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Abstract

This paper describes the INESC-ID patrticipation in the Biid
Challenge 2008, which consisted in building the t&nglish
voices. We have been developing a neuropean Portuguese
TTS system, calle®IXIl, for the last two years. This year, the
system was already stable enough to be used in the challenge,
after a partial adaptation to support synthesigiglish

The major motivation for our participation in this year's-ed
tion of the challenge was to evaluate to what extent our unsu-
pervised and less resource-demanding voice building rdstho
very successfully applied in limited domain applicatioren be
used in open domain synthesis.
Index Terms: speech synthesis, cluster unit selection, auto-
matic voice building methods.

1. Background

Speech synthesis has been an active research topic in our lab
for the last twenty years. Accordingly, in the early ninstie
the first version of a fully functional text-to-speech systfor
European Portugues&as made available [1]. It consisted in a
synthesis-by-rule formant synthesizer, using Klatt's eidd].

In mid-nineties, concatenative synthesis started beiptpesd

in the lab [3]. Then, thé-estival speech synthesis system [4]
came out and was adopted for the development of our corpus-
based voices. In addition to research into generation afraht
prosody [5] and emotive speech [6, 7], our synthesis grosp ha
been focused on:

e Minimizing the demands on linguistic resources for
building natural sounding voices;

e Automating voice building by unsupervised methods ca-
pable of addressing speaker variability probléms.

Our corpus-based voices are based ondhster unit se-
lectionapproach [8] and are built by a modified version of the
Festivalclunits module and other Festival-embedded tools.

1.1. Tecnovoz project

Despite the great deal of success enjoyed bydwivalin our
research projects, thie@cnovoproject showed us that we were
in dire need for a more robust system, capable of exploitihg a
computational capabilities of the nowadays machines.

The Tecnovoz project was a join effort to disseminate the
use of spoken language technologies in different domains of
application. The project consortium included 4 researciters
and 9 companies specialized in a wide range of areas like-bank
ing, health systems, fleet management, access controlamedi

le.g. speaker-specific word pronunciations.
2http://www.tecnovoz.pt

alternative and augmentative communication, computek-des
top applications, etc. To meet the goals of the project afset o
13 demonstrators were developed based on 9 technology mod-
ules. Two of these modules were related with speech output:
one module for limited domain speech synthesis and another
for synthesis with unrestricted input.

After deciding in favor of using the same system to meet
both requirements, limited and unlimited domains, DI
system was designed in order to accomplish the fast geoerati
of speech with a high degree of naturalness.

1.2. TheDIXI system

DIXI is intended to be a generic TTS, capable of supporting
most of the western languages. However, it is still not fully
functional in languages other th&uropean Portuguesén or-

der to minimize the needed effort to support new languages, t
language- and domain-specific knowledge sources were kept
apart from the system’s implementation. Also, machinenlear
ing techniques were used to train models for some components
responsible for the linguistic analysis of the input textheT
models — frequently encoded in the form@fassification and
Regression Tred€ART) [9] — are loaded the same way no mat-
ter what domain or language the system is dealing with.

The system'’s operation mode (unlimited or limited domain)
is defined by the currently selected voice, enabling the teser
switch from a limited domain to a general purpose voice, and
vice-versa, with a single engind®IXI currently runs onWin-
dowsandLinux. The synthesis engine can be accessed, in both
operating systems, by means of ARI provided by a set of
Dynamic Linked LibrarieandShared Objectgespectively.

DIXI was designed following a modular architecture, as de-
picted in Fig. 1, so that the speech generation can be sped up
by exploiting the multi-threading capabilities of the hosa-
chines® According to the figure, the input text is firstly pro-
cessed by th&ext Splittermodule. This module splits the input
text into several chunks to be processed independently dy th
following system modules. This approach allows the stream-
ing synthesis problem to be addressed more efficiently. ;Then
we have the well knowrText Normalization Part-of-Speech
Tagging and Prosodic Phrasingmodules. TheGrapheme to
Phonemanodule generates an isolated pronuncidtiam each
word of the sentence. THeost-lexical Analysisnodule com-
putes a set of transformations on the word phonemes to accoun
for their production in connected speech. Finally, Waveform
Generationmodule takes the utterance description built so far
and search the inventory for the best matching unit sequence
produce the signal.

