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Abstract
In this paper, we compare and combine different approaches
for instrumentally predicting the perceived quality of Text-to-
Speech systems. First, a Log-Likelihood is determined by com-
paring features extracted from synthesized speech signals with
features trained on natural speech. Second, parameters are ex-
tracted which capture quality-relevant degradations of the syn-
thesized speech signal. Both approaches are combined and eval-
uated on auditory evaluated synthetic speech databases from the
Blizzard Challenges 2008 and 2009. The results show that audi-
tory quality judgments can be predicted with a sufficiently high
accuracy and reliability. Especially the possibility to rank dif-
ferent synthesizer systems by their quality comes within reach.

Index Terms: speech synthesis, quality prediction, Quality
of Experience (QoE)

1. Introduction
Text-to-speech (TTS) systems have reached a quality level that
no longer limits them to be used as an aid for visually impaired
but allows to apply them to services used by an unlimited group
of users like email and short message service readers, foreign
language education and information systems. With the devel-
opment of new applications further improvements of the TTS
systems are to be expected, which will be reflected in a number
of perceptual dimensions, especially with respect to the natu-
ralness and the overall quality of the synthesized speech. As
a consequence, methods for efficiently assessing these quality
dimensions are of great interest.

Evaluating synthetic speech, however, is not an easy task.
Depending on the quality aspects of interest, different types
of tests are recommended: articulation and intelligibility tests
assess whether the synthetic speech signal is able to carry in-
formation on a segmental or supra-segmental level [1]; com-
prehension tests investigate whether the content provided via
the synthesized speech signal can be discerned [2]; and overall
quality tests, for example the one described in the ITU-T Rec.
P.85 [3], are used to determine global aspects of the synthe-
sized speech signal, such as naturalness, pronunciation, intona-
tion, speech rate, voice pleasantness, etc. Although doubts have
been cast on the test protocol [4][5] this is still the common way
of auditorily measuring the overall quality of synthetic speech.
The major drawback to all these methods is that they are very
cost-intensive as well as time-consuming which makes it hard
for developers of synthetic speech to evaluate the quality of their
systems after every step in the developement process. Therefore

a method for instrumentally predicting the quality of synthetic
speech could greatly support the development of high-quality
TTS systems.

Several proposals have been made to estimate the percieved
quality of synthesized speech, however, a universal method for
quality prediction has not yet been established. Most measures
use a natural reference signal and evaluate the spectral distance
between the synthesized signal and its natural counterpart. Cer-
nak [6] used the ITU-T P.862 PESQ measure [7], an objective
method for end-to-end speech quality assassment of narrow-
band networks and speech codecs, to predict the quality of
concatinative speech synthesizers. Furthermore Chu and Peng
[8] developed a method to predict synthesized speech quality
through a concatenative cost function. Even if these approaches
reached very high correaltions between their output values and
the corresponding subjective mean opinion scores (MOS) of au-
ditory evaluated test databases, they are only rarely applicable.
Firstly, a natural speech reference, spoken by the same speaker
as the to-be-evaluated synthetic speech samples, has to be avail-
able, which is normally only the case if corpus-based synthe-
sizers are evaluated. Moreover both approaches are only able
to capture concatination-linked distortions, while e.g. percep-
tual degredations originated in unnatural prosody on the sen-
tence level are out of focus. To overcome these limitations, a
reference-free approach is required.

Mariniak [9] proposed a perception-based analysis of
speech samples from many natural speakers. In this manner
a reference feature space could be build and compared with fea-
tures from synthesized speech signals. Synthetic speech sam-
ples get classified with regard to this natural feature set, and
a distance measure is computed. To our knowledge, this ap-
proach has never been implemented by Mariniak, but it has
recently been taken up in [10], using Mel-frequency Cepstral
Coefficients (MFCCs) as features and Hidden Markov Mod-
els (HMMs) with Gaussian Mixture densities for a temporal-
spectral comparison of features. Perceptual features, extracted
from the synthesized signal, are assessed against the reference
models via the log-likelihood measure. This approach led to
very promising results on the evaluated test databases. Correla-
tions between the log-likelihood and the corresponding auditory
MOS reached values from 0.54 to 0.81 for different quality di-
mensions.

