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Abstract

We describe techniques used for automatic personal synthetic
voice creation in our laboratory. These techniques are
implemented in two pieces of software. One, called InvTool,
guides novice users in the process of recording a corpus of
speech that is appropriate for creation of a concatenative
synthetic voice. The other program, called BCC, compiles a
speech corpus recorded with InvTool into a database
appropriate for use with the ModelTalker TTS system. Our
primary goal in this project is to develop software to support
“voice banking” wherein individuals at risk to lose the ability
to speak will be able to record their own personal synthetic
voice for later use in voice output communication devices.

1. Introduction

Augmented communicators—individuals who cannot
produce understandable speech and instead use synthetic
speech generated by an Augmentative and Alternative
Communication (AAC) device—have for years relied on a
small number of commercially available synthetic “voices”
for use in their AAC devices. Mostly, these devices have used
rule-based formant synthesis systems such as DECTalk to
generate synthetic speech. Thus, many AAC devices have
relied upon synthesis technology that is decades old and
demonstrably less intelligible and less natural sounding than
more recently developed systems that use unit concatenation
[1-4].

Some recent AAC systems are now providing users with
more options for synthetic speech including concatenative
voices (e.g., voices from Cepstral now ship with some
DynaVox AAC systems). Moreover, as AAC device
technology evolves to piggyback on standard operating
systems such as Windows CE, it opens up the possibility of
using virtually any Microsoft SAPI compliant voice as the
synthetic voice for the AAC device.

The current systems still fall short of the ideal goal of
providing every AAC device user with a personal voice, that
is, one that no other augmented communicator is also using.
The ModelTalker project is designed to address this goal by
providing the capability of recording a corpus of speech from
an individual talker and automatically converting it into a
concatenative synthetic voice. The potential for rapid
automatic concatenative voice creation resonates most
strongly with individuals who have neurodegenerative
diseases such has Amyotrophic Lateral Sclerosis (ALS) or
Lou Gerhig’s disease. These individuals are typically
diagnosed while their ability to speak is intact and they thus
have an opportunity to record their own voice for later use in
an AAC device.
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In the following sections, we describe the overall design
of the software we have developed for voice creation, and
present some recent results on intelligibility and naturalness
of the resulting synthetic speech.

2. Voice Generation

Broadly, there are two components to developing a
concatenative synthetic voice: 1) acquisition of a speech
corpus; and 2) acoustic phonetic indexing of the corpus. We
address these two components of the process using two
distinct applications. The InvTool program guides users in the
process of recording a corpus of utterances. The system is
highly configurable in terms of the speech corpus content and
is intended to allow users who are unfamiliar with speech and
language to successfully record a speech corpus.

The second application in this process, called BCC,
converts a corpus of speech to a concatenative synthesis
database usable by the ModelTalker TTS system. BCC has the
task of adjusting and verifying all the acoustic phonetic
information of the speech corpus to arrive at a database that is
phonetically accurate and internally consistent. We describe
each of these programs in greater detail below.

2.1. InvTool

Figure 1 displays the InvTool user interface. It presents
both a written prompt and an aural model of the utterance to
be recorded. The user then records the utterance and InvTool
analyses it. The analysis consists of (a) pitch analysis and
tracking, (b) tests for amplitude levels, and (c) forced
recognition using a set of Hidden Markov Models (HMMs) to
align a phonetic transcription of the requested utterance to the
received acoustic token. Results of these analyses are
presented to the user via three controls in the form of
graphical meters or gauges. The gauges provide visual
feedback on the measured average pitch of the utterance
relative to the user’s calibrated pitch range, amplitude on an
absolute decibel scale, and pronunciation on a percentage
scale. Each of the three gauges will give either a green
“Good” feedback or the gauge will be red and indicate what
the problem with the utterance was. If an utterance passes all
of the screening tests, InvTool automatically moves to the
next prompt in the inventory list, otherwise, InvTool does not
automatically advance and the user is expected to rerecord the
utterance.