3Each module runs a distinct thread.
4The pronunciation of the word when uttered in isolation.
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Figure 1: Overview of theDIXI architecture, wher&sSML
stands means SSML-formatted input text.

1.3. External language resources

The external data we used to build BBkzzardvoices consisted
of:

e The British English ogirahdiphone voice of the
Festival-OGI[10] to generate the synthetic reference for
the DTW-based alignment, and to estimate the phoneme
duration for the synthesis procedure;

e The UNISYN lexicon [11] mainly as a source of alterna-
tive pronunciations for the phonetic segmentation;

e TheFestivalutterance structures provided by the organi-
zation.

1.4. Paper organization

This paper is organized as follows. In section 2, we describe
the procedure we used to build corpora to support the two syn-
thetic voices. Section 3, contains the methodologies agpb

build the voices A and voice B, whereas section 4 is intended t
describe the way the speech samples were generated. Finally
in section 5, we show the results we obtained and draw some
conclusions.

2. CorpusBuilding

The corpus building procedure described here is a fully-auto
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Figure 2: Phonetic segmentation steps: acoustic modalrai
(on the left) and database labeling (on the right).

MRPA | X-SAMPA
m {m;m!}
n {n;n!'}
| {I; 1w}
i {ijiy }
u {uw;u}

Table 1: MRPAto X-SAMPAphone mappings, in the case of
non-one-to-one correspondences.

first step, a set of acoustic models were built for the speaker
whereas the second step consists in using the models to seg-
ment the database with a phonetic segmentation tool alipwin
multiple acoustic realizations.

2.1.1. Acoustic models

At the beginning, thd=estival-OGI ogirahdiphonevoice was
used to align the speech signals with the respective plwneti
sequences using a DTW-based approach [12]. The phonetic
sequences were predicted by frestival front-end processing
modules associated to the reference voice. Because oftihat,
phone labels arisen from this procedure belong toNt&PA
phone set (for further details refer to [4]) and had to be subs
quently mapped onto the-SAMPAset used in both theNISYN
lexicon and theFestival utterance descriptions. After a short
analysis of the pronunciations of some words in the two phone
sets, we could draw a mapping fradRPAto X-SAMPAWhile

we could find a one-to-one mapping for most phones, some
MRPA phones were mapped to more than one symbadK-in
SAMPA Those phone mappings are presented in Table 1.

After computing the DTW-based alignments, we used the
HTK HInit program [13] to train context-independent acoustic
models for the speaker, still using tERPAphones. The result-
ing models were renamed according the mappings found earlie
In the case of the mapping shown in Table 1, MiRPAmModels

mated process that uses the speech recordings along with the were cloned and renamed to the respec{v8AMPAsymbols.

respective text prompts to buikeestivalutterance descriptions
containing the text-predicted representations syncheahith

the descriptions derived from the speech signal, such as pho
netic segmentation, prosodic annotation and fundamergal f
quency contour. While this corpus building procedure canno
compute any prosodic annotation of the signal, if such anot
tions are available, they can be automatically integratetthé
utterance descriptions, by using tteenporal overlapcriterion

and further processing to set associations among eleménts o
distinct linguistic levels.

2.1. Phonetic segmentation

The Blizzard corpus was phonetically segmented using the
method comprised of two steps, as depicted in Fig. 2. In the

For example, the models of thé SAMPAphoned, I!, andiw

are the same as thdRPAI(. Then, in order to refine to newly
created acoustic models, the database was re-segmened usi
the phonetic sequences providedHagtivalutterance structures
distributed with the corpus, and another model trainingpss
took place.

