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Abstract 

When we built the unit inventory from the Blizzard corpus, 

three types of manual works were performed. All these works 

took about 12 working days of our labelers. In order to see how 

much benefit these manual works bring us, we performed 

several perceptual experiments to compare the speech generated 

with/without manual works. The results show that although the 

manual proofreading identified more than 500 word-errors, no 

improvement is observed in our experiment. Both manual 

checking of segmental boundaries and manual prosody 

annotations make the synthesized speech better.  And the later 

one brings more benefit. The preference rate between the final 

version of the synthetic speech with limited manual works and 

the fully automatically processed version is 68% to 32%.  

1. Introduction 

In a concatenative text-to-speech system where appropriate 

waveform segments in a large speech database are selected to 

generate natural sounding speech, the naturalness of synthetic 

speech, to a great extent, depends on the quality of the unit 

inventory. The whole process of database collection and 

annotation is rather complicated and contains plenty minutiae 

that should be handled carefully. In the Blizzard Challenge, a 

high quality speech corpus is provided. Therefore, we need not 

care about the script generation and the speech recording. Then, 

the tasks that are remained for building a new voice include 

obtaining the phonetic transcriptions, the segmental boundaries, 

and the prosodic labels. There are several ways to generate such 

information fully automatically, yet, we believe that limited 

human interferences such as manually checking or labeling are 

helpful. In this paper, we present what kind of human 

interferences we performed and how much benefit we gained 

from them.  

Altogether, three types of manual works are performed when 

we processed the speech corpus, including error detection of 

recording script, checking of segmental boundary and prosodic 

annotation. 

The TTS corpus is normally recorded with carefully 

monitoring. Yet, when generating the phonetic transcription for 

the speech corpus, we still found some mismatches between the 

recorded speech and the script. These mismatches are caused by 

reading errors, text-normalization errors, letter-to-sound errors 

or idiosyncratic pronunciations. These errors can degrade the 

TTS speech quality when a problematic unit is selected for 

synthesis. In our experience of the Blizzard Challenge 2006, we 

found that about 1% words not conform to their speech 

waveforms in either orthography or phone layer. Therefore, we 

identify some problematic sentences and checked them 

manually.  

To make a speech corpus usable to a concatenative TTS, the 

phonetic transcriptions have to be aligned with the 

corresponding speech waveforms. HMM based forced 

alignment has been widely adopted for automatically boundary 

alignment [1]. Yet, despite its universal maximum likelihood 

and relatively consistent segmentation output, such a method 

can not guarantee the automatic boundaries are optimal for 

concatenation-based synthesis. Thus, post-refinement of 

boundaries is often performed to adjust the boundaries for 

optimal speech synthesis [2, 3]. In our previous study, we have 

proposed to use context-dependent boundary models [4] to fine 

tune the locations of segmental boundaries. This approach needs 

a small amount of manually labeled boundary references to train 

the refining model.  

In order to achieve high quality synthetic speech, prosody 

annotation is often performed on the speech corpus, either 

manually or automatically. In most TTS systems, there is a 

prosody prediction module that predicts either categorical 

prosodic features, such as phrase boundary locations, boundary 

tone and pitch accent locations and types, or numerical features 

such as pitch, duration and intensity. Such prediction modules 

can be used to generate the prosody annotation for a speech 

corpus. However, the prediction based upon text may not match 

well the actual acoustic realizations. In [5], we have proposed a 

multi-classifier framework for automatic prosody annotation, in 

which the appearance of a prosodic event is jointly decided by 

an acoustic classifier, a linguistic classifier and a combined 

classifier. To train such a prediction model, a set of easy 

manipulated prosodic events have been defined and labeled 

manually.  

In order to verify the validity of performing such manually 

checking and labeling, in this paper, several perceptual 

experiments are carried out to compare the speech generated 

with/without without manual works.  

