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Abstract
This paper describes a hidden Markov model (HMM)-based
speech synthesis system developed for the Blizzard Challenge
2010. This system employs STRAIGHT vocoding, minimum
generation error (MGE) training, minimum generation error lin-
ear regression (MGELR) based model adaptation, the Bayesian
speech synthesis framework, and the parameter generation al-
gorithm considering global variance. The real-time factor of
the speech synthesis system is about 0.3, and its footprint is less
than 25 MB. Subjective evaluation results show that the over-
all speech quality and intelligibility of the systems are better
than most other system, especially when a well-labeled speech
database can be used.
Index Terms: HMM, speech synthesis, speaker adaptation,
HTS, Blizzard Challenge

1. Introduction
A statistical parametric speech synthesis framework based on
hidden Markov models (HMMs) was recently developed. In
the HMM-based speech synthesis framework, spectrum, pitch,
and duration of speech are modeled simultaneously by HMMs,
and speech parameter sequences are generated from the HMMs
themselves [1]. Compared to other synthesis methods, the
HMM-based approach has several advantages, 1) under its sta-
tistical training framework, it can automatically learn salient
statistical properties of speakers, speaking styles [2], emotions
[3], etc., from the speech corpus; 2) many techniques devel-
oped for HMM-based speech recognition can be applied to
speech synthesis [4, 5]; 3) voice characteristics of synthesized
speech can be easily controlled by modifying acoustic statistics
of HMMs [6,7]. Furthermore, it can generate smooth and stable
speech under a small footprint. As a result, HMM-based speech
synthesis gradually became popular both in research and appli-
cation.

In HMM-based speech synthesis, the maximum likelihood
(ML) criterion has typically been used to train HMMs. The
optimal model parameters can be obtained by maximizing the
likelihood for given training data as

ΛML = arg max
Λ

P (O | S,Λ), (1)

where S is a label sequence of training data. Since it is difficult
to obtain the model parameter ΛML analytically, the model pa-
rameters are estimated by using an iterative procedure such as
the EM algorithm. In the synthesis part, the speech parameter
generation algorithm generates the sequence of speech parame-
ter vectors that maximize its output probability using the model
parameters ΛML as

ôML = arg max
o

P (o | s,ΛML), (2)

where o =
ˆ

o>
1 , o>

2 , . . . , o>
T

˜>
is a speech parameter se-

quence, and s is a label sequence to be synthesized.
Although the performance of the conventional HMM-based

speech synthesis framework is good enough for standard ap-
plications, the quality of synthesized speech still can be im-
proved. In recent years, several techniques have been adopted
to improve the quality of synthesized speech for HMM-based
speech synthesis, including a high quality vocoder Speech
Transformation and Representation using Adaptive Interpola-
tion of weGHTed spectrum (STRAIGHT) [8] for spectral anal-
ysis, a minimum generation error (MGE) criterion for model
training [9], the Bayesian speech synthesis framework [10, 11],
and parameter generation algorithm considering global variance
(GV) [12]. In NIT’s system for the Blizzard Challenge 2010, we
build three HMM-based speech synthesis systems using these
state-of-the-art techniques.

1. MGE: This system uses the MGE criterion for model
training. After the basic acoustic models are trained
based on the ML criterion, the model parameters are up-
dated several times by the MGE criterion. Here, the Eu-
clidean distance on mel-cepstral coefficients is used as
the criterion. We applied this system to EH1, EH3 and
MH1 tasks.

2. BAYES: This system is based on the Bayesian speech
synthesis framework. The estimation of posterior distri-
butions, model selection, and speech parameter genera-
tion are consistently performed based on the Bayesian
criterion. Since the Bayesian approach can construct
more robust model than the ML approach, we applied
this system to EH2 and MH2 tasks which consists of
smaller training data than those in EH1 and MH1 tasks.

3. MGELR: This system is a speaker adaptation system.
The average voice model is trained by the ML-based
speaker adaptive training (SAT) method [13]. The trans-
form matrices are trained by the MGE criterion. The
minimum generation error linear regression (MGELR)
method [14] shows better performance than maximum
likelihood linear regression (MLLR) method. We ap-
plied this system to ES1 and MS1 tasks.

All systems uses the hidden semi-Markov models (HSMMs) [4]
as the acoustic models, STRAIGHT vocoding, and the parame-
ter generation algorithm considering GV.