2.1.2. Database segmentation

At last, the database was segmented using a tool based on
Weighted Finite-state Transducg/FST) [14]. This tool was

first described in [15], and builds a pronunciation graphefach
utterance by concatenating the respective word graphk,amit
optional silence in the middle. The pronunciation graphnis e
coded in the form of &/FST and is finally composed with an-



otherWFSTcomprising a set of optional post-lexical phonolog-

ical rules.
In order to build a pronunciation graph for each word of a
sentence, we start by searching for it in tHBISYNIexicon. "Nobody seems to like her."
Both thereducedandfull pronunciation forms were taken into
account at this stage, because we could, by no means, know in LeX|C0n v GZP rUIeS
advance the way the speaker produced that word. FEiséval (PHONE NAME)
utterance structure were also searched in order to getefurth
word pronunciations. All these pronunciation forms werenth n O_u b @diy si m z tuu al K h@@r
compiled in aWFST and used as described above. Post |ex|ca| phonolog|cal processes

(PHONE PLEX_NAME) :
v VvVVvY V V v v V V v

2.2. Building utterancedescriptions

Sef
O ¢----
S «
T

v v v
While the Festival data structures distributed with the corpus @diy simz t@ lakh@
can eventually describe the spoken utterances to a largatext S ®
realistic representations cannot be achieved without aunt - _|'~? Q@?) 52 .= E N @ T o é)
those descriptions with the annotations/segmentationsede + 2 50 :5 ¥ YEedl ¥ : 3 :.‘c% T to

from the speech signal.
We built more realistic utterance descriptions by comhgnin (UNIT BASENAMES)
the representations encoded in fesstivalutterance structures
with the phonetic segmentation results, making use of a éomb
nation method described in [16]. In addition to the phonelab
and timings, FO values were also computed from the recosding
and appended to the newly created utterance structures. Ac-
cordingly, FO values were assigned to the respective plwnet
segments base on themporal inclusioncriterion. Temporal
inclusion would also be used to assign intonation eventbeo t
respective syllables, if we had annotations at that leweltHmat
was not the case. Thus, in the absence of any prosodic annota-

Figure 3: Toy example unit basenames for the sentence "No-
body seems to like her.”

tion, word break indexes were derived from the combinatibn o |19 | Assignment Rule |
phonetic phenomena - like duration stretching, silenceih w ERR dur(z) — dur(z) > 5 0dur,
punctuation marks at the word level. In a subsequent step, th WRN1 | 5 0qur, > dur(z) — dury > 3 0qur,
utterances were re-phrased according to the newly creaisdi w OK dur(z) — dury < 3 - Ogur, A dur(z) > 20ms
break indexes. WRN2 | dur(z) < 20ms
2.3. Voice A and voice B corpora Table 2: Duration-based tag assignment rules for the corpus
Obeying to theBlizzard 200&ules, all the corpus building rou- units.
tines had to be run twice, in order to make the creationoide
B completely independent from the data supportinge A

3. Voice Building
Selecting the synthesis units to be used within a corpusebas
TTS strongly depends on the target application. Accorgingl i

| Tag | Unitusage |

while words can be an obvious unit for a limited domain appli-

cation, phonetic segments or diphones can be more suit@ble f ERR | This unit is too large:remove this unit from the

open domain synthesis, since, unlike words, they make ug fini inventory

sets, entirely known in advance. WRN1 | This unit is larger than usual, so, unless it belongs
In order to address both limited and open domain synthesis to a sentence-final word, it can only by used while

with a common framework, we decided to always use phone- accompanied by its neighbordo not cut here

sized units. The basename of such units consists in the @enca WRN2| This unitis too short, thus it is strongly affected lyy

nation of the phone name according to the word’s isolated pro the neighboring unitsdo not cut here

nunciation (phon@amég with the most likely phone realization WRN3 | This unit was not produced as expected, thus some

in connected speech (phopkex.nameg as shown in Fig. 3. The problems may arise here if the unit is not used fo-

isolated word pronunciation results from the lexicon looku gether with the neighboring uniteo not cut here

Whenever the pronunciation lexicon containeeducedform, OK Nothing strange happenedoncatenations permit

the unit namesare set according to thfell form, whereas the ted here

units’ plexnamecorresponds to theeducedform.
Table 3: Description of the subsequent usage of the tagged

