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Abstract 
This paper describes the Toshiba Mandarin Text-to-Speech 
(TTS) system that was submitted to the Blizzard Challenge 
2008. The front-end of the system uses machine-learning 
approaches such as generalized linear models (GLM) and 
Quantification Method Type 1 (QMT1) to predict pause, 
duration and F0 contour. According to the predicted prosody 
information, the back-end of the system uses Toshiba’s own 
“plural unit selection and fusion” method to create fused 
speech units which contain pitch-cycle waveforms. The pitch-
cycle waveforms are then aligned along the predicted pitch 
marks and are overlapped with each other to generate the final 
speech waveforms. This paper also addresses the methods 
used to prepare the speech corpus and tune the performance of 
the back-end. The evaluation results showed that our 
Mandarin TTS was in the leading position among the 12 
participating TTS systems. 

1. Introduction 
Three labs of Toshiba in Japan, the UK and China jointly 
work on research and development of TTS for Japanese, 
European languages and Chinese languages, respectively. 
Recently, we developed our next-generation Mandarin TTS 
system using Toshiba’s own “plural unit selection and fusion” 
back-end [1]. We decided to take advantage of the Blizzard 
Challenge to benchmark our Mandarin TTS against those of 
other research organizations.  

The “plural unit selection and fusion” method combines 
the ideas of both conventional unit selection approach and 
Toshiba’s older closed-loop training method [2][3] so that the 
synthetic speech sounds not only clear at the segment level, 
but also smooth throughout the whole sentence.  

Prosodic information, including pause, phoneme duration 
and F0 contour is predicted explicitly. In the back-end, the 
predicted prosodic information is first used in the step of 
multiple unit selection where pitch, duration and pause are 
combined into the cost function. After the fused speech units 
were generated from the selected multiple speech units in the 
unit fusion step, the predicted prosodic information is finally 
used as the target prosody to modify the fused speech units. 

This paper is organized as follows. In section 2, we give 
an overview of Toshiba’s Mandarin TTS system, including 
prosody prediction and plural unit selection and fusion. 
Section 3 briefly describes our speech corpus preparation and 
section 4 briefly describes parameter tuning for the back-end. 
In section 5, we analyze the evaluation results��In section 6, 
we discuss the performance of the Toshiba Mandarin TTS 
system. Then, we address conclusions and future work in 
section 7. Finally, we express our acknowledgements in 
section 8. 

2. System Overview 
Toshiba’s TTS system consists of two major parts: front-end�

and back-end. The major function of the front-end is to 
analyze the text and then predict prosodic information based 
on the results of text analysis. In our system, the prosodic 
information includes pause, duration and F0 contour.  

In back-end, multiple units are selected for a target 
segment according to target cost and concatenation cost. A 
new speech unit is then fused from these selected multiple 
units. The series of new fused speech units for a sentence are 
modified according to the predicted prosody and concatenated 
with each other to form the speech waveform. 

The details of these two parts will be introduced in the 
following two subsections. 
2.1. Front-end 

2.1.1. Text analysis 
Firstly, the input text is normalized so that the dates, time, 
numbers, etc., contained in the input text are converted into 
proper Chinese character strings. In this year’s Blizzard 
Challenge, all text sentences were normalized when they were 
released, so this normalization step is not made use of. Then, 
the normalized text is syntactically analyzed. From text 
analysis, we can get the following basic linguistic and 
phonetic information: 

• The word segmentation of the sentence.  
• The part of speech (POS) of each word in the sentence. 
• The pronunciation (pinyin with tone) of each Chinese 

character in the sentence. 
From the basic information mentioned above, we can 

further get some other linguistic information, such as the 
position of a Chinese character in a word, the position of a 
word in the sentence, the length of the word, and so on. The 
phonetic and linguistic information is the basis for prosodic 
prediction. They are referred to as attributes hereinafter. 
2.1.2. Pause 
The purpose of the pause model is to predict pauses from a 
sequence of contextual linguistic attributes for each 
segmented word. We use a generalized linear model (GLM) 
to predict pause for our TTS system [4].  

GLM is a generalization of the multivariate linear 
regression model [5]. It can handle attribute interactions and 
allows the use of different distributions. We assume that the 
error distribution of pause obeys a Bernoulli distribution, 
which our experiments show outperforms a normal 
distribution. Accordingly, the Logistic GLM [5] is applied to 
handle the Bernoulli distribution. 



