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Abstract

In this paper, we present a novel statistical approach to
corpus-based speech synthesis. Unit selection is directed by
probabilistic models for F0 contour, duration, and spectral char-
acteristics of the synthesis units. The F0 targets for units are
modeled by statistical additive models, and duration targets are
modeled by regression trees. Spectral targets for a unit is mod-
eled by Gaussian mixtures on MFCC-based features. Goodness
of concatenation of two units is modeled by conditional Gaus-
sian models on MFCC-based features. Although the system is
in its early stage of development, we implemented an English
speech synthesizer with CMU Arctic corpora and confirmed the
effectiveness of this new framework.

1. Introduction

Corpus-based concatenative approach to speech synthesis has
been widely explored in the research community in recent
years [1, 2, 3]. In this approach, a best sequence of phone or
subphone-sized units are chosen from a large inventory of possi-
ble units to synthesize input text, by minimizing the overall cost
function. The overall cost is often modeled as the weighted sum
of target costs and concatenation costs on the various features
such as spectral, intonational and duration features.

In the MIT Envoice system [4], an information-theoretic ap-
proach was proposed, in which Kullback-Leibler divergence that
captures a distance between unit classes was utilized for defin-
ing the substitution cost. The concatenation costs were defined
based on a mutual information metric representing the depen-
dency between unit classes across the concatenation boundary.
In the new corpus-based speech synthesis framework that we
present in this paper, we go further and propose a probabilis-
tic approach to unit selection in concatenative speech synthesis.
We are pursuing this approach in the hope that a probabilistic ap-
proach will make it easy to establish a method that is mathemat-
ically manageable, needs fewer tuning parameters, and is easy
to train, by taking advantage of statistical properties emerging
from the data. It can be regarded as a more constrained sublcass
within the larger class of general cost-based approach.

In the following section, we introduce our probabilistic
framework for unit selection. It is followed by the descriptions
of the target and concatenation models in our probabilistic ap-
proach. We then briefly describe the unit search mechanism after
that. We then describe the way we generate the target phone se-
quence from input using a wFST. We finally describe the imple-
mentation with CMU Arctic corpora [5] for Blizzard Challenge
evaluation, followed by discussions.
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Probabilistic approach to unit selection
peech synthesis framework where units are selected from
rpus, we are given some input specification such as spec-
ons for phone-sized or even finer subphone units, s =
, sN . The major work of the synthesizer is to find a best
nce of units u = u1, ..., uN for this input specification. A
cation for a unit si can be a collection of target features,
(fi(1), ...fi(p)). These features may include such things
hone label, a duration target, and an F0 target for the i-th

a probabilistic framework, we would like to find a best
nce of units that maximizes the probability, P (u|s), i.e.

u∗ = arg max
u

P (u|s) (1)

eral, the probability of generating a unit ui can be depen-
n the specification s (hopefully a small neighborhood of
d the units preceding ui,

P (u|s) =
N�

i=1

P (ui|u1, ..., ui−1, s, i). (2)

assume that the choice of unit is dependent only on one
efore that, it reduces to the simpler form,

P (u|s) =
N�

i=1

P (ui|ui−1, s, i). (3)

onditional probability of generating a unit is assumed to be
uct of the probabilities to have particular values for various
e values of the unit, such as the value of duration feature
, F0 feature f(ui), spectral feature o(ui), near-boundary
al features at the left (head) and right (tail) ends of the
(ui) and t(ui),

P (ui|ui−1, s, i)
= P (d(ui), f(ui), o(ui), h(ui)|ui−1, s, i)
= P (d(ui)|si) P (f(ui)|si) P (o(ui)|s, i)

P (h(ui)|t(ui−1), s, i). (4)

onditional probability P (h(ui)|t(ui−1), s, i) of having a
undary feature after a right boundary feature of the previ-

nit corresponds to what is often referred to as concatena-
ost in the context of corpus-based speech synthesis. The
the component probabilities corresponds to so-called tar-

sts or substitution costs.



3. Spectral target models
The purpose of the spectral target model is to measure the appro-
priateness of the spectral shape of the unit for the phone context
specified by the input. We model the spectral target through m
mean spectral features for each unit,

P (o(ui)|s) = P (oi,1, ..., oi,m|s)
= P (oi,1|s) · · · P (oi,m|s). (5)

In the current implementation adopting phone-sized units,
m is set to be 2. Therefore, spectral target models accounts for
the average spectral shape of the first half and the second half
of the unit. The probability of each part is assumed to be condi-
tioned on the triphone context:

P (oi,j|s) = P (oi,j|li, ci, ri), j = 1 . . . m, (6)

where li,ci, and ri represents left phone, center phone, and right
phone for the unit ui. Each of these densities are to be tied by
phonetic decision-tree based clustering for robust estimation and
to handle unseen contexts in the runtime. It could also be worth
considering a quinphone context. In the current implementation,
we use 14 MFCC coefficients, with dimensionality reduced to 8
by principal component analysis.