The rest of the paper organized as follows. Section 2 de-
scribes NIT’s baseline system. In sections 3 and 4, we briefly
review the MGE training and the MGELR based model adapta-
tion, and Bayesian speech synthesis, respectively. In section 5,
evaluation results are shown. Our conclusions are given in sec-
tion 6.
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Figure 1: Overview of HMM-based speech synthesis system

2. Basic system
2.1. HMM-based speech synthesis system

Figure 1 shows an overview of the basic HMM-based speech
synthesis system [1]. It consists of training and synthesis parts.

In the training part, spectral and excitation parameters are
extracted from a speech database, and each feature vector con-
sists of spectrum and excitation parameter vectors: the spectrum
parameter vectors are composed of mel-cepstral coefficients,
their delta, and delta-delta, and the excitation parameter vec-
tors composed of logarithmic fundamental frequency (log F0)
values and aperiodicity measurements, their delta, and delta-
delta. Although the spectrum part can be modeled by contin-
uous HMM, the F0 part cannot be modeled by continuous or
discrete HMM since the observation sequence of F0 is com-
posed of a one-dimensional continuous value and discrete sym-
bol which represents “unvoiced.” To model such observation
sequence, the feature vectors are modeled by context-dependent
multi-space probability distribution (MSD) HMMs [15].

In the synthesis stage, first an arbitrarily given text to
be synthesized is converted to a context-dependent label se-
quence and a sentence HMM is constructed by concatenating
the context-dependent HMMs according to the label sequence.
Secondly, state durations maximizing their probabilities were
determined. Thirdly, mel-cepstral coefficients and log F0 se-
quences maximizing their output probabilities for a given state
sequence are generated by speech parameter generation algo-
rithm (case 1 in [16]). Finally, speech waveform is synthesized
directly from the generated mel-cepstral coefficients and log F0

sequences using Mel Log Spectrum Approximation (MLSA)
filter.

2.2. Hidden semi-Markov model

In HMM-based speech synthesis, rhythm and tempo are con-
trolled by state duration probability distributions. One of major
limitations of HMMs is that they do not provide an adequate
representation of the temporal structure of speech. This is be-
cause state duration probabilities decrease exponentially with
time. To overcome this limitation, in the HMM-based speech
synthesis system, each state duration probability distribution
is explicitly modeled by a single Gaussian distribution. They
are estimated from statistics obtained in the last iteration of the

forward-backward algorithm, and then clustered by the deci-
sion tree-based context clustering [17,18]. In the synthesis part,
we construct a sentence HMM corresponding to an arbitrarily
given text and determine state durations which maximize their
probabilities. Then, a speech parameter sequence is generated
for the given state sequence by the speech parameter generation
algorithm. However, there is an inconsistency between train-
ing and synthesis: although speech is synthesized from HMMs
with explicit state duration probability distributions, HMMs are
trained without them. To overcome this inconsistency, hidden
semi-Markov model (HSMM) based speech synthesis has been
proposed [4]. This framework introduces an HSMM, which is
an HMM with explicit state duration probability distributions,
into not only the synthesis part but also the training part of the
HMM-based speech synthesis system. It makes possible to re-
estimate state output and duration probability distributions si-
multaneously. The effectiveness of the HSMM-based approach
has been reported in [4].

2.3. STRAIGHT vocoding

As a high-quality speech vocoding method, we use STRAIGHT,
which is a vocoder type algorithm proposed by Kawahara et
al. [8]. It consists of three main components, i.e., F0 extraction,
spectral and aperiodic analysis, and speech synthesis.

The STRAIGHT automatically extract F0 with fixed-point
analysis [19]. We adopt a two-stage algorithm to alleviate errors
of the F0 extraction, e.g., halving and doubling. Firstly, we
perform the F0 extraction for all training data for each speaker
in which a search range is set to 55-480 Hz. Taking account
of a histogram of the extracted F0s, we roughly estimate an F0

range of each speaker. Then, F0s are again extracted in the
speaker-specific range.

Using the extracted F0, we use the STRAIGHT method to
perform pitch-adaptive spectral analysis combined with a sur-
face reconstruction method in the time-frequency domain to re-
move signal periodicity. As a spectral parameter, we use the 40-
th STRAIGHT mel line spectrum pair (mel-LSP) coefficients
and 0th through 39th mel-cepstral coefficients to which the
smoothed spectrum analyzed by the STRAIGHT is converted.
An aperiodicity measure in the frequency domain [20] is also
extracted. As a parameter for constructing a mixed excitation
sources in speech synthesis, average values of the aperiodicity
measures on five frequency bands, 0-1, 1-2, 2-4, 4-6, and 6-8
kHz are used for 16k sampling data and 0-3, 3-6, 6-12, 12-18
and 18-24 kHz are used for 48k sampling data.

