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Abstract 
This paper describes the development of PKU mandarin 
speech synthesis system for Blizzard Challenge 2009, which is 
built in the framework of corpus-based unit concatenation 
synthesis. The system employs a trainable VTR model named 
HTM to label the VTR trajectories in corpus and predict the 
target VTR features. In addition, a CART based prosody 
model is built to predict the prosody parameters of the target 
units. In corpus building, the speech waveform in the corpus is 
converted to parametric representation by STRAIGHT 
algorithm. And in voice building, the speech waveform is 
constructed from the connected STRAIGHT parameters of 
selected units. 
Index Terms: speech synthesis, unit selection, VTR model 

1. Introduction 
The speech synthesis system of Peking University (PKU) was 
built based on unit concatenation method which is one of the 
most popular synthesis technologies nowadays. The system is 
mainly designed to synthesize mandarin speech, using the 
provided database from a Chinese female speaker. 

In a concatenation system, the key problem is how to 
select the speech units from a large corpus. The process should 
meet some criterion to ensure the selected units can be 
connected as a natural utterance. Generally, the system 
predicts the features of target units according to the text input, 
and then selects the proper units from candidate sets to match 
the predicted features. The matching degree will be measured 
quantitatively by a cost function. In some previous methods 
linguistic factors are utilized to define the cost function to 
reflect the contextual constraint [1]. However, the designing of 
the cost function strongly relies on expert knowledge and 
manual tuning. Recently, some works have focused on the 
physical features of speech, such as f0 and spectrum, and 
employs statistical models for unit selection [2][3]. 

We exploit a novel method to select units according to the 
vocal tract resonance (VTR) and prosody features of the units. 
The VTR referred is represented as center frequency and 
bandwidth which are articulation related parameters. 
Therefore, it is more effective to measure the difference 
between two units in the VTR space. In our system, a trainable 
VTR model named hidden trajectory model (HTM) proposed 
for speech recognition [4] is employed to label the VTR 
trajectories in corpus and predict the target VTR features. In 
addition, the f0, energy and duration related features are 
extracted from the recorded speech database A decision tree 
model is built to predict these prosodic features. 

The rest of this paper is organized as follow: section 2 will 
give an overview of the system. Section 3 and Section 4 will 
discuss the VTR model and prosody model respectively. In 
section 5, the method of unit selection and waveform 
generation will be introduced. Section 6 will introduce and 

analysis the evaluation results of the system in Blizzard 
Challenge 2009. Finally, we will give a conclusion and 
discussion on the future work. 

2. Overview of System Development 
The PKU mandarin speech synthesis system is built in the 
framework of corpus-based unit concatenation. The provided 
corpus contains 10 hours of speech data recorded by a female 
speaker. In the corpus, pinyin and boundaries of every syllable 
instance and prosodic structure are labeled, which are utilized 
in synthesis. 

In our system, a syllable is treated as a concatenation unit, 
which is represented as a set of features in segment scale, and 
each segment corresponds to a phoneme in the syllable. For 
example, a mandarin syllable hao can be divided to at least 
three segments: the initial h, a and o in the final. If the syllable 
is in the continuous speech, there is a fourth segment acting as 
the transition from the final to the following initial. The unit 
features are VTR and prosody related parameters. A VTR 
model and a prosody model are designed to process these two 
classes of features respectively.  

The development of the system consists of two stages. The 
first one is corpus building and model training. And the 
second one is voice building. Figure 1 and figure 2 show the 
diagrams of the two stages respectively. In the system, the 
STRAIGHT (Speech Transformation and Representation 
using Adaptive Interpolation of weiGHTed spectrum) 
parameters are extracted from the waveform of speech, which 
include f0, spectrum envelop and aperiodicity [5]. These 
parameters are used to train models and constructed 
synthesized speech.  

In the two stages, VTR model and prosody model play 
core roles. The next two sections will give a detail 
presentation of the two models respectively. 
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Figure 1: Diagram of corpus building and model training 



 
 

Figure 2: Diagram of voice building 
 

3. VTR model 
The VTR features of speech units are the static and dynamic 
VTR frequency VF and ∆VF, static and dynamic VTR 
bandwidth VB and ∆VB. They are the mean values of the VTR 
parameters and their differences in a segment domain 
respectively. They should be extracted from the VTR 
trajectories. However, it is not easy to exact the trajectories 
from the speech waveform directly.  In the system, we employ 
HTM to solve the problem. 

