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Abstract

In this paper, we describe the development of probabilistic
corpus-based concatenative speech synthesis systems with
the Blizzard Challenge 2006 speech databases. In the cur-
rent probabilistic approach, unit selection is directed by
probabilistic models for

���
contour, duration, and spectral

characteristics of the synthesis units. The
� �

targets for units
are modeled by statistical additive models and duration tar-
gets are modeled by regression trees. Spectral targets for a
unit is modeled by Gaussian mixtures on MFCC-based fea-
tures. Goodness of concatenation of two units is modeled
by conditional Gaussian models on MFCC-based features.
Two kinds of voices for speech synthesis were developed
using 1,052 and 4,273 utterances of the Blizzard Challenge
2006 speech databases.

1. Introduction
Corpus-based concatenative approaches to speech synthesis
has been widely explored in the research community in re-
cent years [1, 2, 3]. In this approach, a best sequence of
phone or subphone-sized units are chosen from a large in-
ventory of possible units to synthesize speech from the input
text, by minimizing the overall cost function. The overall
cost is often modeled as the weighted sum of target costs and
concatenation costs on the various features such as spectral,
intonational and duration features, as well as more symbolic
features to prefer the database units that occurred in contexts
similar to the context in the output sentence.

In our corpus-based speech synthesis framework [4], we
adopt a probabilistic approach to unit selection for concate-
native speech synthesis. We are pursuing this approach in
the hope that a probabilistic approach will make it easy to
establish a method that is mathematically manageable, needs
fewer tuning parameters, and is easy to train, by taking ad-
vantage of statistical properties emerging from the data. It
can be regarded as a more constrained subclass within the
larger class of general cost-based approach.

In the following section, we review our probabilistic

framework for unit selection. It is followed by the descrip-
tions of the target and concatenation models in our proba-
bilistic approach. We then briefly describe the unit search
mechanism after that. We finally describe the voice-building
process with American English speech databases provided
from ATR for Blizzard Challenge 2006, followed by discus-
sions.

2. Probabilistic approach to unit selection
In a speech synthesis framework where units are selected
from the corpus, we are given some input specification such
as specifications for phone-sized or even finer subphone
units, �������
	��
�
��	��
� . A major job of the synthesizer is to
find a best sequence of units ����� � 	��
���
	�� � for this input
specification. A specification for a unit ��� is a collection of
target features, � � ����� � ������	��
����� � �! "��� . These features may
include such things as a phone label, a duration target, and
an
� �

target for the # -th unit.
In a probabilistic framework, we attempt to find the best

sequence of units that maximizes the probability $%�&��' �
� , i.e.
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In general, the probability of generating a unit � � can be
dependent on the input specification � (hopefully a small
neighborhood of �4� ), and the units preceding �6� ,
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�
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If we assume that the choice of unit is dependent only on
one unit before that, it reduces to the simpler form,

$%�;�A' �4�8�
�9
��: � $7�&� � ' � �;= �4	<�>	B#C��� (3)

The conditional probability on the right side of (3) is as-
sumed to be decomposable into a product of the probabil-
ities specific to various features such as the duration fea-



ture D6E;F6G�H , IKJ feature LME&F6GNH , spectral feature OPE;F6GNH , near-
boundary spectral features at the left and right side of the
unit-concatenation boundary, Q�E;F G;RTS H and UKE;F G H ,

V E;F G�W F G&R)S4X�YZXB[ H\ V E�D"E&F G H X L�E&F G H X OPE&F G H X UKE;F G H W F G&R)S.X<Y>X�[ H\ V E�D"E&F"GCH W Y GNH V E�L�E&F"GCH W Y GNH V E&OPE&F"GCH W Y>X�[ HV E�U]E&F"GCH W Q�E;F6G;R)S�H X�YZXB[ H�^ (4)

The conditional probability
V E�UKE;F G H W Q�E&F G&R)S H X<Y>X�[ H of having

a left boundary feature after a right boundary feature of the
previous unit corresponds to what is often referred to as con-
catenation cost in the context of corpus-based speech syn-
thesis. The rest of the component probabilities corresponds
to so-called target costs or substitution costs.

2.1. Spectral target models

The purpose of the spectral target model is to measure the
appropriateness of the spectral shape of the unit for the
phone context specified by the input. The spectral target of
a unit is represented by mean spectral features of _ evenly
divided regions of the unit. The overall spectral target prob-
ability is the product of the probabilities associated with _
regions,

V E�OPE;F G H W Y H \ V E&O G&` S4X ^�^
^ X O G;` abW Y H\ V E&O G&` S.W Y H)c�c�c V E�O G;` a7W Y H�^ (5)

In the current implementation adopting phone-sized
units, _ is set to be 2. Therefore, spectral target models
accounts for the average spectral shape of the first half and
the second half of the unit. The probability of each part is
assumed to be conditioned on the triphone context:

V E&O G&` d>W Y H \ V E&O G&` deW fgG�XBh�G?X�i
G H Xkj \ml ^�^�^?_ X (6)

where fgG , h�G , and i
G represents left phone, center phone, and
right phone for the unit F G . Each of these densities are to be
tied by phonetic decision-tree based clustering for robust es-
timation and to handle unseen contexts in the runtime. In the
current implementation, we use 14 MFCC coefficients, with
dimensionality reduced to 8 by principal component analy-
sis.