2.4. Parameter generation algorithm considering global
variance

The HMM-based speech synthesis method generates speech pa-
rameters from the HMMs directly, so that an output probabil-
ity of the parameter is maximized under a constraint on an ex-
plicit relationship between static and dynamic features. Conse-
quently, a smoothed parameter trajectory is generated but it is
excessively smoothed due to the statistical processing. There-
fore, the synthesized speech using over-smoothed parameters
sounds muffled. To reduce this effect, we applied a parameter
generation algorithm considering global variance (GV) of the
generated parameters [21] to both spectral and F0 parameter
generation processes.

One GV is calculated from a parameter sequence over the
entire of one utterance. It should be noted that only voiced
frames are used for calculating GV of F0 parameters. The
probability density on GV is modeled using a Gaussian distri-



bution with a diagonal covariance matrix. In parameter gener-
ation, first a parameter trajectory is generated with the speech
parameter generation algorithm. Then, the generated trajectory
is converted, so that its GV is equal to a mean of the Gaus-
sian distribution. Using this converted trajectory as an initial
value, the parameter trajectory is calculated iteratively to max-
imize a likelihood function with the Newton-Raphson method.
This likelihood function consists of the output probability of the
parameter sequence and that of its GV.

In order to improve the accuracy of GV estimation, the GV
Gaussian probability density function (pdf) is changed from a
single global distribution to a context-dependent one. In a sim-
ilar way to HMM observation density tying, the decision-tree
based context clustering technique is applied to the context-
dependent GV pdfs to tie their parameters. The number of leaf
nodes of the decision trees is automatically determined by the
MDL criterion [22]. In this paper, to simplify the implemen-
tation, only sentence-level contextual features (e.g., number of
phonemes in a sentence) were used. Furthermore, to improve
the estimation accuracy of the GV vector, the GV vector is cal-
culated from only speech region excluding silence and pause
regions from the calculation, based on automatic segmentation.
Since HSMMs are used as acoustic models in our system, the
silence and pause regions are estimated by using WFST-based
aligner [23].

3. Minimum generation error criterion
3.1. Minimum generation error training

In general, the aim of HMM-based speech synthesis is to gener-
ate the speech as close to the natural speech as possible, i.e., the
generation error should be as small as possible. The parameter
generation algorithm [16] is applied to obtain the speech param-
eter vector sequence o which maximizes P (o | λ, q), where λ
and q are a given HMM and the state sequence, respectively.
In order to keep the smooth property of the generated param-
eter sequence, the dynamic features including delta and delta-
delta coefficients are used. For a state sequence q of a given
speech parameter vector sequence o, the generated vector se-
quence ĉ (λ, q) can be calculated. We assume the distance be-
tween original and generated data as D (c, ĉ (λ, q)). Without
loss of generality, we denote as ĉ (λ, q) as ĉq . The generation
error ê (c, λ) for a feature vector sequence c is calculated by
using the Euclidean distance D (c, ĉq) as

ê (c, λ) = D (c, ĉq) =‖ c − ĉ ‖> . (3)

It should be noted that the distance measure can be replaced
by other measure which is more suitable for the real applica-
tion. Under the definition of generation error, we incorporated
the parameter generation into the HMM training procedure for
generation error calculation. In order to minimize the genera-
tion errors, the GPD algorithm is applied. The HMM parame-
ters were optimized to minimize the total generation errors of
training data.

A log spectral distortion (LSD) was adopted to replace the
Euclidean distance to define the generation error between the
original and generated LSPs [24] in MGE training, and the qual-
ity of synthesized speech was improved. However, MGE train-
ing with Euclidean distance was used for Blizzard Challenge
2010 because high computational cost is required for MGE
training with LSD.

3.2. MGELR-based model adaptation

In the MGELR-based model adaptation, we incorporate the pa-
rameter generation into model adaptation process to calculate
the generation errors of adaptation data, and then optimize the
parameters of transformation matrices so as to minimize the to-
tal generation errors of adaptation data. After model transfor-
mation, the generation error for a feature vector sequence c in
adaptation data is defined as Eq. (3) where ĉq is the generated
feature vector sequence using the transformed models, which is
calculated as

ĉq = R̂−1
q r̂q , (4)

where

R̂q = W >Σ̂−1
q W , (5)

r̂q = W >Σ̂−1
q µ̂q . (6)

The whole model training and adaptation procedure based
on the MGELR algorithm is implemented as follows:

1. Train the source voice model using the source speech
database.

2. Conduct the MLLR-based model adaptation, and initial-
ize the transformation matrices.

3. Obtain the optimal state alignments for all adaptation
data using the MLLR-adapted HMMs.

4. Iteratively optimize the parameters of transformation
matrices based on MGELR algorithm.

5. Apply the optimized transformation matrices to the
source voice model.

4. Bayesian speech synthesis
The Bayesian approach considers the posterior distribution of
any variables. That is, all the variables introduced when models
are parameterized, such as model parameters and latent vari-
ables, are regarded as random variables, and their posterior dis-
tributions are obtained based on the Bayes theorem. The dif-
ference between the Bayesian and ML approaches is that the
target of estimation is the distribution function in the Bayesian
approach whereas it is the parameter value in the ML approach.
Based on this posterior distribution estimation, the Bayesian ap-
proach can generally achieve more robust model construction
than the ML approach. A framework of speech synthesis based
on the Bayesian approach was recently proposed [10, 11]. The
Bayesian approach assumes that a set of model parameters Λ
is a random variable, while the ML approach estimates constant
model parameters. In the Bayesian approach, the speech param-
eter is generated by the predictive distribution as follows

ôBayes = arg max
o

P (o | s, O, S)

= arg max
o

P (o, O | s, S). (7)

It can be seen that Eq. (7) directly represents the problem of
speech synthesis; that is, speech feature sequence o is gener-
ated from given training feature sequences O with labels S and
labels to be synthesized s. The marginal likelihood of o and O



is defined by

P (o, O | s, S)

=
X

z

X

Z

Z

P (o, z, O, Z ,Λ | s, S)dΛ

=
X

z

X

Z

Z

P (o, z | s,Λ)P (O, Z | S,Λ)P (Λ)dΛ,

(8)

where z and Z are sequences of HMM states for a speech pa-
rameter sequence o and the training data O, P (Λ) is a prior
distribution for model parameter Λ, P (o, z | s,Λ) is the likeli-
hood of synthesis data o, and P (O, Z | S,Λ) is the likelihood
of the training data O. The model parameters are integrated out
in Eq. (8) so that the effect of over-fitting is mitigated. However,
it is difficult to solve the integral and expectation calculations,
when a model includes latent variables. To overcome this prob-
lem, the variational Bayesian method has been proposed as a
tractable approximation method of the Bayesian approach and
it has shown good generalization performance in many applica-
tions [25].

The variational Bayesian method maximizes a lower bound
of log marginal likelihood F instead of the true marginal likeli-
hood. A lower bound F is defined by using Jensen’s inequality:

logP (o, O | s, S)

= log
X

z

X

Z

Z

P (o, z, O, Z ,Λ | s, S)dΛ

= log
X

z

X

Z

Z

Q(z, Z ,Λ)
P (o, z, O, Z ,Λ | s, S)

Q(z, Z ,Λ)
dΛ

≥
X

z

X

Z

Z

Q(z, Z ,Λ) log
P (o, z, O, Z ,Λ | s, S)

Q(z, Z ,Λ)
dΛ

=

fi

log
P (o, z, O, Z ,Λ | s, S)

Q(z, Z ,Λ)

fl

Q(z,Z ,Λ)

= F , (9)

where 〈·〉Q denotes a calculation of expectation with respect to
Q, and Q(z, Z ,Λ) is an approximate distribution of the true
posterior distribution P (z, Z ,Λ | o, O, s, S). The VB method
uses the assumption that probabilistic variables associated with
z, Z ,Λ are statistically independent of the other variables as

Q(z, Z ,Λ) = Q(z) Q(Z) Q(Λ). (10)

In the VB method, posterior distributions Q(z), Q(Z) and
Q(Λ) are introduced to approximate the true posterior distri-
butions. The optimal posterior distributions can be obtained
by maximizing the objective function F with the variational
method

Q(z) = Cz exp 〈log P (o, z | s,Λ)〉Q(Λ) , (11)

Q(Z) = CZ exp 〈log P (O, Z | S,Λ)〉Q(Λ) , (12)

Q(Λ) = CΛP (Λ) exp 〈log P (o, z | s,Λ)〉Q(z)

× exp 〈log P (O, Z | S,Λ)〉Q(Z) , (13)

where Cz , CZ and CΛ are normalization terms of Q(z), Q(Z)
and Q(Λ), respectively. These posterior distributions can be
updated effectively by iterative calculations similar to the EM
algorithm used in the ML approach.

From Eq. (7), the optimal speech parameter sequence for
Bayesian speech synthesis can be generated by maximizing the
marginal likelihood. Thus, the optimal speech parameter se-
quence ô can be generated by maximizing the lower bound F in
Eq. (9) because the VB method guarantees that the log marginal
likelihood is approximately the lower bound F .

