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Abstract
In CMU's Blizzard Challenge 2005 entry we investigated
twelve ideas for improving Festival-based unit selection
voices. We tracked progress by adopting a 3-tiered strategy in
which candidate ideas must pass through three stages of
listening tests to warrant inclusion in the final build. This
allowed us to evaluate ideas consistently without us having
large human resources at our disposal, and thereby improve
upon our baseline system within a short amount of time.

1. Introduction
“Blizzard Challenge 2005” was conceived to fill a gap in the
speech synthesis research community: namely, the need for a
uniform mechanism for measuring the utility of competing
techniques that may be applied to the problem of synthesis [1].
This need is met by providing CMU ARCTIC single speaker
databases as a common speech corpus [2], by procuring a
reasonably large base of subjects for listening evaluations of
different systems, and by undertaking analysis of the results.

This paper describes the approach used for the CMU
entry, divulging both successes and failures. Our focus here
lies not in details of our system, but in how we attempted to
improve it, our overall approach. We present a methodology
that we found useful and hope is broad enough in scope that it
may be adopted by other teams in future editions of the
Blizzard Challenge. This is crucial because the circumstance
we faced is endemic to many teams.

2. Problem and Proposed Solution

2.1. Problem Statement

The problem: how can a small team with limited resources
improve a complex system (a speech synthesizer), operating
under a tight deadline, when improvement is notoriously
difficult to measure? To this one might also add: and when
changes to the system take considerable effort to plan,
execute, and evaluate. 

In our case “small” means four students able to tackle the
Challenge in a part-time capacity, plus one faculty member
present in an advisory role – hence “limited resources.”

2.2. Proposed Methodology

There are three major elements to the CMU approach: a
research agenda, a testing strategy, and diagnostic tools. The
crux of the research agenda consisted of a ranked list of
candidate ideas allotted to different team members. Building
an improved set of diagnostic tools received the least
attention (unfortunately), amounting primarily to a more
complete web server for conducting listening experiments.
This supported our requirement for a lightweight approach to
testing and evaluation.
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Research agenda
Identify constraints to minimize up-front effort. 
Assess past published work and current projects.
Establish a baseline voice for point of comparison.
Brainstorm a things-to-try list; divide up.
One person integrates successes into the final entry.

Testing strategy:  “propagate up 20” 
Individual implements a change and tests on a set of
20 sentences (using oneself as the test subject).
If promising, put 20 A-B examples on web page and
request other members to listen. If it is a statistically
significant result, keep and define a new baseline.
Finally, promote 20 test sentences to a larger pool of
speech researchers for more reliable testing. 
Elements that pass the third stage make it to the
official submission.

Diagnostic tools
web-based server for sets of listening tests.
unit selection tracing and waveform analysis

orm of our testing strategy derives from the challenging
of human listening tests and is intended to balance

with accuracy. Individual developers can test numerous
tasks quickly, but are not as reliable a judge of quality as
ne working independently. (Practitioners of speech

nition, compression, and noise removal do not face such
lties.) We used 20 in-domain (Gutenberg) sentences as

st set. As a rule of thumb, a score of 12-8 is desired to
te a candidate idea to the next level of evaluation.

ation by the development team promotes a candidate to
ird level: testing on a larger group of colleagues. Ideally,
hose ideas that pass through the three gates of evaluation
lowed into the final submission. 
he baseline system is a standard Festvox build, a process
documented elsewhere [3]. It is comparable to the
ilt voices released with the CMU ARCTIC databases.

onstraints

first decision resided in choosing Festival for our
sizer framework, as opposed to adopting something
iliar or in developing an entirely new substrate. Other
aints derive from considerations of available time.

se the Festival “clunits” unit selection synthesizer,
long with the EST speech tools.
mploy only automatic techniques, i.e. no hand

orrection of the databases.
ptimize one voice (arctic_rms) and then apply the
arameter settings to the remaining three voices. 
une for in-domain sentences only. Let the other
omains fall where they may.



We eschewed hand correction of the Arctic databases – even
though this is mandatory in commercial-grade work – on the
grounds that algorithmic solutions offer greater long range
impact. This, plus a desire to explore as many design options
as possible, acted to frame our endeavors.

3. Development

3.1. Candidate Ideas

Once we had established our working constraints we faced a
basic choice of whether to be conservative or adventurous. In
a conservative approach one would apply a list of known
good techniques to the baseline system, then carefully tune
the combination of parameters. Instead we opted to be more
adventurous – exploring, in the time available, as many
plausible but untested ideas as possible. The Challenge
offered an appealing opportunity to explore a large chunk of
design space, striving to answer what does and does not work.

