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Abstract 

We describe techniques used for automatic personal synthetic 
voice creation in our laboratory. These techniques are 
implemented in two pieces of software. One, called InvTool, 
guides novice users in the process of recording a corpus of 
speech that is appropriate for creation of a concatenative 
synthetic voice. The other program, called BCC, compiles a 
speech corpus recorded with InvTool into a database 
appropriate for use with the ModelTalker TTS system. Our 
primary goal in this project is to develop software to support 
“voice banking” wherein individuals at risk to lose the ability 
to speak will be able to record their own personal synthetic 
voice for later use in voice output communication devices. 

1. Introduction 

Augmented communicators—individuals who cannot 
produce understandable speech and instead use synthetic 
speech generated by an Augmentative and Alternative 
Communication (AAC) device—have for years relied on a 
small number of commercially available synthetic “voices” 
for use in their AAC devices. Mostly, these devices have used 
rule-based formant synthesis systems such as DECTalk to 
generate synthetic speech. Thus, many AAC devices have 
relied upon synthesis technology that is decades old and 
demonstrably less intelligible and less natural sounding than 
more recently developed systems that use unit concatenation 
[1-4]. 

Some recent AAC systems are now providing users with 
more options for synthetic speech including concatenative 
voices (e.g., voices from Cepstral now ship with some 
DynaVox AAC systems). Moreover, as AAC device 
technology evolves to piggyback on standard operating 
systems such as Windows CE, it opens up the possibility of 
using virtually any Microsoft SAPI compliant voice as the 
synthetic voice for the AAC device. 

The current systems still fall short of the ideal goal of 
providing every AAC device user with a personal voice, that 
is, one that no other augmented communicator is also using. 
The ModelTalker project is designed to address this goal by 
providing the capability of recording a corpus of speech from 
an individual talker and automatically converting it into a 
concatenative synthetic voice. The potential for rapid 
automatic concatenative voice creation resonates most 
strongly with individuals who have neurodegenerative 
diseases such has Amyotrophic Lateral Sclerosis (ALS) or 
Lou Gerhig’s disease. These individuals are typically 
diagnosed while their ability to speak is intact and they thus 
have an opportunity to record their own voice for later use in 
an AAC device. 
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 the following sections, we describe the overall design 
 software we have developed for voice creation, and 
t some recent results on intelligibility and naturalness 

 resulting synthetic speech. 

2. Voice Generation 

roadly, there are two components to developing a 
tenative synthetic voice: 1) acquisition of a speech 
s; and 2) acoustic phonetic indexing of the corpus. We 
ss these two components of the process using two 
ct applications. The InvTool program guides users in the 
ss of recording a corpus of utterances. The system is 
 configurable in terms of the speech corpus content and 
nded to allow users who are unfamiliar with speech and 
age to successfully record a speech corpus. 
e second application in this process, called BCC, 

rts a corpus of speech to a concatenative synthesis 
se usable by the ModelTalker TTS system. BCC has the 

of adjusting and verifying all the acoustic phonetic 
ation of the speech corpus to arrive at a database that is 
tically accurate and internally consistent. We describe 
f these programs in greater detail below. 

nvTool 

gure 1 displays the InvTool user interface. It presents 
 written prompt and an aural model of the utterance to 
orded. The user then records the utterance and InvTool 
es it. The analysis consists of (a) pitch analysis and 

ng, (b) tests for amplitude levels, and (c) forced 
nition using a set of Hidden Markov Models (HMMs) to 
a phonetic transcription of the requested utterance to the 
ed acoustic token. Results of these analyses are 
ted to the user via three controls in the form of 

ical meters or gauges. The gauges provide visual 
ack on the measured average pitch of the utterance 
e to the user’s calibrated pitch range, amplitude on an 
te decibel scale, and pronunciation on a percentage 

 Each of the three gauges will give either a green 
” feedback or the gauge will be red and indicate what 

oblem with the utterance was.  If an utterance passes all 
 screening tests, InvTool automatically moves to the 
rompt in the inventory list, otherwise, InvTool does not 
atically advance and the user is expected to rerecord the 
nce. 

