
An Overview of the VUB Entry for the 2008 Blizzard Challenge

Lukas Latacz, Yuk On Kong, Wesley Mattheyses, Werner Verhelst

Laboratory for Digital Speech and Audio Processing (DSSP)
Department of Electronics and Informatics, Vrije Universiteit Brussel, Belgium

{llatacz, ykong, wmatthey, wverhels} @ etro.vub.ac.be

Abstract
In this paper, we describe the configuration of our
synthesizer, as used for the Blizzard Challenge the first time.
Two new UK English voices were built for the DSSP
synthesizer, our in-house unit selection synthesizer, which
uses non-uniform units and a symbolic description of target
prosody. Listening tests indicate reasonable quality although
there is still room for improvement.

Index Terms: speech synthesis, unit selection, evaluation of
synthesized speech

1. Introduction
The Blizzard challenge [1] is a yearly speech synthesis
challenge for evaluating synthesizers and advancing the
technology. In 2008, the Vrije Universiteit Brussel (VUB)
team participated in the challenge the first time. We built two
UK English voices: voice A, using the complete Roger
database and voice B, using the Arctic subset of that database.

Our system, tentatively called the DSSP synthesizer, is a
synthesizer based on unit selection. It was developed as part
of a computerized reading tutor for children with reading
problems under a speech technology project funded by the
Belgian government known as SPACE (SPeech Algorithms
for Clinical and Educational applications) [2]. Although the
quality of synthesized speech has improved a lot over the last
decade, recordings of natural speech instead are still being
used in most recent reading tutors (e.g., [3] and [4]). In order
to meet the quality expected for such an application, we
designed a hierarchical speech generation strategy which
synthesizes speech as a sequence of non-uniform units.
Recently, the synthesizer has been extended to support multi-
modal unit selection, so to synthesize speech audio-visually.

Corpus-based concatenative speech synthesis (e.g. [5]) is
the mainstream way to synthesize speech. In such
synthesizers, a large speech database is first segmented into
small units. To synthesize an input text, the best combination
of speech units is selected from the database to match the
utterances, based on the sum of weighted cost functions. The
selected unit sequence is then concatenated to generate
synthesis. Like any unit selection synthesizer, the DSSP
synthesizer has two parts: a language-dependent front-end
providing natural language processing, and a language-
independent back-end providing unit selection. The system
supports Dutch, and now UK English as well because of the
challenge.

This paper is structured as follows; in section 2, we give
an overview of the voice-building process. The front-end and
the back-end are described in sections 3 and 4 respectively.
The results of the listening tests are discussed in section 5.
Our conclusions and future work are given in section 6.

2. Voice-building
The construction of a new voice for the DSSP synthesizer is
mostly automated. Before building a voice, the recordings for
the new voice need to be segmented and labeled. An
orthographic transcription of each of these utterances must be
available.

We used EHMM, which is part of the Festvox toolset [6],
to segment the data for the two voices. EHMM is an HMM-
based forced aligner. It can detect and insert pause labels that
are missing in the input labeling. Festival utterance structures
[7] containing such labels were provided by the Blizzard
organizers. Since our front-end uses the same phone set and
lexicon as those used for creating these utterance structures,
we could use the labels in the utterance structure files as input
to the EHMM script. Training was performed with the default
settings on the Arctic data in order to align the data for both
the full and Arctic voices.

One feature of the DSSP synthesizer is that a voice can be
built adaptively, i.e. new data can be added to the system
without the need to rebuild the existing part of the voice. The
phonemic sequence of each utterance is stored in a tree-based
index, allowing fast search of the speech database. Separate
indexes are also constructed for words and syllables.

 As in most other unit selection synthesizers, acoustic
features needed for computing join costs, such as MFCC and
f0, are extracted offline and stored beforehand. Based on the
orthographic transcription of each utterance, the front-end
generates symbolic information, which is used to calculate the
target costs. Each segment, i.e. phoneme, of the database is
labeled as such. Small mismatches between the front-end
output and speech database labels, mostly due to pauses
which are not predicted by the front-end, are resolved by
performing dynamic time warping between the label sequence
and the phonemic sequence generated by the front-end.

3. UK English Front-end
The UK English front-end of our synthesizer performs
language-dependent natural language processing. Figure 1
shows an overview of the front-end. It uses some Festival [8]
modules to perform its tasks.

