Statistical Speech Synthesis for the Blizzard Challenge 2008

Pieter Scholtz, Albert Visagie, Johan du Preez

Centre for Language and Speech Technology,
Department of Electrical and Electronic Engineering,
Stellenbosch University, South Africa

pscholtz@dsp.sun.ac.za, avisagie@dsp.sun.ac.za, dupreez@dsp.sun.ac.za

Abstract

In this paper we present the details of our first entry for the
Blizzard Challenge 2008 speech synthesis evaluation. Our sys-
tem is a new HMM-based text-to-speech voice building system
for the HTS runtime synthesis engine. We entered two UK En-
glish voices, one built from the full database provided, A, the
other from the Arctic subset, B and one Mandarin voice built
from the provided database. The evaluation results show that
our system provides very good intelligibility, moderate natural-
ness and low similarity to the original speaker.

1. Introduction

In recent years the popularity of HMM-based speech synthesis
has risen significantly. The HMM-based approach has numer-
ous advantages over traditional unit selection-based techniques.
Arguably the most significant of these is the relative ease with
which high quality voices can be constructed in new languages.
Building a voice in a new language requires a small speech
database and a minimal set of linguistic resources, e.g. a lex-
icon and/or letter-to-sound rules.

This makes HTS a particularly attractive solution for mi-
nority languages with limited linguistic resources, as evidenced
by the good quality synthesis achieved for Xhosa using a data-
driven approach [1]. Similar techniques have been used to build
a Zulu voice and a South African English voice using HTS.

The HMM-based approach is so efficient in modelling
speech that a relatively small set of recorded speech, 30 min-
utes or more, and a basic set of linguistic features are required
for good quality synthesis. Typically, unit selection systems re-
quire several hours of recorded speech, specialised linguistic
knowledge, language-dependent prosodic models and a signifi-
cant amount of fine tuning. Still, even for the best unit selection
systems, it is difficult to guarantee naturalness and intelligibility
of synthetic speech in the unlimited domain.

However, the best examples of unit selection, being almost
indistinguishable from real speech, will always sound better
than the best examples of statistical parametric synthesis (SPS)
[2]. This characteristic of unit selection is very attractive, espe-
cially in limited domain applications, where synthesis contin-
gencies can be catered for adequately during voice construction.
Outside of the specified domain the synthesis quality is likely to
be compromised, both in terms of naturalness and intelligibility.
Furthermore, the limited domain approach is not well suited to
a number of important speech applications that require stable,
predictable and intelligible synthesis across an arbitrary range
of utterances.

The use of TTS in E-learning and second language acquisi-
tion applications requires stable synthesis of predictable quality

in the unlimited domain. A user suffering from reading diffi-
culties or dyslexia might use a screen reader to have learning
material, or an arbitrary body of text, read aloud. A user wish-
ing to employ TTS to learn a foreign language would need as-
surance of the accuracy of the synthetic prosody and pronunci-
ation. Typical flaws related to unit selection systems, like those
resulting from bad joins, would be greatly detrimental to the
user experiences in these scenarios.

The language independent, corpus-based architecture of
SPS systems makes TTS much more accessible to minority
languages, offering a clear advantage over older, reliable tech-
niques like articulatory and formant synthesis, which require
a great deal of linguistic knowledge. Building an SPS voice
requires a minimal amount of knowledge about the target lan-
guage, from which all pronunciation and prosodic rules can be
automatically derived.

The rest of this paper will detail our statistical parametric
synthesis voice building system for the HTSEngine runtime.
We then present a brief overview of the evaluation results. This
is followed by a discussion, highlighting the system’s shortcom-
ings and proposing solutions to improve overall quality.

2. Voice Building

This section provides a step-by-step overview of the voice
building procedure. To simplify the task of voice building, our
system requires a minimal set of inputs. The UK English voices
were built automatically from the Unisyn lexicon, the letter-to-
sound rules trained from it, the text prompts and the audio files.
For the Mandarin voice we extracted a lexicon from the pro-
vided labels, and made no attempt to cater for out-of-vocabulary
words.