Here is the list of ideas we set out to explore, with brief
explanation. They are ordered from most promising on down,
as we initially assessed it. 

1. Improved pitchmarks. Pitch synchronous mel frequency
cepstrum coefficients lie at the foundation of Festival's
clunits clustering algorithm, and are used at runtime when
computing unit join costs. In the baseline voice,
pitchmarks are derived from the audio channel using the
EST program pda. All the Arctic databases used in the
Blizzard Challenge, however, are recorded with a second
EGG channel, and it is a shame not to make use of this.
Task number one, then, was to derive a second set of
pitchmarks using the EGG as the primary source,
adjusting each according to details of the audio channel.

2. Improved label boundaries. The baseline voice uses
labels generated from the forced-alignment mode of
Sphinx-2 acoustic model training. We've reported prior
success in taking the average label set over multiple
model runs [4] and thus it is worth applying again. Also,
the current version of CMU's Sphinx engine is 3.5, so it is
natural to want to use the latest version.

3. Durational outlier removal. According to the results of
[5], removing unusually short or long units (durational
outliers) from the database serves to purify the phone
classes. There is also evidence that it indirectly detects
and removes labels having the wrong identity.

4. Corrected label identities. The labels provided with
Arctic databases are derived from CMU-Dict and hence
represent standard American English. Fortunately, the
databases selected for Blizzard were deliberately those of
native Americans. Still, it remains that the transcript is
predicted from the dictionary, and will not specify the
actual acoustic realization in all cases. Correcting discrep-
ancies helps the synthesizer avoid pronunciation errors.

5. Power normalization. Wavefiles in the Arctic database
are normalized to a reference volume on a per-utterance
basis. This doesn't guarantee that the sequence of units
selected will have a natural power curve. Tighter control
is possible by normalizing the selected segments, as part
of the tail-end generation module.

6. Join cost tuning. The join cost function is an equation
that predicts how natural one unit will sound concatenated
after another. The default cost function doesn't accurately
mimic human perception, however, and contains some
rather ad hoc elements. A thorough re-engineering of the
acoustic cost function is a huge task, but we did explore a
set of heuristics that could plausibly improve synthesis.
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nit cluster tuning. A unit cluster is a phone class subset
llophonic variation) that is acoustically self-similar and
n be predicted by surrounding phonetic context. The
rpose is to constrain phone candidates to only those that
e appropriate for the local context of words spoken,
aking the synthesizer more precise. Clusters thus
ovide a target cost, and serve to protect against flawed
in cost functions. Variables open to optimization
clude cluster size, number and type of training features,
d algorithmic search control.
nit name binding. Name binding is a way of specifying
it cluster constraints directly from the surrounding
onetic context, without using acoustics (above, item 7).
is technique was pioneered with success in limited
main voices [6], where phones are grouped according
the containing word. A general purpose synthesizer

quires looser constraints. We explored aspects such as
llable position and consonant/vowel contexts.
etter unit set. The question of optimal unit size is an
en issue. There is evidence that disyllables are superior
phonemes [7], but the complexity of changing this

pect led us to retain phoneme units at the foundation.
onunciation selection. One aspect of an individual's

iolect is their variant pronunciation patterns. The work
[8] attempts to predict variants of common function

ords such as for. Appropriate use of the reduced versus
ll word form can result in more natural synthesis.
onversely, using the reduced version /fer/ is sometimes
d, e.g. in a SUS test a reduced rendering of the word
ir “in for” is confusable with the word “infer”.
ature vector definition. By default, the acoustic

atures are 12 dimensional melcep vectors. Including
ergy, Fo, and delta terms are typical alternatives. We
plored their impact on concatenation join cost.

dea Evaluation

1 concisely encapsulates Team CMU's entire Blizzard
nge effort. Rows refer to particular experiments; the

e columns follow an idea's progress through the testing
; and the rightmost column offers a does it help
ment. Some cases are clear, some unclear, and some
 made it out of planning.

Testing Level
Idea Self Team Group

Does it
help?

1 67.5 62.8 bye yes
2 40 no
3 maybe maybe
4 fail no
5 60 55 53.75 slight
6a 37.5 no
6b 47.5 no
6c 60 bye 47.5 maybe
7 70 bye 47.5 maybe
8 55 bye 37.5 no
9 skip ––

10 mixed 48.7 unclear
11  fail no

Table 1. Testing procedure applied to the ranked list of
andidate ideas. Highlighting indicates the stages an idea
has successfully passed. Numbers reveal the preference
atio of a new voice versus old. Note that these numbers

are relative to a moving baseline system, but are
comparable along a single row.



The numbers in Table 1 depict preference ratios of the
candidate voice over a moving baseline. During development
the baseline gradually changed as improvements were
incorporated. This will be clarified below in section 3.7,
which discusses our build sequence.