The target prosody of the output speech is described
symbolically only. Acoustic parameters, such as f0 and
duration, are difficult to predict because of the natural
variation of prosody. As prosody is described symbolically
only, acoustic prosody models are not needed. This idea is
also implemented in some other synthesizers, such as
Multisyn [9].

Firstly, the input text is normalized into words, of which
the pronunciation can be determined. A part-of-speech tagger
determines the syntactic category of each word in the
utterance. These words are then organized into phrases. The

algorithm for predicting phrase boundaries and pauses is
described in the next section.

The word pronunciation module converts each word into
segments (i.e. phonemes) and groups these segments into
syllables. Lexical stress is assigned to each syllable. The
pronunciation of a word can be looked up in a lexicon, in our
case the Unisyn lexicon [10], with its orthographic
transcription and part-of-speech tag as input. The Unisyn
lexicon supports multiple regional pronunciation variants.
The lexicon was set to its Received Pronunciation (RP)
variant, which is close to if not the accent of the speaker itself.
Out-of-vocabulary words are handled by the memory-based
grapheme-to-phoneme conversion technique described in
[11], implemented with TiMBL [12]. No post-lexical
processing is performed.

The intonation module predicts a symbolic description of
the intonational contour of the input utterance using a
decision tree. Intonation is described as ToBI accents.

Figure 1: Overview of the UK English Front-end.
Modules with an * are provided by Festival.

3.1. Pause and Phrase Prediction

An utterance consists of one or more prosodic phrases. It is a
well-known fact in linguistic literature that phrase boundaries
are optional. For example, the utterance “Simon and Rob
were seeing through the window.” can be pronounced as

• Simon and Rob were seeing though the window.

• Simon and Rob | were seeing though the window.

• Simon and Rob were seeing | though the window.

(where “|” represents a phrase boundary)

This optionality makes it more difficult to predict phrase
breaks and to evaluate phrasing algorithms because, in many
cases, phrase breaks which do not match a reference may
actually be judged as acceptable by human listeners [13].
Furthermore, pauses occur not only between phrases, but also
within a phrase. Such pauses can also be found in the Roger
and Arctic databases. Therefore, we need to predict not only
those pauses between phrases, but also those within a phrase.

Over the last two decades, research in phrase boundary
prediction has shifted from rule-based approaches to data-
driven methods. These trainable systems are commonly
trained on manually labeled data (text). The process is labor-
intensive and inter-rater agreement is typically not very high.
Silverman et al. reported an agreement of 69% among four
labelers [14]. Ideally, the labeling should be carried out
manually using the orthographic transcription and the speech
database. This is not practical. Therefore we propose a
different approach. We performed training on automatically
labeled data. This results in speaker-dependent training.

However, we need to assume that the speaking rate of the
speech database does not vary too much, which is the case for
the Roger and Arctic database. In our system, we defined
three types of pauses:

• Heavy: long pauses, occurring between utterances

• Medium: shorter pauses, occurring between phrases of
an utterance

• Light: short pauses, occurring between words of a
phrase

The data is labeled iteratively as follows:

1. Label each pause as heavy, medium or light by referring
to the punctuation. If there is a full stop, the pause is
labeled as “heavy”; if there is a comma, “medium”, etc.
Calculate the mean duration of each type of pause.

2. For each pause, re-set the label of the pause as the type
which has the closest mean duration.

3. Recalculate the mean duration for each type.

4. Go back to (2) until none of the pause labels needs to be
changed.

After labeling, a machine-learning algorithm can be used to
predict pauses. Each token of the text of the training database
can now be labeled with one of four classes (heavy, medium,
light and non-pause) by checking whether the speaker has
inserted a pause after the token in the recording, and reading
the type of pause from the iterative process above. The
machine-learning part of our system is similar to the memory-
based learning (MBL) approach described by Busser et al.
[15]. The features that we use are the part of speech, pre-
punctuation, punctuation and orthographic transcription of the
tokens; the 2 tokens preceding and the 2 following. Machine
learning is done by the IGTree algorithm, using TiMBL with
default settings. For synthesis purposes, both medium and
heavy pauses are actually taken as phrase boundaries because
some pauses, though labeled as “heavy”, are found to be
phrase pauses.