2.1. Vocoder Feature Extraction

For each audio file in the training set, 24th-order mel-cepstral
parameters (MCP) and fo are extracted. We use the same mel-
cepstral analysis technique provided by SPTK, as used in HTS
[3]. While high quality speech can also be obtained from al-
ternative parameterisations, e.g. line spectral pairs (LSP) [4],
MCP was chosen because of the effective postfiltering provided.
LSP-based voices might sound better if an appropriate postfilter
is applied to the generated parameter sequence. LSP is particu-
larly attractive for embedded solutions, requiring a lower analy-
sis order and a lower complexity synthesis algorithm compared
to the mel log spectrum approximation filter (MLSA).

Pitch contours were extracted using the script supplied by
the HTS voice building environment. Due to the lack of a
multi-space probability distribution HMM-based solution [5]
for modelling discontinuous pitch contours, we interpolate the



pitch contour in unvoiced regions and create an additional
voiced/unvoiced parameter. As the synthetic fo contours are
quite flat using this technique, we employ a scalable root-based
dynamic range compression technique, as our system is par-
ticularly sensitive to the significant range compression of the
log-based procedure used by HTS.

2.2. Linguistic Feature Extraction

Linguistic features are extracted from the text prompts using
our own text analyzer written in Python. This text processing
frontend is particularly useful for rapid bootstrapping of new
languages. It also makes experimenting with different contex-
tual factor sets relatively easy, as appropriate question sets are
automatically generated. Future investigation of the effects of
certain contextual factors on synthesis quality, and the determi-
nation of an optimal set of factors, are of critical importance to
SPS-based systems, as all rules governing the pronunciation and
prosody of synthesis are automatically derived from the avail-
able factors. Determining an optimal subset of contextual fac-
tors is particularly important for embedded solutions in reduc-
ing overall complexity.

The modular design of the Python frontend is heavily influ-
enced by Festival, and heterogeneous relation graphs are used
to represent arbitrary linguistic information. The frontend is
designed to require a minimal set of inputs, text prompts, a
phoneset, a lexicon, and LTS rules. Closely following the de-
sign principles of Festival allows the text processing frontend to
be interchangeable with Festival and Flite for runtime synthesis.

2.3. Training

The first phase of text processing outputs a sequence of words
for each utterance and a reduced lexicon containing only the
words in the dataset and all their possible pronunciations. Ini-
tial phoneme models are flatstarted to the global means and vari-
ances of the dataset. Several iterations of Baum-Welch embed-
ded reestimation is done on the entire dataset from the word la-
bels. The trainer is lexicon-based and creates a prototype word
HMM with parallel branches to accommodate multiple pronun-
ciations of the word in the lexicon. Skipable silence models are
inserted between words and at the start and end of each utter-
ance. This is the most time consuming of all voice building op-
erations, taking up to 24 hours for the entire UK English dataset
on a single core Pentium 4.

Once the training is complete, the prototype word mod-
els, now with fully trained phoneme models underneath, are
used in a Viterbi forced alignment procedure. This procedure
produces multi-level transcriptions, at the word, phoneme and
senone level. Informal inspection of the alignments revealed
them to be very accurate and consistent. A particularly promis-
ing aspect of this lexicon-based training procedure is the high
accuracy heteronym disambiguation, a problem that is virtually
impossible to solve using standard text processing techniques. It
is unlikely that this feature contributes significantly to enhanced
speech quality, as the HMM-based approach is quite robust to
small errors in text analysis. In future, however, it might be
used in conjunction with a meta-lexicon like Unisyn to provide
accurate and robust dialect classification.

The silence insertion also performed quite well, although
some problems were noted with plosive sounds. Words that
start with a plosive sound would sometimes have a silence in-
serted before it, even though there is no audible or syntactic
pause. While this did not prove too detrimental to synthesis
quality, speech with compound plosive sounds did sound un-

usually rushed. Instead of using a threshold to avoid incorrect
insertion of silences, we are working on a more robust solution.
The idea is to train generic speech and silence models from the
global means and variances. From these two generic models
initial phoneme models are derived. The silence model is used
for silences and the first state of plosive phonemes. The speech
model is used for all the rest. While we did not employ this
technique for Blizzard, we hope to integrate it into our voice
building system in future.