Another approach is to extract parameters that are directly
related to the degradations in the synthetic speech signal. It is
motivated by the quality prediction model for transmitted natu-
ral speech, given in ITU-T Rec. P.563 [11]. This model com-



bines three principles for evaluating distortions: it performs an
LPC analysis on a model of the human vocal tract; the sec-
ond principle reconstructs a clean reference signal from the de-
graded input signal; and the third principle is to identify and to
classify distortions typically encountered in voice transmission
channels. During all three steps a large number of internal fea-
tures is generated, weighted and combined, to finally result in
a predicted objective MOS. Applying this model to synthesized
speech [12][13], the results were not as promising as those ob-
tained with the HMM-based approach but gave a detailed view
on which of the generated P.563 internal features could be use-
ful for TTS quality prediction. Furthermore, it could be ob-
served [14] that correlations between the internal features and
auditory MOS differed highly for files of different speaker gen-
der.

In an attempt to compare and combine the feature-
comparison and the parametric approaches in order to increase
the prediction performance and robustness, HMM-based fea-
tures, P.563 internal parameters as well as general speech pa-
rameters were extracted from three German TTS databases. The
parameters which correlated well with auditory test results were
combined to three quality estimators [15]. The correlations be-
tween predicted MOS and auditory test results showed that the
prediction accuracy differs between the three approaches, be-
tween the TTS databases as well as between speaker gender of
the TTS databases. Furthermore, a combination of the differ-
ent approaches showed slight improvements both for male and
female data. For male files correlations above 0.82 and for fe-
male data above 0.70 could be achieved [16]. However, those
estimators were highly optimized on the given data, thus a gen-
eralization for other TTS databases could not be stated.

Our aim is to use these three approaches to predict the qual-
ity for the TTS files from the Blizzard Challenges. For this
purpose, HMM-based feature comparison and parametric ap-
proaches have been used as they are described in Section 2. In
Section 3 an analysis of the used databases is given. Applying
the approaches to these databases, we analyze the performance
and robustness of the predictions in Section 4. Section 5 sum-
marizes the main results and identifies the next steps for further
research.

2. Modeling approach
We compare and combine an HMM-based comparison of fea-
tures with a parametric description of the speech signal in or-
der to derive an estimate of the perceived speech quality. The
overall structure is given in Figure1 and the individual parts are
described in the following subsections.

2.1. HMM-based approach

The HMM-based feature comparison mainly follows the one
described in [10]. In order to obtain comparable characteristics
for the feature comparison, a pre-processing step is carried out
both during the training phase (for the natural speech) and dur-
ing the evaluation phase (for the TTS samples). It consists of
a level normalization to -26dB below the overload point of the
digital system, using the active speech-level meter defined in
ITU-T Rec. P.56 [17] followed by downsampling to 8kHz sam-
plingrate. A standard telephone bandpass filtering as it was used
in previous analysis [10] did not take place. Moreover, since we
are only interested in the quality of the TTS system, only active
speech segments were analyzed, using a simple energy thresh-
olding Voice Activity Detection (VAD) algorithm to remove si-
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Figure 1: Modeling approach [16]. Solid lines refer to the eval-
uation phase, dashed lines to the training phase.

lence intervals longer than 75ms; this duration was empirically
chosen as to avoid artificial discontinuities introduced by possi-
ble VAD errors.

12th order MFCCs are then computed both during the train-
ing and the evaluation phase using 25ms windows and 10ms
time shifts, including the 0th order coefficient which is used as a
log-energy measure. In order to quantify signal-energy dynam-
ics, the 0th delta-cepstral coefficient is added which has been
shown useful for temporal discontinuity detection.