The paper is organized as follows. In Section 2, the 

framework of our TTS system is introduced. The details on 

generating the three types of annotations with/without human 

interferences are described in Section 3. In Section 4, perceptual 

experiments are introduced to investigate the benefits from 

different human interferences. The final conclusion is drawn in 

Section 5.  

2. System overview of Mulan TTS system 

Our TTS system Mulan [6] is a phone based concatenative 

speech synthesis system, in which prosody is modeled under a 

soft prediction strategy [7]. Unlike the traditional deterministic 

way to predict prosodic targets by maximizing the likelihood of 

the training tokens with respect to the model parameters, the soft 

prediction generates acceptable regions by minimizing the 

probability of violating the invariant property in prosody. The 



output of the soft-prediction prosody model is not the best path 

(or the most likely path) in the feature space. Instead, acceptable 

regions are marked by eliminating paths which violate the 

invariant property. With such a soft prediction strategy, the 

categorical targets for pitch and duration instead of the 

numerical targets are predicted first. And, such prosodic 

constraints are imposed with the highest priority in unit 

selection in order to get the right prosody, i.e. a prosodic-

constrained unit selection algorithm is used.  

In this unit selection approach, the stylized invariance of 

prosody is captured by clustering all tokens of a base unit with a 

CART (Classification And Regression Tree), wherein querying 

only their prosodic constraints, such as the stress level, break 

level, and position in phrase and word, etc. The splitting 

criterion for CART is to maximize reduction of the weighted 

squared error of three features: average f0 (fundamental 

frequency), dynamic range of f0 and duration. Such a clustering 

is quite similar to that used in the CART based prosody 

prediction model of a traditional TTS system. All units on the 

same leaf node share common prosodic constraints.  What 

different in our approach is that the mean value of a leaf node in 

the CART is used as a reference instead of the prosody target of 

the cluster of tokens. A token which is away from the reference 

by more than a pre-specified distance threshold is rejected. All 

tokens within the distance threshold are remained and 

considered prosodically equivalent in unit selection. For a pre-

defined base unit set, such a tree is built for each base unit and 

served as the index for prosodic characteristics of all tokens of 

the base unit.  

During speech synthesis, a cluster of prosodically equivalent 

tokens is first selected for each base unit by querying the CART 

with the target prosodic constraints. All tokens on all selected 

leaf nodes form a segment lattice. If the speech database is large 

enough that covers all types of variations represented by the 

prosodic constraints, all tokens on the same leaf node will have 

the same prosodic constraints and there will always be a leaf 

node that matches the target prosodic constraints exactly 

available for each target unit. Then, only segmental constraints 

need to be considered in calculating the target cost. However, 

due to data sparse issue, the CART will cluster instances with 

similar constraints into the same leaf nodes. Therefore, prosodic 

constraints are still used in calculating target cost to rank the 

candidates. The target cost is defined as the weighted sum of the 

source-target distances of all prosodic constraints and segmental 

constraints, as illustrated in equation (1) and (2) 
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Where, CPi and Csj are the source-target distances of the i-th 

prosodic constraint and the j-th segmental constraints, 

respectively; wpi and wSj are the weights corresponding; I and J 

are the total numbers of prosodic constraints and segmental 

constraints used in unit selection. 

For defining the transition cost between two adjacent tokens, 

the continuity for splicing two segments is quantized into four 

levels: 1) continuous — if  the two tokens are continuous 

segments in the unit inventory, the splicing of them will be very 

natural, therefore the target cost is set to 0; 2) semi-continuous 

— though the two tokens are not continuous segments in the 

unit inventory, the discontinuity at their boundary are not often 

perceptible, for example, the splicing of two voiceless segments 

(such as /s/+/t/) belongs to this level, a small cost is assigned; 3) 

weakly discontinuous —  discontinuity across the concatenation 

boundary is often perceptible, yet not very strong, for example, 

the splicing between a voiced segment and an unvoiced segment 

(such as /s/+/ a:/) or vice versa belongs to this level, a moderate 

cost is used; 4) strongly discontinuous — the discontinuity 

across the splicing boundary is perceptible and annoying, for 

example, the splicing between voiced segments belongs to this 

level, a large cost is assigned. The first two types of splicing are 

preferred in unit selection and the 4th type should be avoided as 

much as possible. The overall cost for a path in the unit lattice is 

then defined as the sum of target costs of all tokens along the 

path plus the sum of the transition costs between two adjacent 

tokens. 