3.1. Hidden trajectory model 

Hidden trajectory model (HTM) was proposed by Deng for 
speech recognition [4], which describes the dynamic structure 
of speech in the hidden vocal tract resonance (VTR) space 
instead of the observed feature space employed by 
conventional HMM based speech model. 

The VTR is related to but is also different from the 
formant, which is defined as the energy prominence in 
spectrum. The former can be viewed as the underlying 
physical mechanism of the latter and keeps continuous during 
a speech, even if in some consonant segments when the 
formant can not be measured [6]. 

In the VTR space, the fluent speech can be described as 
smooth trajectories driven by a sequence of phoneme specific 
targets as shown in Figure 3. Though, the VTR trajectories can 
not be extracted directly from waveform, they can be mapped 
to acoustic features, such as LPCC [4], by a mapping function. 
Based on the principle, the HTM builds a framework to learn 
the phonetic targets as VTR variables and the smoothing 
function which is related to the coarticulation from observed 
features.  

In HTM, the phonetic context can be captured utilizing a 
highly compact set of parameters. The advantage of the 
structure model is not only the requirement of less training 
data but also the better generalization to other speech styles, 
speech rate and speakers. 

3.2. Modified HTM for synthesis 

In our system, the observed features are the discrete cosine 
transform (DCT) cepstrum which is converted from 
STRAIGHT spectrum envelop (in log scale) by DCT. The 
spectrum envelop can be viewed as the frequency response of 
a speech synthesis filter H(z) which is integrated by three sub-
filters connected in series as shown in (1). 

 
 

Figure 3: Phonemic targets convert to trajectories  
by a target filter.  

 
 
 

H(z) = S(z)·V(z)·L(z)                                                        (1) 
 

The S(z) named source filter will shape the spectra of 
excitation as that of the glottal source. The filter can be 
designed as a mono pole filter as (2). 
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The parameter µ is related to the bandwidth of the filter, 

which is different in the voiced speech and the unvoiced 
speech. 

The T(z) is the vocal tract filter which models the effect of 
vocal tract to the source. As shown as (3), T(z) is designed as a 
filter of five conjunctive pole pairs to simulate 4 VTRs.  
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The all-pole filter simulates 4 VTRs, The complex roots 

can be represented by frequency and bandwidth pairs as given 
in (4)  
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where Fs is the sampling frequency. 

The L(z) reflects the role of lip radiation, which can be 
simply modeled as a form of derivation. 
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As analysis above, the integrated filter H(z) can be 
represented as a zero-pole filter in which the poles reflect the 
roles of vocal source and vocal tract, and the zero reflect the 
role of lip radiation. Figure 4 shows the framework of the 
modified model. As shown in the figure, the hidden space of 
the modified HTM is constructed by vocal source, vocal tract 
and lip radiation related parameters.  
 



 
 

Figure 4:  The framework of the modified HTM 
 
In the hidden space, the hidden VTRs are described as 

target driven trajectories. In the model, each phoneme is 
characterized by a VTR target which is represented as a 4-
dimension vector of frequency. The phonetic symbols of 
speech can be converted to a sequence of targets T(t) in VTR 
space. Then a target filter h(τ) will smooth the target sequence 
as a continuous trajectory f(t). 
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In addition, the vocal source filter, working as a pole filter, 
will shape the voiced and unvoiced excitation by 
corresponding pole parameters. The lip radiation will work as 
differentiator. From the observed features, these parameters of 
the filter can be estimated in the training procedure. 

3.3. Mapping from hidden parameters to observed 
features 

The mapping from the trajectories of zero-pole to DCT 
cepstrums can be realized by two steps. The first step is to get 
the zero-pole filter’s spectra response in log scale. As the sub-
filters are connected in series, the log spectra Sn (n is the index 
of the spectrum coefficient) of the integrated filter can be 
calculated as summation of that of the three sub-filters. 
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In (7), SS,n, ST,n and SL,n are the n-th log spectrum coefficients 
of S(z), V(z) and L(z) respectively. According to (2)-(5), they 
can be derived from the parameters in the corresponding sub-
filter as (8)-(10) 
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where ω0 is the frequency resolution of the coefficients. 