In order to evaluate our system, we performed 10-fold
cross-validation. For the Arctic voice, training was performed
on the Arctic data set only. Results are shown in table 1,
listing precision, recall and F-score. Accuracy is the total
number of correct items.

Training set Precision Recall F-score Accuracy

Full 85.465 % 85.475 % 85.463 % 95.826 %
Medium 86.253 % 86.340 % 86.297 % 96.075 %

Arctic 68.515 % 68.559 % 68.537 % 94.978 %

Table 1: The Results of Pause and Phrase Boundary
Prediction. The “medium” data is a randomly

selected subset of the full training set (28027 tokens).

Precision Recall F-score Accuracy

74.4 % 76.1 % 72.8 % 90.0 %

Table 2: The Results as Reported by Busser et al.
Training was carried out on a manually labeled

corpus using a similar machine-learning technique.

The full database is almost 10 times larger than the Arctic
subset (93426 vs. 9836 tokens) Using such a large training
database has a positive effect on the performance. The results
of training a system on manually labeled data (39369 tokens)
as reported by Busser et al. are shown in table 2. Note that

Text normalization*

Part-of-speech tagging*

Pause and phrase prediction

Word pronunciation

Pause insertion

Intonation*

they used a different training corpus. These results seem to
suggest that training on automatically labeled speech can
yield better performance. Our labeling procedure probably
makes it easier for the machine-learning algorithm to learn.
The consistency of the speaker regarding phrase boundaries
might be better than the agreement between manual labelers.
Due to the optionality of phrase boundaries, the “real” results
might be even better than these results here. Actually, we
need to insert breaks so that our breaks match those in the
speech database. Further analysis of these results is, however,
out of the scope of this paper.

4. UK English Back-end
The back-end of the DSSP synthesizer consists of a unit
selection framework, allowing several unit selection
synthesizers to be implemented. Based on the output of the
front-end, targets are constructed. These targets could be of
any size. Besides the target cost based on extended phonemic
identity matching mentioned in [16], several other target costs
are defined, each describing a single symbolic feature. For
each demiphone of a candidate unit, we check whether the
value of a feature matches that of the corresponding
demiphone of the target. The value of the target cost is the
number of demiphones of which the value is different. Table
3 lists the targets costs used in our synthesizer for the Blizzard
Challenge.

Units matching the phonemic description of the targets
are searched for in the database. A simple pruning method is
used. The N-best units only in terms of target costs were used
in order to speed up selection (N is set at 200 units). If no
units are found for a particular target, the default back-off
strategy is to look for phones or demiphones instead. If still
no suitable units are found, any missing phone is replaced by
silence.

The search for the best unit sequence is performed by our
implementation of the Viterbi algorithm. The cost function
c(u1, u2, ..., un, t1, t2, ..., tn) is used to calculate the cost for
selecting a sequence of n candidate units ui, with their
corresponding targets being ti, based on k target costs

target
jc and m join costs

join
jc :

1 2 1 2)

1

1

1

1
1

1

1

1

(, , ..., , , , ...,

(,)

*

(,)

n n

k
target target

j j i i
n

j

k
targeti
j

j

l
join join

j j i i
n

j

l
joini
j

j

c u u u t t t

w c u t

w

w c u u

w

α =

=

=

+−
=

=

=

=

+

∑

∑

∑

∑

∑

∑

 (1)

The weightα allows the fine-tuning between join and

target costs, and is currently set to 1. The weights
target
jw and

join
jw are set manually.

To measure the smoothness of a join, differences in pitch,
spectrum and energy are taken into account. 4 join costs are
used:

• The Euclidean distance between the MFCC’s (12
coefficients including the first one) on the two sides of a
join.

• The absolute difference in f0 (logarithmic) between the
two sides of a join. If the phone at the join position is
voiceless, this cost is 0.

• The absolute difference in energy between the two sides
of a join.

• Adjacency (whether the demiphones on either side of
the boundary are the left and right halves of the same
particular instance of a phoneme in the database)

Units are then concatenated using a PSOLA-based algorithm
with optimal coupling [17]. No further signal processing is
performed.