2.1.1. Standard InvTool Corpus

The recording process is controlled by a stored list of
utterances along with their phonetic transcriptions. InvTool
reads this list and prompts for utterances in the order they are
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Figure 1. InvTool user interface illustrating controls used
to assist in capturing valid recordings for each utterance in
the corpus.

read. Users may also add their own utterances to the
“inventory” list using a selection in the InvTool tools menu.

The default inventory list contains 1650 discrete
utterances of varying length. The first 80 utterances in the list
are phrases and sentences that are likely to be of need to users
of AAC devices [5]. The remainder of the corpus was chosen
to afford broad diphone coverage for American English in a
variety of prosodic contexts. Specifically, four types of
materials comprise the non-AAC-specific portions of the
corpus: 1) 50 isolated high frequency words; 2) about 150
utterances of the form <syllable>-<ArtlPrep>-<syllable>
where an utterance medial article or preposition is embedded
between syllables that are either real words or nonsense
forms; 3) about 600 high-frequency word pairs spoken in
isolation; and 4) the remaining nearly 800 utterances are
semantically anomalous and meaningful phrases or short
sentences. Bi-gram frequencies for the word pairs and
diphone frequencies were estimated from the Brown Corpus
[6]. Depending upon speaking rate, a complete recorded
corpus typically contains between 40 and 50 minutes of actual
speech.

2.1.2. Data Screening in InvTool

As each utterance is recorded, it is analyzed and results of
the analysis are used to screen utterances for possible errors.
The three aspects that are closely monitored by InvTool:

FO Monitoring. An average FO and FO range is computed
dynamically from the first few utterances recorded and
thereafter used to screen for utterances in which the average
FO falls outside the expected FO range.

Amplitude Monitoring. Peak amplitude is monitored to
ensure that it is high enough to provide a good signal to noise
ratio while not allowing digital clipping.

Pronunciation Monitoring. The expected phonetic
transcription of each utterance is aligned to the acoustic
speech signal using forced recognition with a set of discrete
HMMs that were trained on the TIMIT training set [7]. Based
on the obtained alignment, a second pass algorithm estimates
the probability that each aligned segment is the expected
segment. From these per-segment estimates, a global
probability measure is obtained. This global probability,
reported as a percentage in the displayed gauge, is a non-
linear combination of the per-segment probabilities that
heavily weights segments that are identified as having very
low probability of being correct. This avoids a tendency to
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over-rate long utterances that contain one or two highly
questionable segments.

2.2. BCC

The corpus received from InvTool, while screened, is
nonetheless assumed to contain a variety of errors of various
types ranging from pitch tracking errors to misaligned
phonetic boundaries to incorrect phonetic content. Our
process for converting this corpus of speech to an acceptable
synthetic speech database employs the following steps.

2.2.1. Acoustic reanalysis

All utterances are reanalyzed using a pitch synchronous
32-channel Bark-weighted filter bank. A second dataset is
computed from this 32-band spectrum by taking the time
derivatives of the log spectral amplitudes in each filter
channel. The dimensionality of the spectral measures and the
delta-spectral measures is then reduced from 32 coefficients
per analysis frame to 8 coefficients by principal components
analysis and decomposition (separate PCA solutions are
computed for each of the two datasets). The PCA feature
vectors are then vector quantized to 256 element codebooks.
Thus, we end up with a description of the original speech data
in terms of a pair of code words reflecting the PCA feature
vectors for the Bark Spectrum and Delta Bark Spectrum
measures of each pitch-synchronous analysis frame.

2.2.2. Speaker-specific HMMs

Beginning with the phonetic label alignment assigned by
InvTool, new speaker-specific discrete HMMs are trained
using the newly obtained speaker-tuned acoustic features.

2.2.3. Outlier removal

Based on the final phonetic boundary alignment derived
from HMM training, means and standard deviations are
computed for segment duration, average RMS amplitude,
proportion of voiced frames, and log likelihood. Segments
that are outliers on any of these measures are then removed
from further consideration as long as there are at least five
other examples of the same phoneme in the dataset.