The second step is the discrete cosine transform to Sn as 
(11), which gets K orders DCT coefficients C. 
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The derived cepstrum C from the hidden space can be 

viewed as a kind of prediction to the observed feature 
extracted from the speech. The prediction error is modeled as 
a Gaussian random variable v with a mean Cbias and a variance 
σ as shown in (7). 
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3.4. Model Training 

In our system, one hour of speech data in the corpus is utilized 
to train the HTM. The model parameters include two classes. 
The first class contains VTR target frequencies of phonemes, 
VTR bandwidths of segments and the pole parameter µ in the 
source sub-filter. The second class is about the cepstrum 
prediction error and contains the mean and the variances of 
segments. 

The model parameters are updated iteratively to maximize 
the observation likelihood P which is calculated as (13) for the 
t-th frame. 
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The variables in (13) have been stated previously, and the 

subscript m[t] is the segment index in the t-th frame. 
In the model training, the first class of parameters should be 
updated by corresponding gradients as (14) 
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where λ is a fixed step. The calculation of the derivatives to 
these parameters can be derived from formulas discussed 
above. Here will not give the detail. 
To the second class of parameters, cepstrum bias Cbias and the 
variances of the M-th segment σM can be updated by averaging 
the prediction bias and residuals in relevant frames. 
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In model training, the boundaries of segments are 

initialized by conventional HMM. From the 900-th update, the 
boundaries of phonetic segments will be refined by Viterbi 
algorithm every 300 times of update. In the framework of 
HTM, one frame of acoustic feature corresponds to L frames 
(the frame shift is 10ms) of hidden targets. In principle, the 



number of all the possible targets sequences will be for one 
frame. When L=17 in our method, the lattice of Viterbi 
alignment is too large. To reduce the computing cost, two-
stage alignment is adopted. The first stage is the first 4 times 
of alignment, in which the L is set to 9 and the boundary is 
limited to be changed less than 30 frames. After that, the 
second stage is fine alignment. L is set to 17, and the boundary 
change is limited to 2 frames. In this way the number of nodes 
can be reduced significantly. 

3.5. VTR trajectory tracking and feature prediction 

To the training data in the corpus, the smoothed VTR 
trajectories and segment alignment get in the last step of 
training are used to label the training data. To the other data, 
the VTR trajectories will be tracked along with the segment 
alignment by iterative Viterbi algorithm used in training 
procedure. Figure5 shows a demo of the labeled VTR 
trajectories for a period of voices. 
 

 
 

Figure 5: VTR trajectories tracked by HTM 
 

In voice building, the VTR model will predict the VTR 
features of target units. According to the segment duration 
predicted by prosody model and training results of HTM, such 
as VTR targets of phonemes and target filter parameters, the 
system will synthesis VTR trajectories, from which the VTR 
features can be generated. 

4. Prosody model 
The prosody features include f0, delta f0, energy, delta energy 
and duration. Thus, all the f0 and energy related values used 
for training are actually mean value for each segment. The 
segment boundary given by VTR is employed for duration 
model training. f0 is extracted by fixed point analysis by 
STRAIGHT and the energy is collected from STRAIGHT 
spectrum envelop. 

4.1. Model Training 

We use CART (Classification and Regression Trees) to train 
the prosody model. The model is built on segment scale in 
accordance with the VTR model. Features used in CART 
training are based on segment-, syllable-, word-, sub-phrase- 
and phrase-level, shown in Table 1. The whole data in 
mandarin corpus is used for training the prosody model. 

4.2. Prediction 

CART is employed to predict f0, delta f0, energy, delta energy 
and duration based on the prediction features used in training. 
All the prediction features can be obtained from the given test 
utterances in the Challenge. The predicted duration is also 

used to generate the formant trajectory from the VTR model. 
The generated prosodic features and VTR features from VTR 
models for each segment are grouped into syllable level that 
we utilize as target units.  

Table 1. Features used in CART training 

Feature used in CART training (to predict f0, 
duration, energy) 

current segment name 
the initial of the current syllable 
the final of the current syllable 
the tone of the current syllable 

position of the current syllable in the current 
prosodic word (forward, backward) 

position of the current syllable in the current 
sub-phrase (forward, backward) 

position of the current syllable in the current 
prosodic phrase (forward, backward) 

 

5. Unit selection and concatenation 

5.1. Unit corpus building 

To guarantee the synthesis quality, units are stored on syllable 
scale. Generally, there are two groups of features in the corpus: 
one is used for synthesis and the other is used for selection. 
Each unit is associated with a bunch of features which are 
used for synthesis including f0, envelop and aperiodicity 
extracted by STRAIGHT toolkits. Features for calculating the 
cost are VTR and prosody features which are introduced in 
previous sections.  

