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Abstract 
This paper introduces the speech synthesis systems developed 
by USTC and iFlytek for Blizzard Challenge 2007. These two 
systems are both HMM-based ones and employ similar 
training algorithms, where contextual dependent HMMs for 
spectrum, F0 and duration are estimated according to the 
acoustic features and contextual information of training 
database. However, different synthesis methods are adopted 
for these two systems. In USTC system, speech parameters are 
generated directly from these statistical models and parametric 
synthesizer is used to reconstruct speech waveform. The 
iFlytek system is a waveform concatenation one, which uses 
maximum likelihood criterion of statistical models to guide 
the selection of phone-sized candidate units. Comparing the 
evaluation results of these two systems in Blizzard Challenge 
2007, we find that the parametric synthesis system achieves 
better performance than unit selection method in intelligibility. 
On the other hand, the synthesized speech of the unit selection 
system is more similar to the original speech and more natural 
especially when the full training set is used. 

1. Introduction 
In recent years, HMM-based parametric speech synthesis 
method has been proposed and made significant progress [1-3]. 
In this method, spectrum, pitch and duration are modeled 
simultaneously in a unified framework of HMMs [1] and the 
parameters are generated from HMMs under maximum 
likelihood criterion by using dynamic features [4]. Then 
parametric synthesizer is used to reconstruct speech signals. 
This method is able to synthesize highly intelligible and 
smooth speech. Besides, the voice character of synthetic 
speech can be controlled flexibly by employing some model 
adaptation methods [5]. However the speech quality of this 
method suffers from the unnatural output of parametric 
synthesizer even if some high quality speech vocoder, such as 
STRAIGHT [6], has been used.  

In order to overcome this problem, a HMM-based unit 
selection and waveform concatenation speech synthesis 
method has also been proposed [7,8]. In this method, 
likelihood and Kullback-Leibler divergence criterions of the 
trained HMMs are followed to select the optimal frame-sized 
or phone-sized unit sequence. Then the waveform of each 
candidate unit is concatenated to produce synthesized speech. 
The advantage of this method over conventional unit 
selection method is that statistical criterions are introduced 
into the calculation of target cost and concatenation cost, so 
the synthesis system can be trained automatically with little 
expert knowledge and manual tuning. 

Two systems which adopt each of the HMM-based 
parametric synthesis method and unit selection method are 
developed by USTC and iFlytek for Blizzard Challenge 2007. 
The flowchart of these two systems is shown in Figure 1. 
They share almost the same training algorithms but are 
distinct from each other in synthesis stage. 

This paper is organized as follows. Section 2 introduces 
the details about the HMM-based parametric synthesis system 
developed by USTC. Section 3 describes the unit selection 
method used in iFlytek system. Some descriptions about 
system building are presented in section 4. Section 5 gives the 
evaluation results and some discussions. Section 6 is the 
conclusion. 
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Figure 1: Flowcharts of USTC and iFlytek systems for 

Blizzard Challenge 2007. 
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2. HMM-based Parametric Synthesis System 
of USTC 

2.1. Model training 

At first, acoustic features are extracted from the speech 
waveforms of training database. STRAIGHT [6] as a high 
quality speech vocoder is adopted here to analyze the spectral 
envelop and F0 for each speech frame. In our system linear 
spectral pair (LSP) with frequency warping is selected to 
present each frame’s spectrum considering LSPs relate more 
closely to formant positions and have better smoothness 
among adjacent frames [3]. The final feature vector for each 
frame consists of static, delta and delta-delta components of 
LSPs and logarithmized F0. 

A set of contextual dependent HMMs are estimated 
according to the acoustic features and label information of the 
training database under maximum likelihood criterion [1]. 
The spectrum part is modeled by a continuous probability 
distribution and the F0 part is modeled by a multi-space 
probability distribution (MSD) [9]. A decision tree based 
model clustering method is applied after contextual dependent 
HMM training to improve the robustness of estimated models. 
During training, the state transition probability matrices for 
all contextual dependent HMMs with the same monophone 
label are tied. Then each utterance in the training database is 
segmented into states by Viterbi alignment using trained 
acoustic HMMs. Based on the results of state segmentation, 
contextual dependent state duration model and phone duration 
model are trained with the same decision tree clustering 
method as acoustic model training. 