For each segmented word, we use the attributes of the left 
3 words and the right 2 words as the attribute set, which 
include POS and word length. The attribute set is 
automatically selected by stepwise regression, which is a 
totally data-driven method. Open tests show the proposed 
method outperforms CART. 

After pause prediction, we can get the distance of a 
Chinese character to the next and previous pauses, which are 
important for F0 prediction and duration prediction.  
2.1.3. Duration 
Quantification Method Type 1 (QMT1) is used for duration 
modeling. For duration prediction, the linguistic and phonetic 
attributes, such as the part of speech, the tone of the phoneme, 
distance to the previous and next pauses, and so on, are 
discrete variables of QMT1. The duration of phoneme i is 
predicted by the formula: 
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where dij is the  duration of jth sample of phoneme i in the 
training corpus and iN  is the total number of samples of 
phoneme i in the training corpus. 
2.1.4. F0 contour 
Mandarin is a syllabic tonal language. Consequently, the F0 
contour is based on the sequence of syllables in an utterance. 
The shape of an F0 contour is highly related to the tones of the 
corresponding syllables.  

In our system, we use a codebook-based F0 contour model 
[6][7], which contains two parts for representing an F0 
contour: one is the shape of an F0 contour for a single syllable, 
and the other is the offset level of an F0 contour on the 
frequency axis. For simplicity, in this paper we also refer to 
the shape of an F0 contour as a F0 pattern. 

In the training phase, for each tone a codebook of 
representative F0 patterns is firstly obtained from the speech 
corpus by the vector quantization clustering method.  Then, 
for a F0 contour ri in the corpus, we can calculate the 
approximation error eij if it is generated by the representative 
F0 pattern cj in the codebook of the corresponding tone. The 
approximation errors and the attributes tj of the F0 contour ri 
are used to train the QMT1 models Mj, which are used in the 
prediction phase to select an optimal representative F0 pattern 
from the codebook. In the prediction phase, we firstly get the 
phonetic and linguistic attributes from the text analysis results 
for each syllable Si. Then we predict the approximation error 
êij to each F0 pattern j in the codebook using the QMT1 
models Mj by formula (1) mentioned in section 2.1.3. The F0 
pattern in the codebook with the minimal error is selected. In 

the training phase, the QMT1 coefficients are trained to 
minimize 
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Similarly, we can train and predict the offset of a F0 contour 
using the QMT1 method. 
For all the F0 contour ri in the training data, new clusters of 

G’j are made so that the predicted approximation error êij 
according to QMT1 models Mj is the minimal. With the 
training data in G’j, we renew the representative F0 pattern c’j 
in the codebook. The process of building F0 codebook, 
training the approximation error prediction QMT1 models, 
training the offset prediction QMT1 models and renew the 
cluster is repeated until the sum of the total approximation 
error in all clusters converges. 

During prediction, after the optimal F0 pattern is selected 
and the F0 offset level is predicted for a syllable, we generate 
the F0 contour for the syllable by combining the predicted 
pattern and predicted offset. Then, the F0 contour is expanded 
or contracted by the predicted duration. And finally, we 
concatenate the F0 contours of all syllables to generate the F0 
contour of the whole sentence. 
2.2. Back-end 
In the back-end, the “plural unit selection and fusion” method 
is used to generate speech units from speech corpus. This 
method is different from the conventional unit selection 
approach in that it uses two steps to create a speech unit: unit 
selection and unit fusion. In the first step, multiple speech 
units, rather than a single unit as in conventional unit selection, 
are selected for each target segment according to their target 
costs and concatenation costs to the neighboring units. In the 
second step, the selected multiple units are averaged to 
generate a new fused speech unit. In the Toshiba Mandarin 
TTS system, initials and finals of PinYin syllable are treated 
as phonemes. An initial is always a consonant. A finial can be 
a vowel or a vowel with a nasal coda. Each fused speech unit 
contains pitch-cycle waveforms for every halfphone. Then to 
generate the speech waveforms, the fused speech units are 
modified according to the predicted prosody and concatenated 
with each other. 

Compared with Toshiba’s older closed-loop training 
method [2][3], in which we created an optimal diphone speech 
unit for all phonetic contexts, the current method selects 
speech units for the target segment for the specific phonetic 
context in the target sentence so that speech units are more 
locally suitable for each target sentence.  