2.4. Context Clustering

After transcribing the dataset, a second phase of text analysis
is performed. The disambiguated pronunciations and inserted
silences from the alignments are used directly, with the text an-
alyzer adding a number of other linguistic features.

The set of linguistic features used differs significantly from
that used by HTS. A minimal set of counting features are
used. Counting features consist of counting up and down from
the current position, and also the total number of elements.
The counting features used are: the position and number of
phonemes in the syllable, the position and number of syllables
in the word, the position and number of words in the phrase, and
the position and number of phrases in the utterance. The other
factors used include syllable type and structure, parts-of-speech
and word emphasis, phrase type and utterance style.

Due to the large number of unique permutations of the con-
textual factors, training HMMs from the full context labels is
problematic. It is not feasible to create an HMM for each con-
text and load them all into memory at the same time. Instead
we train each utterance separately. An HMM is created for each
unique label in the utterance by cloning the appropriate mono-
phone model. A few iterations are performed on the utterance
after which the sufficient statistics are dumped to a file. When
all the utterances have been trained the statistics are loaded and
merged for CART building.

We build the CART trees directly from the sufficient statis-
tics, as opposed to mean and diagonal covariance vectors. This
greatly reduces the computational complexity, by replacing
multiplications with additions. The sum and squared-sum statis-
tics and the occupation counts are simply accumulated for slices
of the dataset. Determining the likelihood of a slice of the
dataset is then simply a matter of calculating a covariance vec-
tor from the accumulated statistics in the slice, which, together
with the occupation, the minimum description length gain is de-
termined [6].

Due to memory constraints, it is necessary to train separate
trees for the mel-cepstral parameters for larger databases like
the full UK and Mandarin voices. The statistics are split ac-
cording to HMM state position prior to training. After all state
trees have been trained, their roots are merged. The f, and du-
ration trees require considerably less memory, and are built all
at once, using questions about state positions. For voice A seven
trees were built, 5 spectral trees for each HMM state, an fj tree
and a duration tree, all using the same question set. All trees
were built sequentially on a single core Pentium 4 in less than 7
hours. The trees for voice B were built in less than 2 hours. The
Mandarin voice also took about 6 hours. Memory usage never
exceeded 1 GB.

Another factor possibly contributing to this performance
improvement over HTS tree building is the pre-parsing of all
full context labels prior to clustering. All separator tokens are
stripped and the fields are arranged in a large matrix of contex-
tual factors. The columns of the matrix correspond to specific



contextual factors, whereas each row represents a unique label.
The questions operate directly on field positions. As literally
thousands of questions are asked prior to each split, avoiding
costly string comparisons and pattern matching can make a sig-
nificant difference.

One of the major weaknesses of the current system is that fj
trees are built from statistics derived from the alignments, which
are produced using spectral parameters. Thus, HMM-modelling
of fo is never performed. After the fo tree is built, the clusters’
corresponding voiced/unvoiced parameters are gathered to de-
termine whether each leaf is voiced or not. This procedure is
much simpler than HTS’s MSD modelling, but clearly quality
is compromised. This is especially true for intonation and tonal
languages, where not only naturalness and similarity suffer, but
also intelligibility. The results of the Mandarin evaluation re-
flect this. If any single component of the current system can be
highlighted for improvement, it is this one.

The duration tree is also trained directly from the align-
ments. The HMM-state occupancy counts are used as single
dimensional statistics. Therefore, durations are modelled and
predicted on a state level. This approach to duration modelling
seems to produce very good and stable results.

To summarize, we outlined a fully automated voice build-
ing procedure requiring minimal inputs. Large corpus voices,
like voice A and the Mandarin voice, are built in less than 35
hours on a single CPU, whereas voice B was built in less than
10 hours. By far the most time consuming part of the system
is the embedded reestimation from flatstarted models. After the
dataset is transcribed, the rest of the training is completed rel-
atively quickly. The most significant improvement in overall
speech quality can be obtained by implementing an explicit fo
modelling routine, such as MSD for HTS [5]. Spectral fidelity
can also be improved by untying initial spectral clusters, retrain-
ing full context models cloned from these clusters, then clus-
tering again, and finally retraining the clustered models. This
technique is used by HTS to good effect [7].