Admittedly, we did not follow our own protocol to the
letter, as revealed by the presences of testing byes. This was
due to time constraints compounded by the delay in
accumulating listening results. Plus, when seeking subjects, it
is all too easy to lose customers, inducing a reaction of “oh
no, not you again!”. Thus, we saved the group tests for near
the end of the development timeline.

3.3. Pronunciation Selection (details)

Before variant pronunciations can be predicted they must first
be identified. We do this through iterative Sphinx-2 acoustic
modeling. The process is initiated using the open source “6k”
speaker-independent models. These are used to provide an
initial pronunciation for each target function word. Using this
initial transcript we build speaker-dependent models. These
are run in forced alignment mode with all variant
pronunciations permitted, the output of which yields a new
transcript for another round of modeling. This continues until
convergence.

With transcript in hand, a set of CART trees is trained to
predict reduced forms of the words purely from the input text.
Experiments in [8] report numbers equal to the performance
of human prediction, equating to a major improvement over a
naive choose-the-most-frequent predictor.

3.4. Unit Join Costs (details)

Given a sequence of candidate units for each utterance phone,
Festival uses a Viterbi search to find the minimal cost path.
Two consecutive units from a contiguous section of speech
are assigned a join cost of zero. Otherwise, if a unit has a
target cost ctarg and a join cost with the previous unit of c join

then score ctarg wcon c join where wcon provides a continuity
weight. The target cost is the distance between a unit and the
centroid of the cluster to which it belongs. The join cost
measures the difference between adjacent frames and has
three terms:

c join c pen wFo F 0 wcep , i xi yi
       (1)

where delta F0 is the change in pitch at the join point and
wFo is the pitch weighting term, x and y are the neighboring

cepstral vectors at the join point and wcep is a vector
weighting the cepstral dimensions. The constant c pen is a non-
continuity penalty value.

Observe that these equations treat all phonemes equally,
even though the human ear is probably more sensitive to joins
in fast changing sonorants than in other phoneme classes such
as fricatives. To explore this possibility we introduced a
heuristic two-valued phone coupling weighting wcoup which
has value 0 for joins we want to encourage and infinity for
joins we want to prevent. The infinity condition could assume
one of four cases.

1. joins not occurring at a silence.
2. joins not occurring at a stop consonant.
3. joins not occurring at a fricative.
4. joins not occurring at all of the above.

The net effect is to encourage joins at silences, stops, and
fricatives individually, or at all three together.
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xperimental Findings

tchmarks (idea 1). An improved set of pitch-marks
rived from the EGG tracks was our first clear success.
n our 20 sentence test set the developer reported a
.5% preference (p=.002). When promoted to the full
velopment team this result was confirmed with a 62.8%
eference rate (p<<.001). We were sufficiently confident
out it that we didn't bother to submit the change to

age 3 of the testing ladder. The new pitchmarks were
opted for all future integration tests.

abel boundaries (idea 2). Consistent with the advice of
], when training Sphinx-2 models we set the number of
d triphone states to 3000. We expected the resulting

bels to be good but not optimal, and so tried various
ings to improve them. None of the attempts offered
ything significant.
ttempts included a) averaging over multiple training

ns where the number of senomes is varied, b) labeling
om across multiple Arctic database and averaging
rious combinations of sets, and c) adding a time offset
compensate for the analysis window width (i.e. placing

e boundary at the beginning, center, or end of the
amming window, and places in between).

s for Sphinx-3, we were unable to get it to work
tisfactorily before the deadline. This was due to a
uple of problems – one in the alignment program itself,
d a second triggered by an undocumented change in the
put file specification. These problems manifested by
iling to produce labels for 40% of the utterances, and
rforming unreliably on the remainder.
urational Outliers (idea 3). In this procedure, phones
e excluded from the unit catalog if their purported
ration is unusually long or unusually short (zscore > 3).

ecause of the encouraging results published in [5], we
d another team member reimplement the technique for
dependent verification. The verdict was that it
robably helps but the effect is not large”. Without a

rong verdict we moved onto other agenda items.
abel Identity (idea 4). For this problem again we tried
rative acoustic modeling. Briefly: using speaker-
pendent models run the decoder on the database.
tterances where the transcript disagrees significantly
om the decoder output are discarded. The remaining
terances are then used as raw material for new models,
d the procedure is repeated until convergence. While
is should result in tighter acoustic models by
iminating unsuitable utterances, the final result was that
made the synthesizer worse. Presumably, the trimmed
tabase lost too much phonetic coverage. We considered
plementing the approach of [9] but lacked time to
dertake such an effort. 
wer normalization (idea 5). This relatively simple

chnique offered a slight gain (53.7%, p=0.3), improving
me wavefiles but not all consistently. This was the one
ea to traverse all three steps of the testing ladder and did
ake it to the final submission.
ature vector definition (idea 11). Here we addressed

e frame-based feature vectors. In particular, the question
whether an energy term should be added to the 12-

mensional cepstral coefficients. This alteration seemed
 make no difference to the final synthesized voice.
onunciation selection (idea 10). This idea, though it

dn't make it past the second testing step, had
triguingly mixed results. One of the voices (bdl)
proved significantly, while another degraded by almost

e same amount (slt). Further tests are needed.