2.24. Redundancy reduction

While the outlier removal is based on individual phoneme
statistics, this step considers pairs of adjacent phonemes
(biphones). In this stage, all instances of a particular biphone
sequence are compared with all other instances of the same
sequence to form a similarity matrix. The cells of this matrix
represent the acoustic similarity of each biphone with every
other biphone of the same type. A hierarchical clustering
algorithm is then applied to the similarity matrix to identify
clusters of highly similar biphones. We typically prune the
cluster tree at 20 clusters and retain the most prototypical
biphone of each cluster. All biphones that are not prototypical
of one of the 20 clusters are then removed from the dataset.

2.2.5. Final processing.

The result of all the above steps is to identify biphone
sequences to retain for the final speech database. In the
process, questionable phonetic segments and unnecessary
biphones are removed from the dataset, and a report file is
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written which lists all of the rejected segments along with the
reason(s) for rejection. This report can then be used to locate
and hand correct problems if the voice is to be hand corrected.

In our present system, the raw speech data for
concatenation are coded and stored as windowed waveform
packets for PSOLA processing. However, alternative speech
coding strategies are being implemented for any commercial
release of this system.

3. System Evaluation

For a realistic overall evaluation of the ModelTalker
system and its associated voice creation process, at least two
distinct issues must be addressed. First, one must establish
how the synthesis system itself compares to other synthesis
systems, particularly those using unit concatenation, and/or
those being used in AAC devices. This comparison must
establish the best-case expectations for the ModelTalker TTS
system, given the specifics of the synthesis technology being
used and the limitations of the standard inventory. To
examine this question, one must use a speech corpus that has
been carefully corrected to eliminate errors due to
mispronunciation, segment misalignment, poor pitch tracking,
and so forth.

The second issue to examine is how automatically
generated voices compare to carefully constructed voices,
given the standard corpus. To date, we have completed one
formal evaluation of the system addressing the first of these
issues[3, 4], and have less formally evaluated the second issue
for a single automatically generated voice. We are now
collecting additional automatically generated voices and
expect to have a sufficient number of these to do an initial
formal evaluation in the near future. Examples of passages
synthesized with several of these automatically generated
voices are available at http://www.asel.udel.edu/speech/mt/).

An alternative evaluation of the automatic voice creation
process, but not the inventory selection or recording process,
was afforded by the Blizzard challenge. In the following, we
describe the procedures used in preparing the ModelTalker
voices for Blizzard, focusing on aspects of the process that
differ from those described above.

3.1. Methods

Talkers. Voices were generated from the four talkers:
SLT, BDL, RMS, and CLB. One of the authors listened to
every sentence recorded by each talker and compared the
utterance to a transcript of the standard Arctic corpus.
Instances where the talker deviated from the transcript were
noted.

Corpora. One of the authors listened to ModelTalker as it
synthesized each of the 1132 sentences of the standard Arctic
corpus to identify words that needed to be added to our
pronunciation dictionary. About 65 words were identified in
this process. Additionally, several instances were identified
where ModelTalker chose the wrong form of a word (e.g.,
bow, read) and consequently the correct form needed to be
coerced. After fixing these problems, the text of the corpus
was transcribed by ModelTalker to generate a control file
containing text and transcription information for use by BCC.

Four versions of the original control file were then
generated, one for each talker. These separate versions
contained talker specific adjustments to the English transcript
and phonetic transcription in the cases where it was noted that
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the talker deviated from the standard transcript. No attempt
was made to make fine phonetic adjustments; corrections
were restricted to cases where talkers used different words
and/or word order from the expected text.

Acoustic analysis and labeling. Standalone versions of
the same pitch tracking and phonetic labeling routines that
InvTool uses were run on the waveform files for each talker.
These programs provided the pitch period location data used
by BCC for pitch synchronous analysis, and aligned phonetic
transcriptions to the waveforms respectively. Following these
analyses, BCC processing followed the steps described above.