 

3. Data processing with limited manual 

works 

Since the schedule for Blizzard Challenge is very tight, we only 

arrange limited manual works in proofreading problematic 

sentences, checking the segmental boundaries and labeling 

prosodic events. The details are introduced below.  

3.1. Phonetic transcription 

First, we used our Mulan front-end to generate the phonetic 

transcription of the speech corpus fully automatically. We found 

that there are some mismatches between the speech and the 

transcription, which are caused by reading errors, text-

normalization errors or letter-to-sound errors. However, it is not 

realistic to proofread all scripts. We identified several small 

groups of problematic sentences with different focuses for 

manually reviewing.  

The first group focuses on checking the pronunciation of 

polyphonic words. We have developed an interactive tool, with 

which the human labeler can listen to all instances of a word in 

the corpus and he/she can change the phone strings when 

necessary. The second group is to check the pronunciation of 

out-of-vocabulary words, abbreviations, acronyms and words 

with multiple capital letters.  

It took us about three working days to finish the 

proofreading and 534 words are corrected. Thus, we obtained a 

fully automatically processed phonetic transcription and a 

transcription with limited manual checks. 

3.2. Phonetic segmentation 

In order to align the phonetic transcriptions with the 

corresponding speech waveforms, HMM-based forced-

alignment were applied to the whole speech corpus first. Then, 

we have the Arctic part of the corpus checked manually. It took 

the labeler about 5 working days.   



We used 20,000 hand-labeled boundaries to train the 

context-dependent boundary models [4] and refined the 

boundary locations in the remaining data with them. The 

goodness of the boundary models are tested in 10000 manually 

labeled boundaries. The boundary accuracy (if the distance from 

an auto-boundary to its manually labeled reference is smaller 

than 20ms, it is counted as a correct one) is 90.6% after refining. 

The accuracy of forced-aligned boundaries is only 77.6%. A 

rather significant improvement is achieved.  

  

3.3. Prosody annotation 

Two types of prosodic events are normally labeled in a TTS 

speech corpus, the phrase boundary (w/o boundary type) and the 

pitch accent (w/o accent type). ToBI [8] is a widely adopted 

prosodic representation. It is first proposed for English and has 

been extended in many languages. However, annotating a 

speech corpus with ToBI is a very difficult task even for 

professionals. It will take even experienced labelers from 100 to 

200 times real time [9]. The across personal agreement ratio for 

accent, edge tone and boundary indices are rather low (reported 

as 71%, 86%, and 74%, respectively, in [10]) and the agreement 

ratio on the presence and absence of accent and edge tone are 

much higher (92% and 93%, respectively). Therefore, a simple 

version prosody representation, ToBI lite [11], is proposed 

recently. However, we think ToBI lite is too much compressed. 

The pitch movements at phrase boundaries play an important 

role in unit selection. Therefore, we designed a set of prosodic 

events with complexity between ToBI and ToBI lite. It includes 

two-level boundary strengths (correspond to the minor phrase 

and the major phrase boundaries), five boundary types (full rise, 

minor rise, full fall, minor fall, and flat, corresponding to the 

perceptual pitch movement before the boundary) and two-level 

accents (accented or not). All these prosodic events have 

perceivable cues so that a well trained human annotator can 

achieve good self-consistency. In our experiment in English, the 

same annotator labeled the same sentences twice in a four-week 

time span. The agreement ratio on presence or absence of accent 

is 95%, on boundary strength is 93.5% and on boundary 

strength plus boundary type is 90%. After the training section, 

labeling all these prosodic events with our tool takes about 5-10 

times real time. It took our labelers four working days to label 

the whole Blizzard corpus.  