2.2. Duration target models

The duration models characterize tendencies of phone dura-
tion lengths based on the surrounding phonological, lexical,
and phrasal context. A duration model for each phone class
is represented as a scalar Gaussian model and it is clustered
using a regression tree. The features used for tree building
are the number of syllables in word, the position of the syl-
lable containing the unit in word, the position of the sylla-
ble containing the unit in intonational phrase, lexical stress

of the syllable, pitch accent of the syllable, function word
identity if the unit occurs in a function word, phone position
in syllable, and the left and right phone identities.

2.3. I J target models

The IMJ model is based on a three-layered statistical additive
IMJ model [5, 6, 7]. The first layer is an intonational phrase-
level component determined by the intonational phrase type
and its syllable length. The second layer is the word-level
component identified by the lexical stress positions and the
number of syllables in the word. The third layer accounts for
the effect of pitch accent at the syllable granularity. The out-
put from the additive I J model is the sum of these three lay-
ers and a constant and gives a prediction of the I�J contour.
We regard this predicted contour as the mean of a constant
variance Gaussian model. The variance is computed based
on the overall error of the model against the original I J data
in the corpus during training. Although we currently assume
a constant variance, it would be interesting to consider a way
to estimate different variances for subclasses of intonational
phrases or accentual phrases in some way from the training
data.

2.4. Spectral concatenation models

The likeliness of the occurrence of the spectral shape of a
unit after another unit is given by the spectral concatenation
models. We currently assume that it is good enough to look
at the regions near the concatenation boundary of the units
being connected. The region near the end (or tail) of the unit
F , on the left side of the concatenation boundary, is denoted
by UKE;F)H . The initial region (or head) of the unit n , on the
right side of the concatenation boundary, is denoted by U]E&noH .
In the current implementation, head and tail are averages of
the MFCC-derived spectral features of the 10ms intervals at
the both ends of the unit.

The concatenation probability is modeled as a linear con-
ditional Gaussian density of observing the head of a unit
given the tail of the preceding unit,

prq;s6qgtougv�w x<qgtPugy{zBv?vT|~}�q;s6qgtPu;v�w ���ex<qgtPugy{zBv"�����@�]�A�<vB�
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where UKE;F G H and Q�E;F G;R)S H are D -dimensional vectors, �r� is
a D���D matrix with the j -th row representing a regression
coefficients for the j -th component of U]E&F6GNH , and � � is a D -
dimensional vector of intercepts, and �*� is a DA�1D covariance
matrix. ��� , �@� , and ��� are determined by the diphone con-
text, i.e. a phone symbol pair E��6G;RTS X �{GNH , for the units F6G;R)S
and F6G . The model parameters � � , � � , and � � are trained with
a maximum likelihood estimation from the training data us-
ing a decision tree-based parameter tying [8].



2.5. Unit search

The unit database is organized in the shape of decision trees.
We utilize the phonetic decision trees constructed in the
training of spectral target models for this purpose. A set
of units are associated with each node of a tree, in which the
nodes closer to the root represent broader classes of units and
the nodes closer to leaves represent more specific classes of
units. In the synthesis time, we walk down each of � trees
from the root to the most specific node with enough number
of units associated with it. This is controlled by the prespec-
ified threshold value for the minimal number of units for a
node. The union of the sets of units coming from � trees
makes the whole candidate unit set for a phone target. As
mentioned before, ����� in the current implementation.

The runtime search module performs a Viterbi beam
search through the space formed as a sequence of sets of
units preselected from the trees mentioned above for the best
sequence of units for the input.

2.6. Output rendering

To achieve a smooth sound quality around concatenation
points, unit concatenation is done using a simple overlap-
and-add smoothing technique which is a simplified version
of a technique previously proposed for error concealment of
packet-based speech transmission through the Internet [9].

3. Voice development with Arctic corpora
We developed two voices from the speech corpus for the
Blizzard Challenge 2006 provided by ATR, spoken by a
male speaker of American English. The sampling frequency
is 16,000 Hz. We developed a voice using the 4,264 out of
4,273 utterances consisting of 1,052 news utterances, 2,130
travel conversation utterances, and 1,082 Arctic utterances.
We discarded four travel utterances and five news utterances
that included sounds not easy to transcribe in our system
due to foreign words, filler words, and dysfluent pronunci-
ation of the names of unfamiliar chemical substances. No
utterances were discarded from the Arctic subset. We refer
to this corpus as well as the voice built with it as atr, here-
after. We also developed a voice with the subset of 1,082
Arctic utterances, which we call atr-arctic.