In order to improve the quality of synthesized speech, 
Minimum Generation Error (MGE) training [10] is carried out 
to update the model parameters given by maximum likelihood 
training. Under MGE criterion, the model parameters are 
estimated to minimize the difference between generated 
parameters and natural ones for the sentences in training set. 
The MGE criterion gives better consistency between model 
training and the purpose of speech synthesis, which is to 
produce speech signal or parameter sequences as closely as 
the natural ones. Besides, by incorporating parameter 
generation into the training procedure, the constraints 
between static and dynamic features are considered in HMM 
training. Here, only the model parameters of spectral part are 
updated by employing Generalized Probabilistic Descent 
(GPD) algorithms [11].  

2.2. Parameter generation and speech synthesis 

For an input text, the contextual dependent HMM sequences 
of whole sentence are determined by the clustered HMMs and 
decision trees according to the results of text analysis. The 
first step of parameter generation is to predict duration for 
each state in the sentence. Here, we combine the state duration 
model and phone duration model to make the prediction [3]. 
Then spectral and F0 parameters are generated by maximum 
likelihood parameter generation algorithm [4].  

Because of the averaging effect of statistic modeling, the 
spectrums reconstructed from ML based parameter generation 
algorithm are always over-smoothed and the formants are 
broaden, which make the synthetic speech sounds muffled. 
Here, we modify the positions of generation LSPs for each 
frame to enhance the formants of synthesized speech 

considering the relationship between spectral peaks and LSP, 
especially the difference between its adjacent orders [3]. At 
last, the spectral envelop of each frame is recovered from the 
modified LSPs and sent into STRAIGHT synthesizer with F0 
to generate final speech waveform. 

3. HMM-based Unit Selection and Waveform 
Concatenation System of iFlytek 

3.1. Model training 

The model training for HMM-based unit selection is almost 
the same as the training processes introduced in section 2.1 
except two differences.  
1) Mel-cepstrums instead of warped LSPs are adopted as 

spectral features. Because here the acoustic features are 
used for unit selection, not speech reconstruction. So the 
details of spectrum are less cared and mel-cepstrums can 
give better description about the overall shape of spectral 
envelop with less feature orders. For mel-cepstrums, only 
ML training is carried out and MGE training is skipped. 

2) Besides the acoustic model and duration model, a 
concatenation model is also trained to model the 
transition of acoustic features at phone boundaries. The 
feature of concatenation model is defined as the 
differential of mel-cepstrum and F0 between the first 
frame of current phone and the last frame of previous 
phone after state segmentation using trained acoustic 
model. In the same way, contextual dependent models are 
trained and decision tree based model clustering is 
applied. 

Phone is used as the base unit for selection in this system. 
The segmentation of candidate phone units is realized 
automatically after the Viteibi alignment for the training of 
duration model and concatenation model. 

3.2. ML-based unit selection 

In this system, maximum likelihood criterion is employed to 
guide the selection of phone-sized candidate units. The 
optimal phone sequence is expected to be searched out from 
the speech database to maximize the combined likelihood of 
acoustic model, phone duration model and concatenation 
model. 

Assuming the number of phones in the utterance for 
synthesis is N. For phone , the contextual 
dependent acoustic model, phone duration model and 
concatenation model determined by clustered HMMs and 
decision trees are 

( 1,...,n n N= )

nλ , dur
nλ and con

nλ . For a whole sentence, 
the acoustic model, phone duration model and concatenation 
model sequences are written as λ , durλ and conλ . One 
candidate unit for phone n is and the corresponding acoustic 
model of candidate unit  is nu c

nλ .  

presents the acoustic feature vectors of unit  which consist 
of static and dynamic features for each frame. The dynamic 
features of current frame are calculated using the static 
features of previous, current and next frames [7]. For a whole 
utterance, the phone candidate sequence can be written as 