 Standard InvTool Corpus 

recording process is controlled by a stored list of 
nces along with their phonetic transcriptions. InvTool 
this list and prompts for utterances in the order they are 



read. Users may also add their own utterances to the 
“inventory” list using a selection in the InvTool tools menu.  

The default inventory list contains 1650 discrete 
utterances of varying length. The first 80 utterances in the list 
are phrases and sentences that are likely to be of need to users 
of AAC devices [5]. The remainder of the corpus was chosen 
to afford broad diphone coverage for American English in a 
variety of prosodic contexts. Specifically, four types of 
materials comprise the non-AAC-specific portions of the 
corpus: 1) 50 isolated high frequency words; 2) about 150 
utterances of the form <syllable>-<Art|Prep>-<syllable> 
where an utterance medial article or preposition is embedded 
between syllables that are either real words or nonsense 
forms; 3) about 600 high-frequency word pairs spoken in 
isolation; and 4) the remaining nearly 800 utterances are 
semantically anomalous and meaningful phrases or short 
sentences. Bi-gram frequencies for the word pairs and 
diphone frequencies were estimated from the Brown Corpus 
[6]. Depending upon speaking rate, a complete recorded 
corpus typically contains between 40 and 50 minutes of actual 
speech. 

2.1.2. Data Screening in InvTool 

As each utterance is recorded, it is analyzed and results of 
the analysis are used to screen utterances for possible errors. 
The three aspects that are closely monitored by InvTool: 

F0 Monitoring. An average F0 and F0 range is computed 
dynamically from the first few utterances recorded and 
thereafter used to screen for utterances in which the average 
F0 falls outside the expected F0 range. 

Amplitude Monitoring. Peak amplitude is monitored to 
ensure that it is high enough to provide a good signal to noise 
ratio while not allowing digital clipping. 

Pronunciation Monitoring. The expected phonetic 
transcription of each utterance is aligned to the acoustic 
speech signal using forced recognition with a set of discrete 
HMMs that were trained on the TIMIT training set [7]. Based 
on the obtained alignment, a second pass algorithm estimates 
the probability that each aligned segment is the expected 
segment. From these per-segment estimates, a global 
probability measure is obtained. This global probability, 
reported as a percentage in the displayed gauge, is a non-
linear combination of the per-segment probabilities that 
heavily weights segments that are identified as having very 
low probability of being correct. This avoids a tendency to 
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Figure 1. InvTool user interface illustrating controls used 
to assist in capturing valid recordings for each utterance in 
the corpus. 
ate long utterances that contain one or two highly 
onable segments. 

CC 

e corpus received from InvTool, while screened, is 
heless assumed to contain a variety of errors of various 

ranging from pitch tracking errors to misaligned 
tic boundaries to incorrect phonetic content. Our 
ss for converting this corpus of speech to an acceptable 
tic speech database employs the following steps. 

 Acoustic reanalysis 

ll utterances are reanalyzed using a pitch synchronous 
annel Bark-weighted filter bank. A second dataset is 
uted from this 32-band spectrum by taking the time 
tives of the log spectral amplitudes in each filter 
el. The dimensionality of the spectral measures and the 
spectral measures is then reduced from 32 coefficients 
alysis frame to 8 coefficients by principal components 
is and decomposition (separate PCA solutions are 

uted for each of the two datasets). The PCA feature 
s are then vector quantized to 256 element codebooks. 
 we end up with a description of the original speech data 
ms of a pair of code words reflecting the PCA feature 
s for the Bark Spectrum and Delta Bark Spectrum 
res of each pitch-synchronous analysis frame. 

 Speaker-specific HMMs 

eginning with the phonetic label alignment assigned by 
ol, new speaker-specific discrete HMMs are trained 
the newly obtained speaker-tuned acoustic features. 