Level Target cost
Segment
Segment

Phonemic identity*
Pause type (if silence)*

Segment Position in syllable
Syllable
Syllable
Syllable
Syllable
Syllable

Phoneme sequence
Lexical stress*
ToBI accent*
Is_accented*

Onset and coda type [18]*
Syllable
Syllable

Syllable

Onset, nucleus and coda size*
Distance to next/previous stressed

syllable, in terms of syllables
Number of stressed syllables until

next/previous phrase break
Syllable

Syllable

Distance to next/previous accented
syllables, in terms of syllables

Number of accented syllables until
next/previous phrase break

Word
Word
Word
Word
Word
Word
Word
Word
Word

Word

Position in phrase
Part of speech*

Is_content_word*
Has_accented_syllable(s)*

Is_capitalized *
Position in phrase*
Token punctuation*

Token prepunctuation*
Number of words until next/previous

phrase break
Number of content words until

next/previous phrase break

Table 3: The List of Target Costs Used in the Synthesizer.
Those with a * are also calculated for the neighboring

segments, syllables or words. Neighboring syllables are
restricted to the syllables of the current word. Three

neighbors on the left and three on the right are taken into
account.

4.1. Multi-level Unit Selection

Since the speech database can be quite large (e.g. 15 hours for
voice A), unit selection synthesizers face challenges in 2
areas: synthesis quality and speed. In order to reduce
computational complexity and increase quality, we
implemented a multi-level unit selection strategy in the DSSP
synthesizer, which is a top-down approach. We aim at finding
longer units first, before resorting to shorter ones.

A multi-level tree is constructed based on the output of
the front-end. In figure 2, an example of such a tree is shown.
Each level of the tree represents a type of unit, e.g. words,
diphones. These levels can be adapted according to the target
language. Each node of the tree represents a single target. For
UK English, we implemented these levels: word, syllable and
diphone. Units are joined at diphone boundaries, so additional
diphones are inserted at this level to fill any gap. Note that
targets representing words or syllables which contain only a
single phoneme are not added to the tree, since these can be
found directly at the diphone level. With “adjacency” as a
join cost, combinations of candidate units which are
neighbors in the speech database are favored.

4.2. Selection of a Synthesizer from our System for
the Challenge

In order to compare the quality of the different synthesizers of
our system (the “DSSP synthesizer”), we conducted an
experiment in Dutch recently. As an initial evaluation, we had
6 subjects. Each listened to 100 synthesis files, i.e. 25 test
utterances each synthesized by the four synthesizers as
described below. The 25 test utterances are at 5 different so-
called AVI levels [19], levels used for Dutch to reflect
differences in lexical and syntactic complexities with level 1
being the simplest. 5 utterances were used at each level. In
table 4, the columns represent the different synthesizers of our
system:

1. Unit selection using long non-uniform units [15].

2. Homogeneous unit selection (diphones).

3. Multi-level unit selection (with word and diphone levels
only);

4. Multi-level unit selection (with phrase, word and
diphone levels).

The listeners were to listen to syntheses with high-quality
headphones (Sennheiser HD555) in a quiet environment.
They could listen to each file as many times as they wished.
They were instructed to rate them using a scale from 1.0 to
5.0 (MOS, or mean opinion score) and to use up to one
decimal point.

As we expected, synthesis quality falls as we go up the
AVI levels (lexical and syntactic complexities). Multi-level
(or hierarchical) unit synthesis performed the best while non-
uniform unit selection the worst. (The two configurations of
the multi-level (or hierarchical) unit synthesizers actually
generated identical syntheses and also MOS ratings, because
no phrase was found/selected from the speech database for
synthesizing any of the test utterances.) ANOVA was
conducted and the differences were found to be statistically
significant both across rows, i.e. AVI levels (p=0.001) and
across columns, i.e. synthesizers (p=0.05).

 1 2 3 4 mean

AVI1 3.0 3.5 3.5 3.5 3.4

AVI2 3.1 3.0 3.1 3.1 3.1
AVI3 3.1 3.1 3.1 3.2 3.1
AVI4 2.3 2.9 2.8 2.8 2.7

AVI5 2.5 2.6 2.9 2.8 2.7
mean 2.8 3.0 3.1 3.1

Table 4: Comparison of the Synthesis Quality of the Different
Synthesizers of our System (ANOVA - rows: p=0.000183;
columns: p=0.02842)

On the assumption that the relative synthesis quality among
the synthesizers of our system remains the same across
languages, we decided to use multi-level (or hierarchical) unit
synthesis for the Blizzard Challenge this year. Note that for
the Blizzard Challenge, 3 levels, namely word, syllable and
diphone, were used.

