptation model to combine text and vision modali-
ties applied to machine translation [44] and summarization [11].
In this model, there are separate BiLSTM encoders for each
input, with an encoder-specific attention layer for each. This is
followed by another attention layer, the hierarchical attention
layer, applied on top of the encoder-specific attention layers,
generating a multimodal context vector. Via this the hierarchical
attention layer learns to weigh each input modality. The output
of this hierarchical attention layer is fed into an LSTM decoder.

Pred. Text-to-Concept (S′2C) For video-level concept genera-
tion, the speech lengths are too long to build a single S2C model.
For current computational limitations, we represent long speech
by predicted text (S′) using an off-the-shelf ASR [45]. This is
the predicted-text-to-concept model (S′2C).

3.2. Phase II: Summarization Models

S2S This model takes the Specific and Abstract concepts pre-
dicted by concept extraction models as inputs and converts them
into a natural language summary (video Summary in Figure 2).
Outputs of the semantic concept extraction model pass through
a standard BiLSTM encoder followed by an attention layer and
an LSTM decoder [39].

4. Experimental Setup
4.1. Dataset

The How2 dataset [46], statistics in Table 1, is an open-source
open-domain instructional videos corpus that contains 4 paral-
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Table 1: Table shows dataset statistics, available modalities, vocabulary and average number (#) of concepts for How2-300h and
How2-2000h datasets. Note the large target vocabulary space, which is uncommon for such tasks.

Dataset Concept Modalities Split Samples Vocab Avg. #

How2-300h-Utt Specific Speech, Image, Train 184,286 9,014 2.9
Transcript Test 2,361 - 3.0

How2-300h-Video Abstract Speech, Video, Train 13,172 2,611 5.9
Transcript, Summary Test 127 - 5.6

How2-2000h-Video Abstract Speech, Video, Train 73,993 5,227 5.9
Transcript, Summary Test 2,156 - 5.8

Table 2: Abstract concepts generation on the How2-300h-Video and How2-2000h-Video data.

How2-300h-Video How2-2000h-Video

Inputs Models P R F1 P R F1

Pred. Text S′2C 16.4 40.6 23.5 52.5 57.3 54.8
Video VideoRNN 40.8 46.7 43.6 58.6 64.0 61.2
Pred. Text + Video HierAttn 47.9 47.0 47.4 66.2 63.2 64.7

lel modalities: speech, video, human-annotated transcription,
and a summary. In this work, we use the following subsets of
How2: How2-300h-Utt, How2-300h-Video, and How2-2000h-
Video. The How2-300h-Utt contains speech utterances, corre-
sponding transcripts, and images, used for modeling Specific
concepts. How2-300h-Video is the 300h video equivalent used
for modeling Abstract concepts, which is then scaled to the larger
How2-2000h-Video. The dataset has a large vocabulary of 9,014
Specific concepts and 2611 (300 h), and 5,227 (2000 h) Abstract
concepts1.

4.2. Multimodal Features

Speech The speech features are extracted as dense time-series
data following the standard feature extraction pipeline [47]. We
extract 80-dimensional filterbank features and 3-dimensional
pitch features for every frame of the utterances sampled at 30
frames/second.
Video [48] propose a 3-dimensional version of the traditional
ResNet-101 model [49], 3D ResNeXt, with a third dimension
of convolution that represents the sequential video information.
The network is trained with the Kinetics Human Action Video
dataset [26]. From 3D ResNeXt, we extract a 2048-dimensional
vector for every keyframe.
Text Predicted Text is generated through the widely used off-
the-shelf English speech recognizer, the ASPIRE model [45].
This is an out-of-domain speech recognizer trained for utterance-
level prediction. Utterances are decoded independently and
concatenated to create video-level transcript.

4.3. Evaluation

We evaluate the quality of the concepts as well as summaries. For
concept evaluation, Precision (P), Recall (R), and F1 metrics are
reported. This is at the corpus level to remove any input/output
length variation dependencies. For summaries, we use standard
text generation metrics: METEOR [50] and ROUGE [51].

1This vocabulary size for this task is much larger than prior work in
speech/image/video classification tasks.

Table 3: Specific concepts generation using the How2-300h-Utt
data. † represents pre-trained model initialization.