 Outlier removal 

ased on the final phonetic boundary alignment derived 
HMM training, means and standard deviations are 

uted for segment duration, average RMS amplitude, 
rtion of voiced frames, and log likelihood. Segments 
re outliers on any of these measures are then removed 
further consideration as long as there are at least five 
examples of the same phoneme in the dataset. 

 Redundancy reduction 

hile the outlier removal is based on individual phoneme 
ics, this step considers pairs of adjacent phonemes 
nes). In this stage, all instances of a particular biphone 

nce are compared with all other instances of the same 
nce to form a similarity matrix. The cells of this matrix 
ent the acoustic similarity of each biphone with every 
biphone of the same type. A hierarchical clustering 

thm is then applied to the similarity matrix to identify 
rs of highly similar biphones. We typically prune the 
r tree at 20 clusters and retain the most prototypical 
ne of each cluster. All biphones that are not prototypical 
 of the 20 clusters are then removed from the dataset. 

 Final processing. 

e result of all the above steps is to identify biphone 
nces to retain for the final speech database. In the 
ss, questionable phonetic segments and unnecessary 
nes are removed from the dataset, and a report file is 



written which lists all of the rejected segments along with the 
reason(s) for rejection. This report can then be used to locate 
and hand correct problems if the voice is to be hand corrected. 

In our present system, the raw speech data for 
concatenation are coded and stored as windowed waveform 
packets for PSOLA processing. However, alternative speech 
coding strategies are being implemented for any commercial 
release of this system. 

3. System Evaluation 

For a realistic overall evaluation of the ModelTalker 
system and its associated voice creation process, at least two 
distinct issues must be addressed. First, one must establish 
how the synthesis system itself compares to other synthesis 
systems, particularly those using unit concatenation, and/or 
those being used in AAC devices. This comparison must 
establish the best-case expectations for the ModelTalker TTS 
system, given the specifics of the synthesis technology being 
used and the limitations of the standard inventory. To 
examine this question, one must use a speech corpus that has 
been carefully corrected to eliminate errors due to 
mispronunciation, segment misalignment, poor pitch tracking, 
and so forth.  

The second issue to examine is how automatically 
generated voices compare to carefully constructed voices, 
given the standard corpus. To date, we have completed one 
formal evaluation of the system addressing the first of these 
issues[3, 4], and have less formally evaluated the second issue 
for a single automatically generated voice. We are now 
collecting additional automatically generated voices and 
expect to have a sufficient number of these to do an initial 
formal evaluation in the near future. Examples of passages 
synthesized with several of these automatically generated 
voices are available at http://www.asel.udel.edu/speech/mt/). 

An alternative evaluation of the automatic voice creation 
process, but not the inventory selection or recording process, 
was afforded by the Blizzard challenge. In the following, we 
describe the procedures used in preparing the ModelTalker 
voices for Blizzard, focusing on aspects of the process that 
differ from those described above. 

3.1. Methods 

Talkers. Voices were generated from the four talkers: 
SLT, BDL, RMS, and CLB. One of the authors listened to 
every sentence recorded by each talker and compared the 
utterance to a transcript of the standard Arctic corpus. 
Instances where the talker deviated from the transcript were 
noted. 

Corpora. One of the authors listened to ModelTalker as it 
synthesized each of the 1132 sentences of the standard Arctic 
corpus to identify words that needed to be added to our 
pronunciation dictionary. About 65 words were identified in 
this process. Additionally, several instances were identified 
where ModelTalker chose the wrong form of a word (e.g., 
bow, read) and consequently the correct form needed to be 
coerced. After fixing these problems, the text of the corpus 
was transcribed by ModelTalker to generate a control file 
containing text and transcription information for use by BCC. 