4. Perceptual study of benefits from manual 

works 

During the data processing, we have corrected more than 500 

word-errors in the phonetic transcription, increased the 

boundary accuracy from 77.6% to 90.6% and labeled prosody 

events in the corpus with about 12 days of manual works from 

our labelers. We want to know how much benefit we have 

achieved from these works. Therefore, perceptual experiments 

are performed to compare the speech synthesized with/without 

these manual labels. All together, 5 unit inventories are built. 

Details are given in the Table 1.  

The naturalness testing set of the Blizzard Challenge (50 

sentences from Novel, Conversation and News, respectively) is 

first synthesized with all the five unit inventories. The instances 

generated with the unit inventory A, B, C and D are compared 

with the those generated with the unit inventory E separately. 

Totally, 16 subjects participated in the experiments. They 

listened to 50-150 pairs of utterances that randomly selected 

from all the comparing pairs and were forced to make a choice 

that either the first or the second sentence in each pair sounds 

more natural. Finally, we got at least 200 votes for each 

comparing group. The results of all the comparing groups are 

given below. 

 

Table 1. Five unit inventories built with different configurations 

Unit inventories A B C D E 

Auto-

generated 
√ √    Phonetic 

transcription 

Manually 

checked 

  √ √ √ 

Forced-

aligned 
√  √   Unit 

Segmentation 

Post 

refined 

 √  √ √ 

Auto-

generated 
√   √  Prosody 

annotation 

manually 

annotated 

 √ √  √ 

 

4.1. With/without human proofreading  

Figure 1 gives the user preference between sentences 

synthesized with unit inventory E and B. It is interesting that 

although we corrected more than 500 word-errors, no benefit is 

observed from the experiment. A possible reason is that few 

units used in the two versions are from the words with errors.  

E B 

50% 50% 

  

Figure 1. Preference result for with/without manually 

proofreading (E—with; B—without)  

4.2. With/without boundary post-refining 

Figure 2 shows the user preference between sentences 

synthesized with unit inventory E and C. Some improvements 

are observed. And the improvements are statistically significant 

(p<0.01).  We can conclude that more precise segmental 

boundaries benefit the synthetic voice quality. 

 

E C 

58% 42% 

  

Figure 2. Preference result for segmental boundaries 

with/without post-refining (E—with; C—without  ) 

4.3. With/without manually prosody labeling  

The preference result between automatically generated prosody 

labels and the manually created prosody labels is given in 

Figure 3. Larger improvement is achieved (p<0.0005). This 

implies that accurately labeling the prosody events is very 

important from achieving high naturalness in synthetic speech in 

a concatenation-based TTS system.  

 



 

E D 

68% 32% 

  

Figure 3. Preference result for auto vs. manual prosody 

annotations (E—manual; D—auto) 

4.4. Fully automatic version vs. the final version  

Figure 4 illustrated the preference rate between the fully 

automatically processed version and the final version with some 

manually works. Significantly improvements are observed. 

Therefore, we can conclude that with limited manual works, the 

voice quality of out TTS system is significantly improved. 

 

E A 

68% 32% 

  

Figure 4. Preference results for data process 

with/without manual works (E—with; A—without) 

 

5. Conclusion  

In this paper, the fully automatically processed unit inventory is 

compared with the unit inventory that was processed with 

limited manual works. The perceptual results show that more 

accurate segmental boundaries and more precise prosody 

annotations can improve the naturalness of synthesized speech. 

With proper learning algorithms, only limited manual labeling 

can improve the final results significantly.  

Although the experiment result shows that by correcting the 

1% errors in script, no measurable improvement can be found. 

We still think it is necessary to get rid of these errors. According 

to our results, proper labeling the prosodic events brings the 

most significant improvements. In current stage, the whole 

corpus is labeled manually. In next step, we will work on 

improving the prediction model with fewer manual data. The 

results also confirm the effectiveness of the prosodic event set 

we designed.  
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