Inputs Models P R F1

Video VideoRNN 13.3 4.7 7.0
Speech S2C 26.0 21.5 23.5
Speech S2C † 62.8 62.7 62.7
Speech + Video VAT † 66.6 64.7 65.7

5. Results & Discussion
Table 3 contains results for Specific concept generation on the
How2-300h-Utt dataset. Speech-based S2C model outperforms
the video-based VideoRNN model on all metrics. The S2C
model achieves a huge boost in performance by transfer learning
using a pre-trained ASR. On top of this improvement, the VAT
model results in further improvement of 3 F1 points (absolute).
As speech is a noisy signal in the How2 dataset, grounding with
the vision modality improves performance.

Table 2 shows the Abstract concept generation at video-
level on the How2-300h-Video and How2-2000h-Video sets.
The video-only model for Abstract concept generation performs
much better with the video-level context instead of utterance-
level. Overall, the Hierarchical Attention (HierAttn) model for
predicted text and video achieves significantly higher perfor-
mance than either modality by itself. Using more training data
with How2-2000h-Video boosts the performance of all models
while maintaining the same trends as the How2-300h-Video set.

Table 4 contains results for Specific and Abstract concept
to summary generation on the How2-300h-Video data. For the
summarization task, our two baselines are, (1) a language model
(LM) trained on the groundtruth summaries, as done in prior
work [11], and (2) a strong sequence-to-sequence (S2S) ab-
stractive summarization model [11] which takes the complete
ASR predicted video transcript as the input and summarizes it
without any intermediate concepts. Both Specific and Abstract
concept models outperform the LM baseline significantly. The
VideoRNN and HierAttn Abstract concepts to summary mod-
els outperform LM as well as the abstractive summarization
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Table 4: Summarization with Specific or Abstract concept models
evaluated via METEOR (MET) and ROUGE-L (RG-L).

Concept Model MET RG-L

None LM [11] 15.0 32.3
None S2S - Pred. Text [11] 22.9 46.1

Specific S2C † 20.9 43.6
Specific VAT † 21.8 45.9

Abstract S′2C 21.2 44.6
Abstract VideoRNN 24.3 49.2
Abstract HierAttn 30.4 51.2

Table 5: Example model outputs showing utility of interpretable
intermediate semantic concepts.

Model Output Concepts/Summary

Groundtruth side, stretch, exercise, video
S′2C exercise, fitness, trainer, video
VideoRNN press, exercise, video

Groundtruth learn a side stretch exercise with small
weights for your pilates routine in this free
exercise video .

S2C learn how to do the weekend yoga pose with
tips from a fitness instructor in this free yoga
lesson video .

VAT learn more about this exercise with tips from
a fitness instructor in this free exercise
video .

S′2C learn how to do pilates exercise with tips
from a fitness trainer in this free exercise
video .

VideoRNN learn a chest press exercise with tips from a
pilates instructor in this free exercise video .

baseline by a significant margin (7.5 points on METEOR and
5.1 points absolute on ROUGE-L), demonstrating the benefit of
modeling concept generation as an intermediate task. A signif-
icant improvement in METEOR with this model suggests the
generation of creative summaries, containing semantically rele-
vant words, which might not be present in the groundtruth, but
learned through the contextualized semantic space.

Table 5 shows model outputs for certain concept generation
and summarization models. In the S′2C and VideoRNN models,
concept models predict novel and semantically relevant concepts
such as press, fitness, trainer which are not in the groundtruth but
match the topic of the video. Similarly, in other examples, we
see higher word diversity in generated summaries by using the
learned semantic concepts as inputs for e.g. chest press exercise,
pilates exercise, weekend yoga pose, etc.

6. Conclusion
We presented a cascaded multimodal abstractive speech summa-
rization model that learns semantic concepts as an intermediate
step before summarization. We demonstrate strong performance
of this model compared to prior work on abstractive speech
summarization and observe significant gains in the automatic
summarization evaluation metrics. We evaluate the intermediate
concepts as well and find consistent gains with using multimodal

inputs rather than unimodal. Upon analysis, we find the in-
terpretable intermediate concepts help generate more creative
summaries.
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