3. Synthesis

The accessibility of text-to-speech synthesis is largely depen-
dent on the portability of the runtime synthesis engine. We have
designed our system to build voices specifically for the HTSEn-
gine platform, because it is small, fast and portable.

Speech parameters are generated from single mixture Gaus-
sian distributions using maximum likelihood parameter gener-
ation [8]. Simple pulse-noise excitation signals are generated
from fo values. The generated mel-cepstral parameters are
postfiltered and used in the mel log spectral approximation filter
to generate speech waveforms [3].

As HTSEngine does not perform text analysis, we used our
own internal Python text processor. The Python frontend is
ideal for rapid prototyping of text analyzers for new languages.
For deployment on speech servers or mobile devices, a more ef-
ficient solution is required. Work is under way to develop a Flite
module integrating HTSEngine. We hope that this work will
bring HTS voices to a wider audience on multiple platforms.
Initial experiments have shown that an unmodified HTSEngine,
with a Flite frontend, can produce speech faster than realtime on
high-end mobile devices. This requires the analysis order and
sampling rates to be reduced, and the lower complexity LSP
vocoder to be used.

The difficulty in achieving faster than realtime synthesis on
mobile devices is caused by the lack of floating point calculation
units. It is likely that better quality and performance can be

achieved on mobile devices with a true fixed point conversion.
Either way, HTS voices are already accessible in a wide array
of languages, on multiple platforms.

4. Results

For the Blizzard Challenge we submitted all three voices, the
full UK English voice, A, the Arctic subset voice, B, and the
full Mandarin voice.

The results of the evaluation have, in general, shown our
system to be of average intelligibility with a WER of 29%, the
same as the overall WER. Our system scored below average in
naturalness and similarity to original speaker. We are satisfied
with this result, recognizing the importance of predictability and
stability of synthetic speech. However, to be truly competitive
with the very high quality unit selection systems, significant
work needs to be done.

While our system generally produces speech with fairly nat-
ural prosody, which is relatively easy to understand, listeners
did judge it rather harshly in the naturalness and similarity cat-
egories. This might be due to how these criteria were defined.
Both naturalness and similarity tests were done with explicit
reference to real speech samples. Given this formulation the
listener would be correct to prefer synthetic utterances concate-
nated from unmodified waveform segments with relatively un-
natural, discontinuous prosody, over smooth, stable speech ex-
hibiting vocoding artifacts. Surely the naturalness criteria can
be defined so that jarring jumps in prosody are judged inferior
to vocoding artifacts. In the case of the similarity to original
speaker spectral brightness and fidelity should play a more cen-
tral role. Speech experts have a particularly low opinion of syn-
thetic speech lacking the crispness expected of state-of-the-art
unit selection synthesis.

Interestingly, the intelligibility of our Mandarin voice was
much lower compared to the English voices. We attribute this
to the relatively poor intonation modelling.

5. Discussion

In order to understand where significant improvements to our
system can be made, it is important to clearly identify the ways
in which original speaker characteristics are distorted. Three
distinct types of distortion have been noted:

e Buzz - Originates unambiguously from the HTS vocoder
generating excitation signals as pulse train for voiced and
noise for unvoiced segments.

e Drone - Caused by a flattening of synthetic fy contours,
reducing pitch variability resulting in speech with an in-
creased monotonous quality.

o Muffle - Statistical averaging of vocoder features causes
smearing of the frequency response resulting in muffled
speech.

The synergistic effect of these distortions results in decid-
edly dehumanised speech, which may be perfectly intelligible,
but fails to meet quality standards set by traditional unit selec-
tion.

We propose the following solutions which should, based on
previous research, alleviate much of the quality issues of our
current system:

e Buzziness can be effectively alleviated using an efficient
mixed excitation scheme, such as those used in [4, 9, 10,
11]



e More varied and accurate f contours can be synthesised
if modelled explicitly using HMM, similar to MSD-
HMM used by HTS [5].

e Spectral clarity can be improved using an LSP vocoder
with an effective postfilter [4]. We could also perform
more iterations of embedded reestimation after the first
phase of context clustering [7].

We expect that these solutions would greatly improve the
subjective opinion of our system, and may also improve intelli-
gibility, especially for tonal and intonation languages.