Since we consider the temporal dynamics to be impor-
tant for perceived quality, we use HMMs trained with natural
reference features to quantify differences between naturally-
produced and synthesized speech. HMMs with 8 states are
used, the output distribution of each state consisting of a Gaus-
sian mixture density with 16 diagonal-covariance Gaussian
components. Model parameters, such as the state transition
probabilities, initial state probabilities and output distribution
parameters, are computed using the expectation-maximization
algorithm [18]. The perceptual similarity is then expressed
as a Log-Likelihood (LL) value computed using the so-called
forward-backward procedure described in [18]. Normalization
is performed based on the number of active-speech frames in
the signal under test; the normalized log-likelihood is refered to
as LL in Figure1.

2.2. P.563 internal features

As a second basis for the quality estimation, we extracted pa-
rameters from the synthesized speech signal which might be
related to the degradations coming with the synthesis process.
A first set of parameters was taken from the model described in
ITU-T Rec. P.563 [11]. These parameters capture characteris-
tics such as noise, temporal clippings and robotization effects
(voice with metallic sounds). A total of 44 characteristic signal
parameters are calculated. Based on a restricted set of eight key
parameters, one of six major “distortion classes” is detected,
such as a high level of background noise, signal interruptions,
signal-correlated noise, speech robotization, and unnatural male
or female speech. We designate the detected “distortion class”
as well as the underlying parameters as the P.563 set of param-
eters in the following analysis.

In order to extract the relevant information for the given task
from this set of parameters, we employed a sequential feature
selection (SFS) algorithm followed by a Principal Component



Analysis (PCA). The SFS used a correlation-based cost function
where features with an average Spearman rank-order correlation
between the two databases of |ρ| ≥ 0.40 on a per synthesizer
basis were kept. The determinated features are listed in Table 1.
PCA was subsequently used on this subset to come up with a
small set of relevant factors which are used for the quality esti-
mation function.

parameter BC 2008 BC 2009 average ρ

DistortionClass -0.77 -0.41 -0.59
SpeechInterruptions -0.61 -0.37 -0.49
ArtAverage 0.68 0.26 0.47
UnnaturalBeepsMean -0.29 -0.61 -0.45
MuteLength -0.59 -0.28 -0.44
SharpDeclines -0.48 -0.38 -0.43
UnnaturalBeeps -0.28 -0.57 -0.42
ConsistentArtTracker -0.36 -0.45 -0.40
UnnaturalBeepsAffectedSamples -0.23 -0.57 -0.40

Table 1: Spearmans rank-order coefficient per synthesizer be-
tween the internal features of P.563 and the MOS score, calcu-
lated for the Blizzard Challenge 2008 and 2009 data.
(ArtAverage: averaged section of the back cavity of the vocal tract
model; ConsistentArtTracker: describes how well the back and the mid-
dle cavity of the vocal tract model correlate; Unnatural beeps: voiced
parts in the signal, that are too short to be of natural origin; For detailed
information see [11])

2.3. General speech features

As a third basis for the quality prediction we calculated a large
set of 1567 general parameters [19] which provide a broad vari-
ety of information about vocal patterns that can be useful when
classifying speech metadata such as age, gender and emotion.
These parameters are related to signal duration, formants, in-
tensity, loudness, cepstrum, pitch, spectrum, and zero crossing
rates. We designate this set as “general parameters” in the fol-
lowing analysis.

In order to extract the relevant information for the given
task from this large set of parameters, we again employed a SFS
algorithm followed by a PCA. The SFS used a correlation-based
cost function where features with an average Spearman rank-
order correlation between the two databases of |ρ| ≥ 0.40 on a
per synthesizer basis were kept. The resulting 38 features were
then processed by a PCA to come up with a small set of relevant
factors which are used for the quality estimation function.