3.1. Unit tag generation units.

The degree of success enjoyed by a unit selection voice depen
to a large extent upon the quality of its phonetic segmenati
Therefore, the detection of phonetic labeling errors darista



major concern for the voice developer, as a single mislabele

segment can ruin the naturalness of the whole sentence. Sev-

eral confidence measures for phonetic segmentation have bee
proposed [17, 18]. However, the duration-based methods hav
prevailed as they are more robust to speaker variations [19]
The first step of the voice building consisted in a search for
durational outliers within the unit catalogue. Accordipghean
values and standard deviations were computed for each phone
type® Then, the algorithm went through the corpus’ utterance
structures to tag all the units according to rules in Table 2.
Form previous studies [20] we concluded that we should
map the speaker-specific pronunciations onto those gewkrat
by the grapheme-to-phone rules of the TTS in order to inereas
the average number of consecutive units retrieved by thie uni
selection algorithm. It is thus extremely useful to detebeve
those pronunciations do not match. Therefore, the phonetic
sequence generated by automatic phonetic segmentatitsn too
were aligned with the sequence piexnames. Whenever a
mismatch occurred, a "WRN3" tag was assigned to the respec-
tive catalog unit, in order to allow for its use only if its gér
boring units were used, too, in other words, to prevent th8 TT
from cutting the waveform somewhere inside that unit. T&le
describes the way the distinctly tagged units were used date
in the waveform generation module.

3.2. Multi-level approach

The multi-level cluster unit selectiomethod we use requires
the voice building procedure to run in as many times as the
number of levels (5 levels in the current case). A voice i$tbui
according to the level-specific naming conventions. The uni
catalog comprising the time boundaries and other featuires o
the units are shared among all levels, as the physical urgts a
kept unchanged. Thus, only one file caltzdalogue.aliaswith
a mapping from the level-specific logical names to the plasic
ones, and a cluster tree collection, gathered in a singledfite
built in each iteration.

The catalogue.aliadile contains the logical unit names in
the following format:

unit_type physical _unit

| +| _| ondon 14453 142 534

I+l _|I.ah.n.d 353 14453

| +| _pau-1-ah 3453 334 86 14453
I +| | -ah 543 2345 14453

| +| 67 345 3 78 567 14453

The content of the line "l+london 14453 142 534" must
be interpreted as:

e the logical unitl+l _london.1 points to the physical unit
14453

e the logical unitl+l _london2 points to the physical unit
142

e the logical unitl+l _london.3 points to the physical unit
534
3.3. Physical and logical unit name convention

Spectral distance measures are still not reliable enougbdo-
rately predict the occurrence of concatenation problensisT
we must control the selection of candidate units, in order no

5Unstress vowels are distinguished from their stressedtequarts

to rely too heavily on the spectral distance measure capabil
for eliminating unsuitable units. Therefore, although ping's-

ical unit is always a phone, its logical names are not always
the same. Each catalog unit has a single universal id, but sev
eral logical names, which are created using one of five distin
methods:

e Word level name: the unit basename is concatenated

with the word the phone is in;

Triphone level name: the unit basename is concatenated
with the triphone name centered in that phone;

Syllable level name: the unit basename is concatenated
with its syllable name;

Diphone level name: the unit basename is concatenated
with the name of the next phone;

Backoff level name: the unit basename is not concate-
nated with anything else.

3.4. Blizzard voices

Following theBlizzard 2008ules, all the above-described voice
building routines were carried out independently in thédiog
of voice Aandvoice B

4. Wave Generation
4.1. DIXI waveform generation module

TheDIXI speech signal generation is based ondluster unit
selectionapproach, as mentioned above.

4.1.1. Candidate unit selection

The synthesis procedure goes through the same steps as the de
fault cluster unit selectiomodule offFestival except the build-
ing of the candidate unit set, and the waveform generatien, d
scribed later on in this paper.