Compared with conventional unit selection, the final 
speech unit is fused from multiple optimal speech units using 
the new method, rather than using just a single selected speech 
unit. Synthetic speech using conventional unit selection often 
suffers from discontinuities at unit boundaries and instability 
in voice quality throughout a sentence. As the speech corpus 
becomes larger and larger, the risk of discontinuities at 
boundaries becomes smaller, but the voice quality of the 
synthetic speech may often sound more unstable because in a 
larger speech corpus, the voice quality itself can vary more 
over the length of the corpus. The bottleneck in the 
conventional unit selection approach can be abstracted by 
saying that for a particular target segment in the sentence, we 
usually cannot find a speech unit that exactly matches the 
phonetically ideal one. The phonetic distance between the 
ideal and the found unit is the fundamental reason for 



distortion in the synthetic speech. However, with the “plural 
unit selection and fusion” method, we search for multiple 
speech units around the ideal one and then average them to 
create a new unit which is closer to the ideal unit in the 
phonetic space. Consequently, synthetic speech using the new 
method results in less distortion in quality. 

The details of each step of the “plural unit selection and 
fusion” method are described in the following subsections. 
2.2.1. Selection of multiple speech units 
Instead of a single speech unit, multiple speech units are 
selected for a target segment in a sentence. The cost 
evaluation for the speech units is composed of the commonly 
used target cost and concatenation cost: 

 
• Target cost: 

o Phonetic context to the target segment; 
o Duration cost; 
o F0 cost at the beginning and ending point; 

• Concatenation cost: 
o Mel-cepstrum at the beginning and end-point. 

 
First, dynamic programming is used to search for an 

optimal path of primary speech units from the beginning to the 
end for a sentence. Then, secondary speech units are selected 
based on the target cost and their concatenation cost with the 
neighboring primary speech units. The number of secondary 
speech units can vary from speaker to speaker as well as 
according to the system configuration, such as memory 
footprint. Basically, more secondary speech units can help to 
improve the robustness of the synthetic speech. The primary 
unit and the secondary units for the same target segment are 
fused together to form a new speech unit. The number of the 
unit to fuse, therefore the number of secondary units plus one, 
is an important parameter for the performance of the back-end. 
We further address with this issue in section 4.  
2.2.2. Unit fusion 
First, the speech units are lengthened or shortened to fit the 
predicted number of pitch cycle in the target segment. The 
pitch-cycle speech waveforms of the primary and secondary 
speech units are then decomposed into four sub-bands and 
averaged in every sub-band. Given the sampling frequency 
noted as fs, the division boundaries of the sub-bands are fs/16, 
fs/8, and fs/4. Finally, a formant-emphasis filter is used to 
make the fused speech unit sound clearer. 
2.2.3. Unit concatenation 
The pitch-cycle speech waveforms of the fused speech unit 
are aligned according to the predicted pitch marks and 
overlapped with each other to form the final speech waveform 
of the synthetic speech.  

3. Speech corpus preparation 
For our system, the speech corpus preparation mainly consists 
of segmenting the training sentence into words, tagging 
syntactic information about the words, and labeling the 
phoneme boundaries. Word segmentation and word syntactic 
information can be obtained by the text analysis procedure 
described in section 2.1.1, so it will not be described here. In 
the following subsections, the automatic and manual steps to 
build the speech corpus will be briefly introduced. 

3.1. Manual check of text and pinyin 
The recorded speech does not always correspond to the 
prompt text due to mispronunciation by the speaker or other 
reasons. It is necessary to correct the text and pinyin 
according to the recorded speech; otherwise, the wrong units 
may be selected. 

The workload of this manual check is relatively small and 
we found the number of errors to be quite small.   
3.2. Automatic phoneme segmentation 
The forced alignment tool of HTK [8] was used to 
automatically segment the speech. MFCC features were used. 
The frame length was 20ms and the frame overlap rate was 
10ms. The database is large enough to train speaker-
dependent phone models. 

We also label the boundaries between the closure and the 
release of plosives and affricates, because we model the 
closures and release bursts separately. Since it is difficult to 
model the closures using HMMs, we only train a single HMM 
for each plosive and affricate.  Then, after forced alignment, 
we set the closure/release (CR) boundary at one third of the 
way through the plosive/affricate. Of course, these CR 
boundaries are not good enough and need refinement. 
3.3. Automatic refining the segmentation 
The performance of forced alignment is not good enough for 
the purposes of TTS. One reason is that the HTK was 
originally developed for ASR usage, and the purpose of forced 
alignment is to maximize the likelihood of the whole sentence 
rather than to find the best segmentation position of each 
phoneme. Another reason is that due to the large frame 
overlap rate, phone boundaries can only located at positions 
that are multiples of 10ms.  