,1 ,{ ,..., }
nn n n T=o o o

nu

1{ ,..., }Nu u=u  and the optimal one  is determined using 
Eq.(1), 
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Here ( , )cmpLL λu , and  
measure the likelihood of unit sequence  towards the sentence 
HMMs. Ignoring the influence of state transition probability 
and assuming that the state allocation for unit  is the 

same as the alignment between  and 
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segmentation in training stage, Eq.(1) can be rewritten as Eq.(5) 
with some weights for different models 
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where the likelihood of acoustic model is normalized by the 
candidate phone duration  and predict phone duration ; 

and  are the mean vector and covariance matrix for 

the observation Gaussian PDF of frame i in  decided by 

nT p
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and ; ;  ; 
W

nQ 2( ,dur dur dur
n n nmλ σ= N ) )con

nλ = ( ,con con
nm ΣN

cmp, Wdur and Wcon are some weights that are set manually; 
( )MD i  is the Mahalanobis distance function. In order to 

facilitate unit search process, Eq.(5) can be converted to the 
traditional form of a sum of “target cost” and “concatenation 
cost” as Eq.(7) , 
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Dynamic programming search can be realized using 
Eq.(7)~(9). Compared with conventional definition of target 
cost and concatenation cost, these costs given here are derived 
automatically and little manual designing and tuning is 
necessary. 

3.3. KLD-based unit pre-selection 

In order to reduce the computation cost of dynamic 
programming search, a Kullback-Leibler divergence based 
unit pre-selection algorithm is carried out. Here, we measure 
the KLD between the HMM of target unit and the HMM of 
each candidate unit to select the K-best units with minimum 
KLD before the calculation of target cost. However, for two 
HMMs there is no closed form solution for calculating the 
KLD between them. One alternative way is to estimate it by 
sampling using Monte-Carlo methods, but it will lead to very 
high complexity. Here, the upper bound of KLD between two 
left-to-right HMMs [12] is adopted as Eq.(10). 
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where S is the number of states in a model; ( , )i im ΣN  and 

( , )i i
��m ΣN  present the observation PDF of state i for model 

λ  and λ� ;  and  present the state transition probability 

for 
iia iia�

λ  and λ� . Because λ  and λ�  must present the same 
monophone in our system and the transition probability matrix 
is tied, ii iia a= �  and Eq.(10) can be simplified as 
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For each state, the KLD between two D-dimension single 
mixture Gaussian distributions can be calculated as [13] 
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Because the state observation PDFs of all contextual 
dependent HMMs are clustered using decision tree in our 
system, Eq.(12) can be calculated offline as a matrix for every 
two leaf nodes in the decision tree of each state before 
synthesis. Therefore the unit pre-selection step can be realized 
efficiently. 

3.4. Waveform concatenation 

1

,1

)

)

n−
   (9) 

At last, the waveforms of every two consecutive candidate 
unit in the optimal phone sequence  are concatenated to 
produce synthesized speech. The cross-fade technique [14] is 
used here to smooth the phase discontinuity at concatenation 
points. 
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4. System Building 

4.1. Speech database 

The speech database for Blizzard Challenge 2007 contains 
6579 utterances of about 8 hours. 3 voices are required to 
submit. For voice A, the full training set is used; voice B is 
built with only the ARCTIC subset, which contains 1032 
utterances; voice C is constructed using a designed subset of 
the full training database, which is required to follow some 
restrictions. A greedy search algorithm [15] is used to select 
the utterance for system C building. At last 835 sentences are 
selected and the total duration is 2901.38 seconds. The result 
of corpus design for system C is shared by both USTC system 
and iFlytek system. 

4.2. Implementation 

Acoustic features were extracted at 5ms frame shift during 
STRAIGHT analysis and 5-state left-to-right without skip 
HMM structure was used in the model training. In USTC 
system, the order of LSP analysis was set to 40; 20 iterations 
were taken for GPD algorithms in MGE training. In iFlytek 
system, the order of mel-cespstrum was 13 (including 0-order) 
and the best 50 units were kept after KLD-based unit pre-
selection; Wcmp was set to 1/39 for spectral part and 1/3 for F0 
part; Wdur and Wcon were set to 25 and 2 respectively. 