2.4. Linear combination

Finally, a quality estimate is calculated from either LL, the fac-
tors of the principal component analysis of the extracted fea-
tures, or both. We opted for a simple linear regression model
which was calculated by the LL value and the values given by
the linear regression over the PCA factors. The target value to
be estimated was the ”naturalness“ score of the auditory tests.
A manual investigation of the shape of the relationship between
input variables and auditory judgments did not provide enough
evidence for justifying more complicated (e.g. non-linear) rela-
tionships.

3. Databases
The aforementioned approaches where tested on data from the
Blizzard Challenges 2008 and 2009. Participants of those chal-
lenges could submit synthesized speech files for different tasks

as well as different languages. In the following, only files that
were built on the full 15 hour recordings of a UK English male
speaker with a fairly standard Received Pronunciation (RP) ac-
cent (Roger Corpus) were used for the evaluation. Since the
purpose is to predict the quality of synthesized speech all natu-
ral speech files were omitted from the test databases.

3.1. Blizzard Challenge 2008 (BC 2008)

The Blizzard Challenge 2008 database [20] consists of 18
speech synthesis systems, 1 natural speaker and 2 systems from
participants from previous challenges (a Festival-based system
from CSTR and the HTS system from the Blizzard Challenge
2005). In an attempt to calibrate the results from year to year,
the latter systems were used as benchmarking systems. For
every synthesizer, 42 files were evaluated during the listening
tests.

3.2. Blizzard Challenge 2009 (BC 2009)

The 2009 database [21] consists of 14 speech synthesis systems,
1 natural speaker and 3 benchmarks systems (the 2 systems used
during the Blizzard Challenge 2008 and the HTS system from
the Blizzard Challenge 2007). 40 files generated by each system
were judged during the evaluation phase.

3.3. Quality evaluation

Both listening tests were carried out online using a design devel-
oped for Blizzard 2007. Various listener types were employed
in both years spanning from volunteers recruited via the Chal-
lenge participants, mailing lists, blogs to speech experts, and
paid UK undergraduates. Since the results of all listeners were
used during the evaluation, there will be no further differenti-
ation. In Blizzard 2008 438 listeners finished the whole test
procedure whereas 365 completed the test in 2009. The listener
gender was anonymized, thus gender-related aspects could not
be analyzed. Both tests consisted of different sections where
listeners had to rate differences in similarity, naturalness and
intelligibility. Only the mean opinion scores (MOS) for the nat-
uralness rating will be analyzed here. The evaluated files from
these sections consisted of sentences from the genres news and
novel and were sampled at 16kHz.

4. Results and discussion
4.1. HHM-training

As preceding studies have shown [15] the selection of data used
for the HMM-training has a remarkable influence on the accu-
racy of the quality estimations. Thus several different HMMs
were trained and tested on the available data. HMMs were
trained on 20min and 180min of speech files randomly cho-
sen from the Roger Corpus. Furthermore two HMMs were
trained on the natural speech files used in the Blizzard Chal-
lenges 2008 and 2009 which comprise the same phonetic con-
tent as the evaluated synthetic speech files, and which were ut-
tered by the speaker the TTS corpus has been built from. The
performance of the quality prediction based on different HMMs
is assessed by Pearson’s Correlation Coefficient R between the
normalized Log-Likelihood xi and the auditory MOS yi where
x und y are the corresponding average values.

R =

∑N
i=1(xi − x) · (yi − y)√ ∑N

i=1(xi − x)2 ·
√ ∑N

i=1(yi − y)2



Since R is extremly sensitive to outliers we furthermore
compute Spearman’s rank-order correlation ρwhere rk(xi) and
rk(yi) are the ranks of xi respectively yi, rkx and rky are the
average values of the ranks of x and y.