4. Duration target models
The duration models characterize tendencies of phone durations
based on the surrounding phonological, lexical, and phrasal con-
text. A duration model for each phone class is represented as a
scalar Gaussian model and it is clustered using a regression tree.
The features used for tree building are the number of syllables
in word, the position of the syllable containing the unit in word,
the position of the syllable containing the unit in intonational
phrase, lexical stress of the syllable, pitch accent of the sylla-
ble, function word identity if the unit occurs in a function word,
phone position in syllable, and the left and right phone identities.

5. F0 target models
The F0 model is based on a three-layered statistical additive F0

model [6, 7, 8]. The first layer is an intonational phrase-level
component determined by the intonational phrase type and its
syllable length. The second layer is the word-level component
identified by the lexical stress positions and the number of sylla-
bles in the word. The third layer accounts for the effect of pitch
accent at the syllable granularity. The output from the additive
F0 model is the sum of these three layers and a constant and
gives a prediction of the F0 contour. We regard this predicted
contour as the mean of a constant variance Gaussian model. The
variance is computed based on the overall error of the model
against the original F0 data in the corpus during training. Al-
though we currently assume a constant variance, it would be in-
teresting to consider a way to estimate different variances for
subclasses of intonational phrases or accentual phrases in some
way from the training data.

6. Spectral concatenation models
The likelihood of the occurrence of the spectral shape of a unit
after another unit is given by the spectral concatenation mod-
els. Here we make an assumption that this is best done by using
spectral features at the both ends of the unit, namely the initial
portion (or head) h(ui) and the portion at the end (or tail) t(ui)
of the unit ui. In the current implementation, head and tail are
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oncatenation probability is modeled as a linear conditional
ian density of observing the head of a unit given the tail of
eceding unit,

h(ui)|t(ui−1)) = N (h(ui)|Bs t(ui−1) + bs, Σs), (7)

h(ui) and t(ui−1) are d-dimensional vectors, Bs is a
matrix with the j-th row representing a regression coeffi-
for the j-th component of h(ui), and bs is a d-dimensional
of intercepts, and Σs is a d × d covariance matrix. Bs,

d Σs are determined by the diphone context, i.e. a phone
l pair (pi−1, pi), for the units ui−1 and ui.

he maximum likelihood (ML) estimation of the parame-
and b for a training data D = {(t1, h1), ..., (tN , hN )},

(ti, hi) is a pair of tail and head meeting at a boundary of
of consecutive units in the corpus, are given by solving a
regression problem. By defining a d × (d + 1) matrix A
(d + 1)-vector si such that,

A = � bs Bs � , and si = � 1
ti � , (8)

e a relationship Bti +b = Asi, and we can obtain the esti-
of B and b from the estimate of A. By differentiating the
elihood of the training data with respect to A and setting

ero, we obtain the ML estimate of A,

Â = (
N�

i=1

his
T
i )(

N�
i=1

sis
T
i )−1. (9)

ovariance matrix Σs will be estimated from the sample
ances around the means given by B̂s and b̂s.
hese densities are also to be tied by a decision-tree cluster-
r robust training and handling unseen contexts.

7. Unit search
nit database is organized in the shape of decision trees. We
the phonetic decision trees constructed in the training of

al target models for this purpose. A set of units are as-
ed with each node of a tree, in which the nodes closer to
ot represent broader classes of units and the nodes closer
ves represent more specific classes of units. In the syn-
time, we walk down each of m trees from the root to the
pecific node with enough number of units associated with

is is controlled by the prespecified threshold value for the
al number of units for a node. The union of the sets of

coming from m trees makes the whole candidate unit set
hone target.

he runtime search module performs a Viterbi beam search
h the space formed as a sequence of sets of units prese-
from the trees mentioned above for the best sequence of
or the input.

8. Output rendering
ieve a smooth sound quality around concatenation points,
oncatenation is done using a simple overlap-and-add
hing technique which is a simplified version of a tech-
previously proposed for error concealment of packet-
speech transmission through the Internet [9].



9. Phone sequence generation
A set of phonological rules is used to model allophinic varia-
tions. For example, one rule for flappable t is expressed by:

{VOWEL} t {VOWEL} ⇒ dx | tcl t.

This rule only applies to intervocalic ts. In this case, /t/ can be
mapped to a flap [dx] or t closure, [tcl], followed by a t release.
We currently use about 120 hand-crafted phonological rules that
map 60 phonemic input symbols to 55 phonetic output symbols.

The set of phonological rules can be represented by a
weighted finite-state transducer (wFST) [10]. The weights as-
sociated with the example rule would model how often an inter-
vocalic t is flapped. The weights in the wFST were trained using
a generic wFST EM-training algorithm [11] with reference word
sequences and forced aligned phone sequences from a training
corpus.

At runtime, with the learned weights on the wFST, we com-
pose it with an input phoneme sequence to obtain the corre-
sponding set of weighted sequences of phones. The single best
phone sequence is the result of Viterbi search on the set.

There can be another approach which treat this whole net-
work (from word sequences to phone sequences) as a probabilis-
tic version of the target specification, but for simplicity reason,
we did not explore it at this time.