We developed an automatic refinement tool as a post-
process to refine the phoneme boundaries. The tool focuses on 
refining boundaries between voiced and unvoiced phonemes 
(VU boundaries) and CR boundaries (as discussed in the 
previous section).  

There are large differences between the features of voiced 
unvoiced phonemes in the time domain, such as energy and 
zero-crossing rate.  And the boundary between the closure and 
release burst of a plosive or affricate can be easily found using 
energy. It is easy to develop a simple tool utilizing these 
features to find VU and CR boundaries near the forced 
alignment boundaries that are better than those given by 
forced alignment.  Informal listening tests showed that 
synthetic speech based on refined segmentation is better than 
that based on forced alignment segmentation. 
3.4. Manual check of the segmentation  
Some automatically refined boundaries are still not good 
enough. For example, some canonically unvoiced phonemes 
are realized as voiced, in which case time domain features 
cannot help to improve them. Another example is that some 
boundaries given by forced alignment are far from the real 
positions and the real boundaries are not located in the 
searching region when refining. So we carried out a manual 
check based on the refined boundaries. 

Besides bad VU and CR boundaries, we also manually 
checked the boundaries between voiced initial /l/, /m/, /n/, /r/ 
and their following phonemes, since the forced alignment 
boundaries for these phonemes are often bad, and they are not 
refined by the automatic tool. 



In Mandarin there are some syllables that don’t have an 
initial part (syllable onset), such as “yi” and “an”, which 
results in many boundaries between two successive finals. For 
example, “xi1 an1” is the name of a city in west China. The 
boundary between final “i1” and final “an1” is of this type. 
However, in our system, neither automatic refining nor 
manual check has been applied to improve these boundaries, 
even though these boundaries as determined by forced 
alignment are often not ideal. The most important reason for 
this is that these boundaries are not easy to identify, even 
manually. 

4. Parameter tuning for the back-end 
In back-end, some parameters need to be optimized according 
to the language or the speaker. Two important parameters 
were tuned for the Blizzard Challenge. One was the number of 
units to be fused, N, and the other was the strength of the 
formant emphasis filter that is applied to the fused pitch-cycle 
waveforms [9]. 

When we set N to 1, our method is equivalent to 
conventional unit selection approach. When N is increased, 
the stability or smoothness of synthetic speech is increased 
while the clearness of the segments may be degraded. A 
formant emphasis filter is used to improve the clearness of the 
fused segments. Figure 1 shows the concept of tuning the 
number of units in fusion to get the best overall quality and 
tuning the parameter of the formant emphasis filter to improve 
the clearness further.   

 
Figure 1: Tuning the number of unit in fusion 

 
Because the parameter of the emphasis filter depends on N, 

the task of system tuning is to search for a good combination 
of these two parameters, as judged by subjective evaluation. 
An informal subjective evaluation was carried out and the 
combination of fusing 4 units and using a medium setting of 
the formant emphasis filter was selected as the best 
combination. This combination for Mandarin is different from 
that used for English in last year’s Blizzard Challenge [9]. 

5. Evaluation results 
Three aspects of the synthetic speech were evaluated in the 
challenge: the naturalness of the synthetic speech, the 
intelligibility of the synthetic speech, and the similarity to the 
original voice. Among the 12 systems participating, our 
system got the highest MOS for naturalness, the second 
highest MOS in similarity to the original speech, 
and had the smallest error rates in the SUS test for 
intelligibility. The identifier letter of our system was U. 

Identifier letter A was the real speaker which was used as a 
refer system. According to the information given by the 
organizer, identifier letter C is an HMM synthesizer HTS. 
5.1. Naturalness 
A 5-point scale mean opinion score (MOS) was used to 
evaluate the naturalness of the synthetic speech. Figure 2 
shows the MOS of all of the systems. Our system U got the 
highest MOS of 3.7 on naturalness. The MOS for the original 
voice A was 4.4. Pairwise Wilcoxon signed rank tests showed 
that all of the TTS systems were significantly lower in MOS 
than the original voice.  