Four versions of the original control file were then 
generated, one for each talker. These separate versions 
contained talker specific adjustments to the English transcript 
and phonetic transcription in the cases where it was noted that 
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restricted to cases where talkers used different words 
r word order from the expected text. 
oustic analysis and labeling. Standalone versions of 
me pitch tracking and phonetic labeling routines that 
ol uses were run on the waveform files for each talker. 
 programs provided the pitch period location data used 
C for pitch synchronous analysis, and aligned phonetic 

riptions to the waveforms respectively. Following these 
es, BCC processing followed the steps described above. 
ata correction. For each talker processed by BCC, a 
 file was generated indicating all segments found to be 
ical outliers (and consequently removed from 
eration for use in synthesis). For one talker (BDL), this 
 file was used to guide hand editing of the speech data. 
ximately 50 utterances that were flagged as containing 
le errors were examined and fixed by hand. In this case, 
xes consisted entirely of adjusting phonetic segment 
ary alignment and/or correcting disagreements between 
nonical transcription and the received pronunciation. 

ugh pitch-tracking errors were also observed, they were 
rrected. 
e hand-corrected sentences were flagged for BCC to 
te that the segment alignment should not be 
atically adjusted and BCC was then rerun to produce a 
ersion of the BDL voice. 

esults. 

nce complete results of the Blizzard listening tests will 
esented elsewhere, we concentrate on just the overall 
s for the ModelTalker system in this report. 
f the six synthesizers and corresponding natural voices 
n the listening tests, ModelTalker consistently received 
west mean opinion scores (MOS). That is, stimuli 

ced by ModelTalker were consistently rated the least 
l sounding of those presented. 
n the other hand, intelligibility, as indicated by WER 
 was consistently above average for stimuli produced by 
lTalker. This is illustrated in Figure 2, which shows 
 averaged over all listener types, voices, and tasks. Only 
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Figure 2. Composite WER results from Blizzard 
listening tests. Real designates results for the 
natural speech of real talkers, AIDHC designates 
results for the ModelTalker stimuli. 



the system labeled ‘D’ in Figure 2 achieved a lower overall 
WER score (ModelTalker is the system labeled ‘AIDHC’ in 
this figure). 

Interestingly, the system labeled ‘F’ in Figure 2 was the 
system that scored most similarly to ModelTalker on the MOS 
tasks. 

We also examined overall word error rates for each of the 
four ModelTalker voices (Figure 3). The BDL voice (which 
was partly hand corrected) was the worst overall, having a 
WER almost twice that of the best voice (RMS). 

4. Discussion 

While the ModelTalker system made a competitive 
showing in terms of WER, it’s ranking in MOS tasks was 
disappointing. Several factors probably contribute to the poor 
MOS scores. First, unlike most current unit concatenation 
systems, the ModelTalker system normally runs in a full 
synthetic mode in which both timing and intonation are 
imposed on the synthetic speech. It is our impression, 
especially with smaller corpora, that this approach trades 
naturalness (in terms of voice quality) for smoother prosody 
and possibly higher intelligibility, but this has not been tested. 

The pitch-tracking program we used did not always 
perform well, particularly with talker SLT. We noticed in 
particular that voiced/unvoiced decisions were often in error 
in the direction of labeling voiceless regions as voiced. This 
error, coupled with the control of segment duration and F0, 
causes significant buzziness, when using PSOLA processing. 

The WER scores obtained for ModelTalker stimuli in the 
Blizzard challenge are very consistent with percentage words 
correct scores we have obtained using similar speech 
materials (SUS stimuli [8]) and a carefully hand corrected 
corpus [4]. In that study, we compared the ModelTalker 
‘Kate’ voice to female voices produced by several 
commercially available TTS systems (Figure 4).  

5. Conclusions 

Despite weaknesses in naturalness and voice quality that 
may be due to our present speech coding methods, the results 
of the Blizzard challenge suggest that the BCC program is 
performing well in the task of identifying correct acoustic 
phonetic boundaries, and similarly doing an effective job of 
correctly rejecting mislabeled or misaligned segments. 
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