3.1. Corpus transcription

For the development using the atr corpus, we needed to add
a little more than 400 new words. We noted that there were
many Japanese words for which a systematic and consistent
assingment of pronunciations using English phone set may
not be easy. Furthermore, some instances of those words
sounded like influenced by the original pronunciations of
Japanese language. Due to the limited time for development,
we decided not to try to get rid of undesirable instances of
words by listening and just used all of the 4,264 utterances.

The corpus was transcribed at the phonetic level with
possible different allophonic variations derived from apply-
ing phonological rules [10] to phonemic baseform dictio-
nary, using acoustic models adapted to the corpus speaker,
as described in [4].

3.2. Prosodic annotation

We utilize prosodic information such as boundary tones and
pitch accent types as well as syllable and word labels for
training �M� models and duration models. Since assigning
these labels by hand is expensive and time-consuming, we
generated Festival “Utterance”’ structures [11] and extracted
labels that bear boundary tone and pitch accent information
from them. Since the labels were generated top-down from
the prompt texts using a Festival command, without any ref-
erence to the speech data, they are not guaranteed to be the
same as the way the prompts were actually spoken. We are
required to perform additional process of matching syllable
labels that bear the prosodic information coming from Fes-
tival Utterance to the syllable labels in our own framework.
Since the way of grouping of phones to syllables as well as
the set of phones themselves are different between Festival
and ours, this matching was not a trivial task. Due to the
limited amount of time, we adopted a rough approximation
scheme in which we linearly warped the label times to obtain
the match between Festival Utterance labels and the labels in
the phonetic transcriptions of the atr corpus.

3.3. Training of target and concatenation models

The three layer additive � � models were trained using the
syllable and word labels as well as intonational phrase and
pitch accent labels generated using the method described in
the last subsection. Pitch trains used for training the models
were extracted every 10ms from the corpus using the Snack
Sound Toolkit with “esps” method [12]. The duration mod-
els were trained using the phone, syllable, word, pitch ac-
cent, and intonational phrase labels. No hand corrections
were performed on the labels for training these prosodic
models. Spectral target and concatenation models for phone-
sized units were trained using the phone labels mentioned
above.

3.4. Construction of synthesis unit databases

A waveform unit database populated with phone-sized units
was constructed using the whole waveform data of each cor-
pus. Other kinds of information such as � � fragments, mean
spectral features and edge spectral features for phone-sized
units were also stored associated with units.

4. Speech Synthesis from test sentences
To perform a whole text-to-speech conversion process, we
need a front-end, or a text analysis module that places phrase



boundaries and pitch accents as well as choosing a proper
reading based on the grammatical and discourse knowledge
when needed. When we joined the Blizzard Challenge 2005
evaluation, we did not have our own front-end module yet.
Therefore, we chose to use the front-end module in the Festi-
val system [11] and developed an interface module that takes
the Festival “Utterance” structure and convert it into the for-
mat for input to our speech synthesis system. We used the
same interface in the Blizzard Challenge 2006.

5. Discussion

The mean opinion scores for the both of atr and
atr-arctic were rather poor (e.g. 2.00 and 1.84, respec-
tively for the listener category S) and approximately four
times larger corpus size for atr did not help much to make
a difference. These scores are comparable to our previous
MOS score for the speaker bdl (1.80) which was consid-
erably worth than that for slt (2.49) for the same listener
category. We are aware that perceived intonation contour is
often strange and some phones have irrelevant durations. We
have recently noticed that the labels in the Festival “Utter-
ance” structures provided with slt database, which we used
for training our prosodic models, are time-aligned to the
waveforms, but it was not the case for other databases. As
we described in a previous section, we applied a linear warp-
ing of label times to match the labels extracted from Festival
“Utterances” against the labels obtained by transcribing the
data. This may have generated poor-quality training labels
for F0 and duration models. In fact, whereas correlation co-
efficient of the model-generated ��� curve to the training data
� � was 0.467 for slt, that for atr-arctic was 0.379,
which is considerably worth. We would like to develop a
better matching tool for labels and see if it contributes to
improve the synthesis quality.

For the Blizzard Challenge 06, we have been developing
a prosody modification module based on TD-PSOLA. Un-
fortunately, we did not have time to incorporate the module
to synthesizer. Therefore, the system is basically the same
as the one we used for the Blizzard Challenge 05. We plan
to integrate the prosody modification module to our synthe-
sizer in a couple of months and see it contributes to better
synthesis quality.

6. Conclusion

In this paper, we described the development of a proba-
bilistic concatenative speech synthesizer with Blizzard Chal-
lenge 06 speech databases. Although the result was not sat-
isfactory, we believe the experience of the evaluation this
time will help us make a progress in our speech synthesis
research.
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