5. Evaluation 
The evaluation results of Blizzard Challenge 2007 for these 
two systems are discussed in this section. In following figures 
and tables, the labels of USTC system and iFlytek system are 
“J” and “A”. System “I” denotes the natural speech. 

5.1. Similarity test 

The boxplots [16] of similarity scores of all systems for voice 
A, B and C are shown in Figure 2, 3 and 4. From these figures 
we can see that the synthesized speech of system A is more 
similar to the original speech than system J for all three voices. 
This can be attributed to the influence of parametric 
synthesizer, which causes muffled speech quality and 
degrades the similarity of synthesized speech. 

5.2. Mean opinion score test 

The boxplots of mean opinion scores of all systems for voice 
A, B and C are shown in Figure 5, 6 and 7. Tabel 1 gives the 
results of Wilcoxon’s signed rank tests between the two 
proposed systems and other systems. It can be found from 
these figures and table that: 
1) System A achieves better naturalness than system J in all 

three voices. This difference is significant only for voice 
A, which uses full training set. For the other two voices, 
the difference is not significant. This is because that the 
unit selection and waveform concatenation method gains 
more improvement than the parametric synthesis method 
when the size of the database increases. 

2) System A is one of the best systems for all of the three 
voices. This proves the effectiveness of the HMM-based 
unit selection method which is realized automatically with 
little manual tuning. Besides, performance of system J is 
also competitive among all systems for voice B and C. 

 

USTC

iFlytek

Figure 2: Boxplot of similarity scores for voice A. The 
median (central solid bar), quartiles (shaded box), 

1.5*quartile range (extended lines) and outliers (circles) of 
each system are displayed. 

 

iFlytek USTC

Figure 3: Boxplot of similarity scores for voice B 

 

iFlytek USTC

Figure 4: Boxplot of similarity scores for voice C 
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Figure 5: Boxplot of mean opinion scores for voice A 

 

 
Figure 6: Boxplot of mean opinion scores for voice B 

 
Figure 7: Boxplot of mean opinion scores for voice C 

 

Table 1: Results of Wilcoxon's signed rank tests between 
system A, J and other systems (1 – significantly different; 0 – 

not significantly different) 
iFlytek USTC 

Voice A Voice B Voice C 
 

A J A J A J 
P 0 1 0 0   

A (iFlytek)  1   0  0 
K 0 0 0 0 0 0 
O 0 0 0 0 0 0 

J (USTC) 1   0   0  

C 1 0 1 1 1 0 
H 1 0 1 0 1 0 
B 1 1 1 1 1 1 
M 1 1 1 1 1 0 
E 1 1 1 1   

N 1 1 1 1   

D 1 1 1 1   

Q 1 1 1 1 1 1 
F 1 1 1 1   

G 1 1 1 1 1 1 
L 1 1 1 1 1 1 

iFlytek USTC 

5.3. Word error rate test 

Figure 8, 9 and 10 draw the results of word error rate test of 
all systems. Here system J shows its superiority over system A 
in mean WER for all of the three voices. So the intelligibility 
may be viewed as an advantage of parametric synthesis 
method over unit selection and waveform concatenation 
method because the synthesized speech of parametric 
synthesis system is more robust especially for the semantically 
unpredictable sentences used in WER test and the MGE 
training improves the intelligibility performance further. 
However, the WER differences between these two systems are 
not significant and they both have the statistically equal lowest 
WER for all three voices. 

 

iFlytek USTC 

iFlytek USTC

Figure 8: Mean WER for voice A  
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Figure 9: Mean WER for voice B  

 

 
Figure 10: Mean WER for voice C 

 

6. Conclusions 
This paper introduces two HMM-based speech synthesis 
systems for Blizzard Challenge 2007. The USTC system 
adopts parametric synthesis method and the iFlytek system 
follows unit selection and waveform concatenation approach. 
After similar HMM training algorithm, maximum likelihood 
criterion is adopted in both systems no matter for parameter 
generation or for unit selection. The evaluation results show 
the different advantage of these two systems. The 
intelligibility of USTC system is better while the similarity 
and MOS scores of iFlytek system are higher. With the 
increasing of training data, the superiority of iFlytek system in 
naturalness becomes significant. 
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