5. Results and Discussion
Figures 3 and 4 show the results of voices A and B,
respectively. Our system is identified by the letter G. System
A is actually natural recordings of the same speaker as in the
speech database. Our calculation of the mean MOS values of
all participating systems reported in these sections does not
include systems A, or the two benchmark systems, B and C.
System B is a Festival Benchmark system. This is a standard
Festival unit-selection voice built using the same method as
used in the CSTR entry for Blizzard 2007 [9]. System C is an
HTS Benchmark system. This is a standard speaker-dependent
HMM-based voice, built using a similar method to the HTS
entry for Blizzard 2005 [20]. Statistically significant
differences among systems were identified by applying
Wilcoxon's signed rank with Bonferroni correction [21].

For voice A, the MOS indicates reasonable quality for our
system (mean MOS: 2.8, which is just below the mean of the
participating systems, 2.9). However, the quality of our voice
A is not significantly different from that of the following

dh d _k t_thus sh he iiw waited keeping ngp perfectly iyk quiet

dhuhs hii weit ti id kiip pi ing p@@r @@rf fikt tl liy kwai@t

dhuh uhs hii wei eit id kii iip ing p@@r fi ik kt liy kw wai ai@ @t

word

syllable

diphone

Figure 2: Example of a Multi-level Selection Tree: “Thus he waited, keeping perfectly quiet.”

systems: C, E, F, H, L, M, Q, T and V. Our voice B was rated
slightly better by listeners (mean MOS: 2.9). The mean score
on the quality of voice B of all systems was 2.8. The quality
of our voice B is not significantly different from that of
systems B, C, F, L, M, O and T.

When comparing the quality of our voices A and B, the
results are surprising, since voice B uses only a small subset
of the data as in voice A. Based on the median MOS of those
utterances which were used to test both voices A and B, we
did not find any significant difference between our two voices
(Wilcoxon's signed rank: p = 0.23). However, in half of these
cases, voice B received a higher median MOS. When
analyzing the selected units in syntheses, we found little
overlap between our voices A and B even for those utterances
which received the same median MOS for both voices.

We would expect that the similarity rating of the voice to
the original recordings would be close to 5, but this is not the
case. Raters probably also listened to the naturalness of
syntheses when judging on similarity. Our system performed
somehow better on similarity than naturalness (MOS for our
voice A: 3.1 c.f. mean: 3.0; MOS for our voice B: 3.0 c.f.
mean: 2.8).
Our system did not perform very well on the semantically
unpredictable sentences since our mean word error rate
(WER) for both voices is 45 %, which is slightly higher than
the means (voice A: 40%, voice B: 44%). It must be noted
that even if recordings of natural speech are used, WER
remains relatively high (voice A: 22%, voice B: 25%). For
voice A, the WER of our system does not differ significantly
from those of systems E, F, H, K, L, M, N, O, Q and R. The
WER of our voice B is significantly lower than that of system
R, but higher than those of systems C, Q, T and V.

There is still room for improving our segmentation. The
models for segmentation were trained on the Arctic subset of
the data only. The DSSP synthesizer also contains many
hand-tuned weights but current settings might be sub-optimal.
Algorithms for training weights automatically could help
improve the system. We are further analyzing the data to find
other ways to improve.

6. Conclusions
In this paper, we described the DSSP synthesizer and the two
UK English voices submitted to the Blizzard Challenge.
Entering the challenge provided us with positive experience,
resulted in the development of a UK English front-end and
brought about various improvements to our synthesizer. The
results of our syntheses indicate reasonable quality, especially
considering that the DSSP synthesizer is still under
development. Further work will focus on the improvements
on quality, robustness and speed, and fully automating the
voice-building process.

7. Acknowledgements
The research in this paper was supported by the IWT project
SPACE (SBO/040102): SPeech Algorithms for Clinical and
Educational applications [2] and a research grant from the
Faculty of Engineering Science, Vrije Universiteit Brussel.

8. References
[1] Black, A. W., Tokuda, K. "The blizzard challenge - 2005:

evaluating corpus-based speech synthesis on common
datasets", In INTERSPEECH-2005, 77-80.