Figure 2: MOS of the original voice (A) and all the 
systems by all listeners 

5.2. Intelligibility 
Thirteen semantically unpredictable sentences (SUS) were 
used in the intelligibility evaluation. Subjects were required to 
transcribe the sentences using Chinese characters.  Since in 
Mandarin, a pinyin syllable can correspond to multiple 
Chinese characters, an error rated counted by character might 
not necessarily reflect the performance of a TTS system. In 
the Blizzard Challenge, Pinyin-without-tone Error Rate (PER) 
and Pinyin-with-Tone Error Rate (PTER) were calculated in 
addition to Character Error Rate (CER). The error rate of PER 
is mainly due to the perception of articulation and is related to 
the back-end of TTS. When we subtract PER from PTER, we 
can further find the error only due to tone. And when we 
subtract PTER from CER, the remaining error may be caused 
by the sense of word. But semantically unpredictable 
sentences should make it difficult to recognize the sense of the 
word, and should thus increase this remaining error. Figure 3 
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Figure 3: Mean error rate of the original voice (A)
and all the systems for articulation only (PER), tone 
(PTER-PER) and the remaining error for character
(CER-PTER).  



shows the error rate in percentage for each system with three 
categories:  PER, PTER-PER, and CER-PTER. PER, PTER 
and CER can be also found in this figure in the accumulated 
values. The order of systems is the same as figure 2.   
Among all the TTS systems, our system U had the lowest 

PER of 7.8%, the lowest PTER of 9.5%, and the lowest CER 
of 16%. The intelligibility of our system U achieved the same 
level as the original voice. Pairwise Wilcoxon signed rank 
tests showed no significant difference between U and A in 
PER, PTER or CER. Other systems of C and T achieved the 
same level.  Figure 3 shows that our system was also very low 
in PTER-PER, which means that intelligibility of tone was 
also very good. 

 
5.3. Similarity 
A 5-point scale was applied to rate the similarity of the 
synthetic speech to the original speaker. Figure 4 gives the 
similarity scores of all systems. The order of systems is the 
same as figure 2.  The mean score of our system U is the 
second highest 3.4, which is only a little lower than system O. 
Supposing that some other TTS systems in the challenge use 
conventional unit selection, this result of similarity shows that 
the “plural unit selection and fusion” method doesn’t change 
the voice quality too much compared with conventional unit 
selection. 

Figure 4: Similarity scores of the original voice (A) 
and all the systems by all listeners  

6. Discussion 
With Toshiba’s “plural unit selection and fusion” method, we 
submitted very fluent Mandarin speech samples for the 
Blizzard Challenge 2008. The evaluation results showed that 
our Mandarin TTS system was in the leading position in this 
challenge given the same speech corpus and without 
consideration of limits on system resources.  

The approach of “plural unit selection and fusion” has 
another advantage in that it is very scalable for memory 
footprint and computational complexity. With this method, we 
can also easily create a fast TTS system for an embedded 
application with small memory footprint and calculation 
power. The computationally intensive unit fusion step can be 
done offline by experimentally synthesizing many sentences in 
the target domain, and then only the most commonly fused 
speech units are selected into the fast TTS system. With this 
technology, we can tailor TTS systems that vary from very 
small to very large memory footprints, while maintaining high 
voice quality [10]. In the Blizzard Challenge, we configured 
the back-end as for a large memory footprint system with 
unlimited computational resources. 

Our prosody modules are very compact compared to the 
speech units. The Blizzard Challenge evaluation showed that 
our prosody prediction is robust enough. For example, the 
increasing from PTER from PER is small, which means the F0 
prediction is good.  

7. Conclusion and future work 
This paper describes the Toshiba entry that was in the leading 
position in the Mandarin portion of the Blizzard Challenge 
2008.  

On intelligibility, our system achieved almost the same 
level as the original voice. The naturalness of our TTS system 
was 3.7, which was quite competitive for real applications. 
However, there is still much room for improvement in both 
similarity and naturalness. In the future, we will improve both 
the front-end and back-end, including in the following ways: 

• Utilize more linguistic and phonetic information such as 
prosodic layers. We already have promising research 
results for predicting prosodic layers [11], but we still 
have work to do to incorporate these techniques into 
applications with very small memory footprints.  

• Survey better F0 contour methods. We will continue to 
pursue more natural F0 prediction, especially for 
systems with large memory footprints. And we will try 
to find some F0 contour methods that are able to deal 
with expressive voice better. 

• In the speech corpus preparation phase, try to modify 
the boundaries between two consecutive finals. 

• Continue the effort to improve the naturalness of the 
speech in the back-end. 
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