5.2. Unit selection 

Given a sequence of target units predicted by VTR and 
prosody model for each utterance, the system uses a Viterbi 
search to find the minimal cost path. The target cost for each 
candidate at time t is calculated as follows: 
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where 

it is the i-th target unit, 
iu is the i-th candidate unit, and 

( , )t
j i iC t u is the j-th sub-cost for certain feature. t

jw  is the cost 

weight for j-th sub-cost, which is manually tuned to maximize 
the performance. In selection stage, only those that have same 
syllable identity, tone identity and segment number with 
specific target unit will be counted as candidates. Table 2 
shows the features used in the cost functions. 

Table 2. Features used in CART training 

Target cost 
VTR frequency  

Delta VTR frequency 
VTR bandwidth 

Delta VTR bandwidth 
f0 

Delta f0 
Energy 

Delta Energy 
 



For join cost, only the adjacency property is used. If two 
units are continuous in the corpus, the cost equals zero. 
Otherwise, a much bigger value is set as the join cost. 

5.3. Waveform construction 

The selected units form a sequence of syllables. f0, spectrum 
envelop, aperiodicity for each unit are concatenated 
respectively and synthesized into waveform by STRIAGHT 
synthesis algorithm. The parametric analysis-synthesis 
strategy is adopted to ensure the smooth connection of units 
without phase discontinuous. 
 

6. Evaluation 
The evaluation results of the Blizzard Challenge 2009 are 
discussed in this section. Our system is identified as N and the 
natural speech is identified as A. 

6.1. Similarity Test 

Figure 6 shows the similarity test results for Mandarin hub 
task (MH). It can be shown that the system achieved a median 
similarity level in all the systems. This can be attributed to use 
the original segment of a large corpus, even though there are 
no modifications to adapt concatenated units to new context. 

Figure 7 shows the result for Mandarin Sub task 2 (MS2), 
which simulates the performance of synthesized voices 
through the telecom channel. We make no special treatment to 
entries for MS2. The similarity score has degraded to some 
extent. 
 

 
Figure 6: Similarity scores comparing to original 

speaker in MH task (All listeners) 

6.2. Naturalness Test 

In Blizzard Challenge 2009, naturalness test are carried on 
Mean Opinion Score measurement. The Boxplot in Figure 8 
illustrates that our system could preserve the naturalness as 
many other systems. 

Figure 9 shows Mean Opinion Scores in MS2. Though the 
degradation of quality is supposed to happen, the result does 
not show a significant difference compared to the MH of our 
system. 

6.3. Intelligibility Test 

For Mandarin, three measures of intelligibility are computed: 
Character error rate (CER) 
Pinyin + tone error rate (PTER) 
Pinyin in error rate (PER) 
All the test sentences are Semantically Unpredictable 

Sentences. Figure 10 and 11 show the test results in MH1 and 
MS2 respectively. Our system does not perform well in the 
two tests for the reason that all the selected units are original 
segments from the corpus without modifications in durations, 
energy and F0. The discontinuity is more notable in SUS 
utterances than in normal utterances.  

 

 
Figure 7: Similarity scores comparing to original 

speaker in MS2 task (All listeners) 

 
 

 
Figure 8: Naturalness scores in MH task (All listeners) 



 
Figure 9: Naturalness scores in MS2 task (All listeners) 

 

 
 

Figure 10: CER, PTER and PER in MH task 
 (All listeners) 

 

 
 

Figure 11: CER, PTER and PER in MS2 task 
(All listeners) 

 
 
 
 
 

7. Conclusions 
This paper introduces the development of the PKU mandarin 
speech synthesis system for Blizzard Challenge 2009. In this 
system, we exploit a novel concatenation synthesis method 
based on VTR and prosody models. The result of evaluation 
proved the feasibility of the method.  

The VTR model based synthesis should perform well in 
the synthesis with a small corpus or the speaker translation 
with a little adaptive data. However, the related tasks are not 
completed for the limited development time. One of our future 
works will focus on the speaker conversion technology based 
on VTR model.  

The prosody model also plays an important role. One 
ongoing work of us is the research on a structured pitch model 
which can be used to predict pitch trajectory instead of 
segmental pitch parameter prediction by CART. Within the 
same framework, the duration and energy prediction can 
achieve more precision. 

Further more, the VTR and prosody characters of selected 
units need be modified by STRAIGHT toolkits to reduce the 
mismatch to the target units and generate more natural speech 
voice. 
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