We are hesitant to rely on newer algorithms like the pa-
rameter generation considering global variance [12] for quality
improvement as this algorithm is too computationally complex
for embedded devices. In this context, an effective and efficient
postfiltering technique is preferred.

As SPS is still a relatively new field of research in TTS
we plan to use our system for furthering research. A technique
possibly worth considering is to lump the zeroth cepstral coef-
ficient, or the log energy in case of LSP, together with f, and
a maximum voiced frequency parameter [4]. It is possible that
the loudness, pitch and degree of voicing are more closely cor-
related than loudness and spectrum. This technique could there-
fore provide a much better separation of intonation and articu-
lation specific parameters. This should also reduce the domi-
nance of loudness over spectral parameters during training and
clustering.

6. Conclusion

Our first participation in the Blizzard Challenge has proved an
invaluable learning experience. It has helped us to clearly iden-
tify those components which require the most urgent attention.
We are very pleased that our system scored highly in the intel-
ligibility tests, as we feel this is the strongest component of our
system. However, it remains clear that to be truly competitive in
the TTS field today, voice quality cannot be compromised. Lis-
teners have a clear preference for clean, crisp sounding speech,
and tend to forgive certain prosodic quirks much more readily
than speech consistently degraded by vocoding artifacts.

7. Acknowledgments

We hereby express our gratitude towards the National Research
Foundation for the sponsorship of this project (GUN 2074784)
in terms of the Japan-South African Intergovernmental Science
and Technology Cooperation programme.

We would also like to thank the HTS working group for
their invaluable work on HMM-based speech synthesis, and for
releasing their software under a BSD-style license. Without
their work, this project would not have been possible.

8. References

[1] J. C.Roux and A. S. Visagie, “Data-driven approach to rapid pro-
totyping Xhosa speech synthesis,” SSW6, pp. 143-147, 2007.

[2] A.W. Black, H. Zen, and K. Tokuda, “Statistical Parametric
Speech Synthesis,” Proc. of ICASSP, pp. pp.1229-1232, 2007.

[3] K. Tokuda, H. Matsumura, T. Kobayashi, and S. Imai, “Speech
coding based on adaptive mel-cepstral analysis,” Proc. ICASSP,
pp. pp. 197-200, 1994.

[4] S.-J. Kim and M. Hahn, “Two-Band Excitation for HMM-Based
Speech Synthesis,” IEICE - Trans. Inf. Syst., vol. E90-D, no. 1,
pp. 378-381, 2007.

[5]

[6]

[7]

[8]

[9]

(10]

(11]

(12]

K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi, “Hidden
Markov Models Based on Multi-Space Probability Distribution
for Pitch Pattern Modeling,” Proc. ICASSP, vol. vol. 1, pp. pp.
229-232, 1999.

H. Zen, K. Tokuda, and T. Kitamura, “Decision Tree-based Simul-
taneous Clustering of Phonetic Contexts, Dimensions, and State
Positions for Acoustic Modeling,” Proc. of Eurospeech, pp. pp.
3189-3192, 2003.

H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A.W. Black,
and K. Tokuda, “The HMM-based Speech Synthesis System Ver-
sion 2.0,” Proc. of ISCA SSW6, pp. 294-299, 2007.

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Speech parameter generation algorithms for HMM-based
speech synthesis,” Proc. of ICASSP, vol. vol. 3, pp. pp. 1315—
1318, 2000.

T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Ki-
tamura, “Mixed Excitation for HMM-based Speech Synthesis,”
Proc. of Eurospeech, vol. vol. 3, pp. pp. 2263-2266, 2001.

C. Hemptinne, “Master Thesis: Integration of the Harmonic
plus Noise Model (HNM) into the Hidden Markov Model-Based
Speech Synthesis System (HTS),” IDIAP, IDIAP-RR 69, 2006.

R. Maia, T. Toda, H. Zen, Y. Nankaku, and K. Tokuda, “An exci-
tation model for HMM-based speech synthesis based on residual
modeling,” Proc. ISCA SSW6, pp. 131-136, 2007.

T. Toda and K. Tokuda, “Speech parameter generation algorithm
considering global variance for HMM-based speech synthesis,”
Proc. Interspeech, pp. 2801-2804, 2005.