Given a target segmentg, the candidate unit list is built
as follows:
name[0}—"Word";
name[1l}—"Triphone”;
name[2}—"Syllable”;
name[3}—"Diphone”;
name[4}—"Backoff”;
levek—0;
n_goodcands—O0;
candidates- ();
WHILE((n.good candsc THRESH)AND(levet5))
DO
n_good cands+=searchfor_candidates{eg,name[level],candidates);
level++;
DONE

At the beginning, we start by looking for word-level logi-
cal units, if we find more than a predefined numbBEHRESH
of units without anyWRN*tags, the unit search stops. Other-
wise, we repeat the search for each one of the remainingslevel
until either THRESHnon-problematic unifsare found, or the
Backofflevel is reached.

Another difference from th&estival cluster unit selection
synthesis is that the target cost is not the acousticalrdistaf
the candidate unit to the cluster centroid. Rather, it ition-
based and is computed according to (1), witkigsethe predicted

6Tagged a®OK.
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Figure 4: Mean opinion scores for systerasice A

duration of the phonetic segment, asdr(u;) is the duration
of the candidate unit;.
_dur(ug) d

Cilw) = d + dur(u;)

1)

4.1.2. Audio generation

After the selection of the best candidate unit sequence, the
speech signal is generated making use of cross-fading tech-
nigues to smooth the fundamental frequency (FO) around the
concatenation points. The FO smoothing algorithm builds on
three major steps. Firstly, it builds a list of the units ieted

by the Viterbi decoder. Next, it loads the units’ acoustie co
efficients (containing the FO values, pitch synchronoushe T
following step consists in removing the short units — whase ¢
efficients contain a single frame — from the unit list. In thé f
lowing step, contiguous units are merged in order to give ris
to fewer and larger blocks. Then, every block is split inteeéh
parts, two transition regions at the borders, where FO shimopt
takes place, and a central block where FO values are kept un-
changed. The following step consists in generating pitckma
according to the desired (smoothed) FO values. Finallysidre

nal is generated with BSOLAbased method [21].

4.2. Synthesizing the Blizzard sentences

TheFestivalutterance structures were converted intolh¥l’s
internal format in order that they could be used to replaae ou
text analysis modules, that are still not fully implemenfizcthe
Englishlanguage. The phone durations were predicted using
the same duration models as thgirab_diphonevoice.

5. Discussion

The results obtained faroice Aare partially depicted in Fig. 4,
whereas Fig. 5 shows part of the results Yoice B Our par-
ticipant letter isE. In spite of the very encouraging results we
obtained, specially if we take into account that no voice tun
ing took place, as the first voice version was already the final
version, there are still much work to do, both in terms of patu

Mean opinion scores for voice B (All listeners)
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Figure 5: Mean opinion scores for systereice B

ralness and intelligibility. In fact, observing Figs. 4 abdwe
notice our system is still lacking robustness to the absefice
some linguistic contexts, since our system’s quality wasemo
dramatically hit by the database reduction than severaroth
systems.

There can can be multiple explanations for degradation of
thevoice Bresults comparing witkioice A We can by no means
draw final conclusions without a deeper study of the degree of
success enjoyed by each one of the voice building stages, Her
we can only speculate on the reasons for these results, wést
are using the speaker prosody arisen from the selectedtspeec
chunks. Thus, whenever we have to synthesize sentences con-
taining poorly represented contexts, smoothing the ttiamsi —
that is actually the only signal processing we apply — maydie n
enough to avoid generating awkward prosody. Explicit pdiso
models are needed in order to draw suitable fundamental fre-
quency contours both to help the unit selection and to gémera
the acoustic signal. Moreover, the lack of linguistic cahtira-
matically affected the intelligibility of system, since &igy. 6
shows, whileword error rate (WER) for voice Awas slightly
higher than the average, the WERwfice Breached the third
highest value among all the systems. Second, itis likelttiea
acoustic models derived from tiectic subset are not as robust
as those derived from the whole speech inventory. Thoise
B overall quality could also have been affected by less qual-
ity segmentations. Third, the pitchmark detection tool wedi
— makepm.wavescript provided by the festvox package — can
also have had a negative impact on toéce Bquality, as more
dramatic FO modification had to take place in order to smooth
more discrepant unit FO values. Since all signal processing
apply is pitch synchronous, badly detected pitchmarks gam r
the naturalness of the signal.
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