8. Join cost tuning (idea 6a). Wavefiles generated from the
four modified join costs achieved an aggregate preference
of 30% (p << .001), and a top preference of 37.5%
(p=.02). This last was for the fourth case of section 3.4.

9. Optimal couple lookahead (idea 6b). When looking for
an optimal join point, Festival will search partway into
the preceding phone. The default value is 33% of the
preceding phone's length. We tested this number at values
of 10, 33, 50, 67, and 90%. The default worked best.

10. Fo join weighting (idea 6c). In the default, pitch change
weighting is turned off, i.e. wFo 0. We tested a broad
range and found that a value of 2000 performed better
(60%, p=.17). However, when subjected to larger
listening tests the advantage disappeared (47.5%).

11. Unit clustering (idea 7). The “stop size” parameter of
Festival's CART tool controls the size of decision tree
leaf nodes. The default value is 20. We could find no
better value, as the following table of listening scores
reveals. Adding phone duration as a selection feature in
the tree building process also resulted in no improvement.

Compare Score Better?
 5 vs 20 27.5 no
10 vs 20 20 no
15 vs 20 42.5 no
25 vs 20 30 no
30 vs 20 27.5 no
40 vs 20 25 no
80 vs 20 20 no

12. Unit name binding (idea 8). This attempt became a
frustrating case of vanishing gain. The situation:
developer A discovers a name binding scheme that passes
stage 1 tests. Developer B incorporates the code into the
current build – and can't detect a difference. Undaunted,
B searches for variant that does seem to offer gain (55%,
p=.54). When results return from larger listening tests the
verdict is  firmly negative (37.5%, p=.05).

3.6. Developer's Delusion

In every instance of Table 1, ideas that promoted out of first
stage testing received decreasing preference scores when
presented to a larger populace. We call this trend Developer's
Delusion (alternatively: Developer's Optimism or Developer's
Bias for differing connotations). Why does this happen,
despite randomized wavefile presentation? 

First, every person has a slightly different internal
measure of quality. For some, clarity dominates continuity;
for others, the reverse, etc. When working alone a developer
has no choice but to optimize for their own sense of goodness.
Problem is, this sense might be idiosyncratic. 

Second, the developer is so familiar with the effect of
their changes that during tests one is highly attuned to
familiar details. A-B choices then become an intertwined
mixture of quality judgments and system recognition. A gap
of several weeks is needed to shake the biasing influence of
system recognition. 

3.7. Build Sequence Testing

Ideally we would have methodically followed our testing
protocol but found we had to save time with a short circuit.
We selected the best wavefiles from the initial baseline and
the results of improved pitchmarks, and from this generated a
new artificial baseline. Then the promising ideas of first
phase testing were organized into a ladder structure for third
phase testing. With this we presented four tests.
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Test 1. Idea 5 versus the new combined baseline
Test 2. Idea 6c versus idea 5.
Test 3. Idea 7 versus ideas 6c and 5.
Test 4. Idea 8 versus ideas 7 and 6c and 5.

, this was a tactical mistake. Recruited subjects often
do the first test and then stop, requiring encouragement
tinue. Results for tests 3 and 4 were especially needed
ere fewer in number and delayed. When the negative
s came back it was too late to pull those features from
bmitted system. Instead of adopting the natural order,
ould have presented the tests in reversed chronology.

efore and After Comparison

end, the primary question is: after all this effort, did we
e to improve from our baseline at all? To find out we

ne more second stage listening test to compare our
ne with the final submission. For this we allowed three
s to pass from previous tests and used the Blizzard

nces of the conv and guten domains (100 in total). The
-B decisions revealed a significant – but not dramatic –
ence of 60% for the new voice over the old (p<<.001). 

4. Conclusions
ntry is identified in the Blizzard report as system C; the
l results place us in the middle of the pack. No doubt,

method does not guarantee first place. What it did do is
us to structure our efforts and make progress towards
al of better synthetic voices. We believe this experience

erve us well in Blizzard Challenge 2006.
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