10. Voice development with Arctic corpora
We developed two voices for the new speech synthesizer using
Arctic SLT (female) and BDL (male) corpora, each of which
consists of some eleven hundred utterances.

10.1. Corpus transcription

The corpus was transcribed at the phonetic level with possi-
ble different allophonic pronunciations derived from applying
phonological rules [12] to phonemic baseform dictionary. The
baseform dictionary also has multiple pronunciations for some
words in the vocabulary. For example, the preposition “to” has
two pronunciations, /t uw/ and /t ax/. We also generated tran-
scriptions at word and syllable levels for use in the training of
prosodic models.

We bootstrapped the transcription process using a speaker-
independent acoustic models trained on lecture data [13]. We
then adapted acoustic models to the corpus speaker and tran-
scribed the whole corpus again using the adapted models.

10.2. Prosodic annotation

When we first investigated the effectiveness of statistical addi-
tive F0 models on English intonation modeling [7], we made
use of Boston University Radio News Corpus [14], in which
prosodic labels such as break indices, boundary tones, and pitch
accent markers are assigned by hand. In the current implementa-
tion using Arctic corpora, which do not (yet) have hand-labeled
prosodic annotations, we used the ToBI labels for a reduced set
of boundary tone and pitch accent types available from Festival
“Utterance” structure which is apparently generated automati-
cally using the Festival system [15]. We utilized those labels as
they were to generate intonational phrase labels and pitch accent
labels without checking or correcting by hand, due to the limited
resource and time.

10.3. Training of target and concatenation models

The three layer additive F0 models were trained using the syl-
lable, word, and intonational phrase labels generated from the
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ith no hand corrections. The duration models, which are

sion trees modeling phone durations, were trained using
one, syllable, word, pitch accent, and intonational phrase
, again with no hand corrections.
pectral target models and concatenation models for phone-
units were trained using the phone labels mentioned above.

Construction of synthesis unit databases

veform unit database populated with phone-sized units
onstructed using the whole waveform data of each corpus.
kinds of information such as F0 fragments, mean spectral
es and edge spectral features for phone-sized units were
tored associated with units. A tree-shaped access mech-
of the unit database was constructed using the phonetic

on tree constructed during the training of spectral target
ls.

Pronunciation training

flect possible phonological differences among speakers,
eperate wFSTs representing the phonological rules were
d, one using the Arctic SLT corpus and another using the
BDL corpus.

A text-to-speech prototype for Blizzard
Challenge

rform a whole text-to-speech conversion process, we
d a front-end, or a text analysis module that places phrase
aries and pitch accents as well as choosing a proper read-
sed on the grammatical and discourse knowledge when

d. Since we do not have our own front-end module yet,
ose to use the front-end module in the Festival system [15]
eveloped an interface module that takes the Festival “Ut-
e” structure and convert it to the format for input to our
sizer.

he whole computation time from text input to waveform
ation is roughly 30 times the length of the output wave-
file. This rather slow speed is due to various factors in-
g the rapid prototyping making use of script language and
terface, loading of large database files every time synthe-
command is invoked, use of full covariance Gaussians in
tenation models, and rather loose beam width (2000 can-
s survive in every pruning). Therefore we are optimistic
the future improvement in processing speed.

igure 1 shows a fragment of the spectrogram of synthesized
h from the input, “I would like to fly from Boston to San
isco.” In the figure, we can see a smooth trajectories of
nts in splicing points such as [ay] to [w], [w] to [uh], [l] to
espite the fact that many of them are taken from a different
t of surrounding phones. For example, the [w] unit chosen
[uh] was originally followed by [ah] in the corpus, and

st [l] unit was surrounded by [p] and [eh] in the corpus,
gh it is used between [f ] and [ay].

12. Discussion
ugh we have not analyzed the evaluation results enough,
w a general trend that it was more difficult to have a good
sis quality for BDL (male) corpus than SLT (female) cor-
Mean opinion scores were better with conversation and
sentences as compared to news sentences. From a infor-
stening of the synthesized speech, we feel it is important



to look at the consistency of the boundaries of the units for the
same phone symbol across various different surrounding phone
contexts, which was determined by the forced transcription.

Since our current framework does not involve prosodic mod-
ification of the units by signal processing, we feel it would work
best with a rather large-sized corpora, e.g. 7-10 hours of speech.
It would be necessary to consider prosodic modification of units
if we were to decide to optimize our approach with the corpus
of the size of one hour or so. The current unit granularity is
at the phone level and it may not be fine enough to control the
smooth movement and splicing of the spectral and prosodic fea-
tures. We are interested in using finer units such as half phones
in the future improvements.

13. Conclusion
In this paper, we proposed a probabilistic approach to unit se-
lection in concatenative speech synthesis, where all the “costs”
are formulated in a probabilistic framework. We also proposed a
novel probabilistic modeling scheme to account for the goodness
of concatenation based on the conditional Gaussian models. The
system is still in its infancy and we plan to improve on various
aspects of the system.
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Figure 1: Initial part of the synthesized speech for the input text, “I would like to fly from Boston to San Francisco.”
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