Data correction. For each talker processed by BCC, a
report file was generated indicating all segments found to be
statistical outliers (and consequently removed from
consideration for use in synthesis). For one talker (BDL), this
report file was used to guide hand editing of the speech data.
Approximately 50 utterances that were flagged as containing
multiple errors were examined and fixed by hand. In this case,
the fixes consisted entirely of adjusting phonetic segment
boundary alignment and/or correcting disagreements between
the canonical transcription and the received pronunciation.
Although pitch-tracking errors were also observed, they were
not corrected.

The hand-corrected sentences were flagged for BCC to
indicate that the segment alignment should not be
automatically adjusted and BCC was then rerun to produce a
new version of the BDL voice.

3.2. Results.

Since complete results of the Blizzard listening tests will
be presented elsewhere, we concentrate on just the overall
results for the ModelTalker system in this report.

Of the six synthesizers and corresponding natural voices
used in the listening tests, ModelTalker consistently received
the lowest mean opinion scores (MOS). That is, stimuli
produced by ModelTalker were consistently rated the least
natural sounding of those presented.

On the other hand, intelligibility, as indicated by WER
scores was consistently above average for stimuli produced by
ModelTalker. This is illustrated in Figure 2, which shows
WER averaged over all listener types, voices, and tasks. Only
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Figure 2. Composite WER results from Blizzard
listening tests. Real designates results for the
natural speech of real talkers, AIDHC designates
results for the ModelTalker stimuli.
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the system labeled ‘D’ in Figure 2 achieved a lower overall
WER score (ModelTalker is the system labeled ‘AIDHC’ in
this figure).

Interestingly, the system labeled ‘F’ in Figure 2 was the
system that scored most similarly to ModelTalker on the MOS
tasks.

We also examined overall word error rates for each of the
four ModelTalker voices (Figure 3). The BDL voice (which
was partly hand corrected) was the worst overall, having a
WER almost twice that of the best voice (RMS).

AIDHC
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15
1

Word Eror Rate
10
I

bdl clb ms sht

Talker

Figure 3. Word error rate by talker for the
ModelTalker voices.

4. Discussion

While the ModelTalker system made a competitive
showing in terms of WER, it’s ranking in MOS tasks was
disappointing. Several factors probably contribute to the poor
MOS scores. First, unlike most current unit concatenation
systems, the ModelTalker system normally runs in a full
synthetic mode in which both timing and intonation are
imposed on the synthetic speech. It is our impression,
especially with smaller corpora, that this approach trades
naturalness (in terms of voice quality) for smoother prosody
and possibly higher intelligibility, but this has not been tested.

The pitch-tracking program we used did not always
perform well, particularly with talker SLT. We noticed in
particular that voiced/unvoiced decisions were often in error
in the direction of labeling voiceless regions as voiced. This
error, coupled with the control of segment duration and FO,
causes significant buzziness, when using PSOLA processing.

The WER scores obtained for ModelTalker stimuli in the
Blizzard challenge are very consistent with percentage words
correct scores we have obtained using similar speech
materials (SUS stimuli [8]) and a carefully hand corrected
corpus [4]. In that study, we compared the ModelTalker
‘Kate’ voice to female voices produced by several
commercially available TTS systems (Figure 4).

5. Conclusions

Despite weaknesses in naturalness and voice quality that
may be due to our present speech coding methods, the results
of the Blizzard challenge suggest that the BCC program is
performing well in the task of identifying correct acoustic
phonetic boundaries, and similarly doing an effective job of
correctly rejecting mislabeled or misaligned segments.
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Figure 4 Overall mean intelligibility scores

(percentage of words correct) for the five synthetic

voices. Error bars are the 95% confidence intervals

around each mean.
Coupled with the InvTool program to guide the recording
process and reduce errors on the input side, this process has
been used successfully by AAC users for voice banking.
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