ρ =

N∑
i=1

(rk(xi)− rkx) · (rk(yi)− rky)√
N∑
i=1

(rk(xi)− rkx)2 ·

√
N∑
i=1

(rk(yi)− rky)2

We furthermore compute the root-mean-square error
(RMSE) which assesses the accuracy of the achieved quality
predictions. In order to achieve meaningful results, the LL val-
ues were linearly transformed to the range between the lowest
and highest auditory MOS prior the RMSE computation.

RMSE =

√√√√ (∑N
i=1(xi − yi)2

N

)

In addition, we compute the average LL which shows how
similar the evaluted synthetic speech files were rated in compar-
ison to the natural speech files used in the training process. The
analysis is carried out on a per-stimulus and on a per-synthesizer
basis. The results are shown in Table 2.

Comparing the results from Table 2 with the correlations
achieved in [16] on three German test databases an inferior per-
formance per-stimulus as well as per-synthesizer can be stated.
This is due to the fact that the quality range of TTS synthesizer
in the Blizzard database is closer and thus a quality prediction
is more challenging. The performances of the “Roger 20min”-
HMM and the “Roger 180min”-HMM show no further gain in
prediction accuracy by increasing the amount of data used dur-
ing the HMM-training process. Furthermore, it can be stated
that the HMM trained on the natural speech files from BC 2008
leads to the best correlations per stimulus with R = 0.30 as
well as per synthesizer with R = 0.64 on the data from 2008.
In addition, this HMM also implicates the lowest average LL.
According to this the synthetic speech files get rated more sim-
ilar to the training data from this HMM than to the data used in
the other training processes. The results show that a training ba-
sis which consists of speech files with the same sentence struc-
ture as the files to-be-evaluated leads to better prediction results
than HMMs trained on a randomly chosen subset of the Roger
Corpus. Surprisingly the “BC 08”-HMM outperforms the “BC
09”-HMM on the data from 2009, therefore the “BC 08”-HMM
will be used for all further computations on the 2009 dataset.

4.2. Results

The subjective ratings have been averaged per stimulus which
can be compared to the estimated quality rating obtained from
the model. We used the Log-Likelihood, the P.563 parameters,
the general parameters and any combination of these as input
parameters to the quality estimation function, and report on the
correlations and the root-mean-square error RMSE. Since the
rating scale has not really interval level we again provide both
the Pearson correlation R and the Spearman rank-order cor-
relation ρ. The analysis is first carried out on a per-stimulus
basis and then on a per-synthesizer basis. As mentioned be-
fore the analysis is limited to the synthesized speech samples
only, as we did not want to artificially increase the correlations
by adding the naturally-produced stimuli which usually show a

higher quality and thus increase the range of quality levels cov-
ered in the experiment.

The results for all quality predictors are shown in Table 3
while scatter plots of the three models can be seen in Figure
2, 3 and 4. Comparing the performance of all three models
on the given databases shows that no model leads to satisfying
results on a per-stimulus basis. The highest correlation could
be achieved by the general parameters on the data from 2009
with R = 0.50. However, this approach fails on the 2008 data.
A combination of all three approaches leads to a more stable
performance on both databases.

On a per-synthesizer basis, the performance of the estima-
tors increase. Apparently, the differences between individu-
ally synthesized speech samples are averaged out in the per-
synthesizer analysis. This shows that the models above have
difficulties in predicting the quality of single speech samples
but lead to very promising results when predicting the quality
of synthesizers. The best results of a single model could be
achieved from the P.563 approach with R = 0.78 for 2008 data
while the general speech features score R = 0.84 on the 2009
data. Again a more stable prediction is achieved with a combi-
nation of all three models. This approach leads to R = 0.70 on
the 2008 data respectively R = 0.77 on 2009 data.