[2] http://www.esat.kuleuven.be/~spch/projects/SPACE

[3] Mostow, J., Aist., G. "Evaluating tutors that listen: An
overview of project listen. In K. Forbus and P. Feltovich,
editors, Smart Machines in Education: The coming revolution
in educational technology., pages 169 – 234. MIT/AAAI Press,
2001.

[4] B. Wise, R. C. S. van Vuuren, S. Schwartz, L. Snyder, N.
Ngampatipatpong, and J. Tuantranont. Learning to read with a
virtual tutor: Foundations to literacy. In C. K. Kinzer and L.
Verhoeven, editors, Interactive Literacy Education: Facilitating
Literacy Environments Through Technology. Erlbaum
Publishers, Mahway, NJ, 2005.

[5] A. J. Hunt and A. W. Black, “Unit Selection in a Concatenative
Speech Synthesis System Using a Large Speech Database”, in
Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing 1996, pages 373-376, Atlanta,
May 1996

[6] http://www.festvox.org
[7] P. Taylor and R. Caley and A.W. Black and S. King. Edinburgh

Speech Tools Library, System Documentation. Centre for
Speech Technology, University of Edinburgh, 1.2 edition, June
1999.

[8] Clark, Robert A. J. / Richmond, Korin / King, Simon (2004):
"Festival 2 - build your own general purpose unit selection
speech synthesiser", In SSW5-2004, 173-178.

[9] K. Richmond, V. Strom, R. Clark, J. Yamagishi, and S. Fitt.
Festival multisyn voices for the 2007 blizzard challenge. In
Proc. Blizzard Challenge Workshop (in Proc. SSW6), Bonn,
Germany, August 2007

[10] Susan Fitt and Stephen Isard, "Synthesis of regional English
using a keyword lexicon", in Proc. Eurospeech ’99, Budapest,
1999, vol. 2, pp. 823-826.

[11] Daelemans, and A. Van den Bosch, "Memory-Based Language
Processing", 2005, Cambridge, UK, Cambridge University
Press

[12] Van der Sloot, K. (2007). TiMBL: Tilburg Memory Based
Learner, version 6.1, API Guide. ILK Research Group
Technical Report Series no. 07-09.

[13] M.C. Viana, L.C. Oliveira, and A.I. Mata, “Prosodic phrasing:
Machine and human evaluation,” in Proceedings 4th ISCA
Tutorial and Research Workshop on Speech Synthesis,
Perthshire, Scotland, 2001.

[14] Silverman, K., Beckman, M., Pierrehumbert, J., Ostendorf, M.,
Wightman, C., Price, P., AND Hirshberg, J. ToBI: A standard
scheme for labelling prosody. In Proceedings of the
International Conference on Speech and Language Processing
1992, 1992

[15] Busser, B., Daelemans, W., Van Den Bosch, A. Predicting
phrase breaks with memory-based learning. In 4th ISCA
Tutorial and Research Workshop on Speech Synthesis (2001).

[16] Latacz, L., Kong, Y. O., W. Verhelst, "Unit Selection Synthesis
Using Long Non-Uniform Units and Phonemic Identity
Matching", in Proceedings 6th ISCA Workshop on Speech
Synthesis (SSW-6), Bonn, Germany, August 22-24 2007

[17] Mattheyses, W., Latacz, L., Kong, Y.O., Werner Verhelst, "A
Flemish Voice for the Nextens Text-To-Speech System", IS-
LTC-06, Lublijana, Slovenia, October 2006.

[18] J.P.H. van Santen and J. Hirschberg, “Segmental effects on
timing and height of pitch contours,” in ICSLP, Yokohama,
1994, vol. 2, pp. 719–722.

[19] Visser, J., Van Laarhoven, A. and Ter Beek, A. “AVI
toetsenpakket. Handleiding”, 1994.

[20] Zen, Heiga / Toda, Tomoki (2005): "An overview of Nitech
HMM-based Speech Synthesis System for Blizzard Challenge
2005", In Interspeech 2005, 93-96.

[21] Robert A. J. Clark, Monika Podsiadlo, Mark Fraser, Catherine
Mayo, Simon King. “Statistical Analysis of the Blizzard
Challenge 2007 Listening Test Results,” Proc. Blizzard
Challenge Workshop, 2007, Bonn, Germany

Figure 3: Results for Voice A

Figure 4: Results for Voice B