In the model selection, the VB method can select appropri-
ate model structure, even when there are insufficient amounts
of data, because it does not use an asymptotic assumption. In
the VB method, since prior distributions of the model param-
eters affect the estimation of posterior distributions and model
selection, the determination of prior distributions is an impor-
tant problem for estimating of appropriate acoustic models. In
this paper, a prior distribution determination technique using
the cross validation [26] is apply to the context clustering. Us-
ing prior distributions determined by the cross validation, it is
expected that a higher generalization ability is achieved and an
appropriate model structure can be selected in the context clus-
tering without any tuning parameters.

5. Experiments
5.1. Experimental conditions

Seven systems were constructed for nine tasks in Blizzard Chal-
lenge 2010. Experimental conditions for each task are listed in
Table 1. Speech signals were windowed with an F0-adaptive
Gaussian window with a 5-ms shift. The feature vectors con-
sisted of STRAIGHT mel-Cepstrum/mel-LSP coefficients, log
F0, aperiodicity measures, and their dynamic and acceleration
coefficients. We used 5-state left-to-right context-dependent
multi-stream MSD-HSMMs. Each state had a single Gaussian
pdf with a diagonal covariance matrix.

5.2. Experimental results

Tables 2-7 show average Mean Opinion Scores (MOSs) and
average Word Error Rates (WERs) of natural speech (NATU-
RAL), the best and the worst of other participants (BEST and
WORST), and our system (NIT) respectively. From these ta-
bles, it can be seen that the NIT system kept the low WERs
for all SUS tests. Especially, the ES1, ES3, and MS1 systems
achieved the best WERs in all participants. The MGE train-
ing and MGELR adaptation seem to work well. Although the
Blizzard Challenge rules allow participants to add pronuncia-
tions for out-of-vocabulary words found in the test set to their
lexicon, we did not add them due to our limited human re-
sources. The NIT systems for Mandarin tasks kept high MOSs.
It seems that the labels given by organizers were fortunately
accurate. However, there are significant differences between
natural speech and all other systems from the point of view of
MOSs.

6. Conclusions
We described HMM-based speech synthesis system developed
at the Nagoya Institute of Technology (NIT) for Blizzard Chal-
lenge 2010. We built three HMM-based speech synthesis sys-
tems incorporating several state-of-the-art techniques, includ-
ing the STRAIGHT vocoder, the MGE training, the MGELR
based model adaptation, the Bayesian speech synthesis frame-
work, and the parameter generation algorithm considering GV.
The results of listening tests showed that our systems indicated
the better performance of intelligibility than most other systems.



Table 1: Experimental conditions.

Task Our method Lang Task Training data Sampling rate Spectrum features
EH1 MGE training Eng MOS & SUS 6.0 hours 16 kHz 39 mel-Cepstrum
EH2 Bayesian approach Eng MOS & SUS 1.5 hours 16 kHz 39 mel-Cepstrum
ES1 MGELR adaptation Eng MOS & SUS 0.1 hours 16 kHz 39 mel-LSP
ES2 MGE training Eng SUS with noise 6.0 hours 16 kHz 39 mel-Cepstrum
ES3 MGE training Eng MOS & SUS 6.0 hours 48 kHz 49 mel-Cepstrum
MH1 MGE training Chn MOS & SUS 8.3 hours 16 kHz 39 mel-Cepstrum
MH2 Bayesian approach Chn MOS & SUS 1.0 hours 16 kHz 39 mel-Cepstrum
MS1 MGELR adaptation Chn MOS & SUS 0.1 hours 16 kHz 39 mel-LSP
MS2 MGE training Chn SUS with noise 8.3 hours 16 kHz 39 mel-Cepstrum

Table 2: Naturalness (English).

Name EH1 EH2 ES1 ES3
NATURAL 4.8 4.8 4.8 4.9
BEST 4.2 3.9 3.1 3.9
WORST 1.4 1.7 1.6 2.2
NIT 2.8 2.9 2.5 2.0

Table 3: Similarity to original speaker (English).

Name EH1 EH2 ES1 ES3
NATURAL 4.8 4.8 4.8 4.4
BEST 4.2 3.5 2.8 3.8
WORST 1.6 1.7 1.6 2.1
NIT 2.7 2.7 2.1 2.2

Table 4: Word error rates for SUS test (English).

Name EH1 EH2 ES1 ES2 ES3
NATURAL 0.12 0.12 0.11 0.51 0.14
BEST 0.15 0.18 0.20 0.41 0.19
WORST 0.28 0.35 0.40 0.76 0.34
NIT 0.16 0.22 0.18 0.61 0.17
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