5. Conclusions and future work
We compared and combined three approaches for instrumen-
tally predicting TTS quality on the two auditory test databases
from the Blizzard Challenges 2008 and 2009. Over all
databases the combination of all three models achieved the
best performance. While the correlations on a per-stimulus
basis were quite disappointing compared to the results those
models achieved on three German test databases [16], the per-
synthesizer scores lead to very promising results. As we ex-
pected, this indicates that the approach is better for differenti-
ating between synthesizers than it is for differentiating between
individual stimuli produced by one particular synthesizer. This
shows that it is not yet possible to predict the quality of sin-
gle stimuli however a ranking of different synthesizer systems
comes within reach.

Since the two parametric approaches were highly optimized
on the available data a generalization for other databases can
not be given. To verify the results we plan to extend the analy-
sis to the data of Blizzard Challenge 2010. We will also test the
prediction algorithms on the telephone bandpass-filtered speech
samples from Blizzard Challenge 2009, since those files passed
the same preprocessing steps as the synthesized speech files
used in [16] which lead to the best prediction accuracy. Fur-
thermore, we want to combine the general speech parameters
with the HMM-based approach using the feature extraction de-
scribed in [19] as input for both the normalized Log-Likelihood
measure as well as the HMM-training.

Finally, we need to test our model on independent data, e.g
from future Blizzard Challenges or other evaluated synthetic
speech databases in order to analyze the robustness of our ap-
proach.
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database
BC 2008 BC 2009

training data R RMSE ρ LL R RMSE ρ LL

per stimulus Roger Corpus 20min 0.13 1.03 0.13 -24.19 -0.15 1.33 -0.17 -23.67
Roger Corpus 180min 0.12 1.04 0.11 -22.88 -0.16 1.29 -0.19 -22.70
BC 08 natural speech files 0.30 0.80 0.31 -18.72 0.09 1.34 0.08 -18.53
BC 09 natural speech files 0.25 0.87 0.26 -19.20 -0.06 1.22 -0.06 -18.66

per synthesizer Roger Corpus 20min 0.14 0.65 0.06 -24.19 -0.10 1.09 -0.19 -23.67
Roger Corpus 180min 0.22 0.68 0.15 -22.88 -0.14 1.03 -0.23 -22.70
BC 08 natural speech files 0.63 0.53 0.47 -18.72 0.17 0.81 0.14 -18.53
BC 09 natural speech files 0.49 0.46 0.58 -19.20 0.02 0.94 -0.04 -18.66

Table 2: Correlations and prediction error between LL and MOS score for different HMMs

database
BC 2008 BC 2009

model R RMSE ρ R RMSE ρ

per stimulus
LL 0.30 0.80 0.31 0.09 1.34 0.08
P.563 parameters 0.29 1.48 0.27 0.26 1.75 0.26
general parameters -0.02 0.93 -0.02 0.50 0.76 0.48
LL + P.563 parameters 0.38 1.30 0.39 0.26 1.67 0.23
LL + general parameters 0.18 0.95 0.16 0.46 0.78 0.44
P.563 parameters + general parameters 0.21 1.12 0.19 0.49 1.25 0.51
LL + P.563 parameters + general parameters 0.30 1.11 0.28 0.49 1.09 0.48
per synthesizer
LL 0.63 0.53 0.47 0.17 0.81 0.14
P.563 parameters 0.78 0.71 0.83 0.52 0.85 0.44
general parameters -0.03 0.98 0.05 0.84 0.48 0.93
LL + P.563 parameters 0.82 0.51 0.67 0.45 0.77 0.38
LL + general parameters 0.42 0.54 0.29 0.73 0.50 0.73
P.563 parameters + general parameters 0.58 0.65 0.51 0.81 0.69 0.90
LL + P.563 parameters + general parameters 0.70 0.42 0.60 0.77 0.62 0.79

Table 3: Correlations and prediction error for all models and every possible combination
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Figure 2: Scatter plots of LL and corresponding MOS scores from the BC databases per-synthesizer
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Figure 3: Scatter plots of P.563 parameters and corresponding MOS scores from the BC databases per-synthesizer
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Figure 4: Scatter plots of general parameters and corresponding MOS scores from the BC databases per-synthesizer
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