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Abstract
Lessac  Technologies  has  developed  a  technology  for 
concatenative speech synthesis based on a novel approach for 
describing  speech  in  which  expressivity,  voice  quality,  and 
speaking  style  are  fundamental.  The  main  aspect  of  our 
system is that instead of traditional phonetic symbols, we use 
a  much  more  fine-grained  and  richer  set  of  entities  called 
Lessemes to describe speech and to label units, which allow a 
richer  and  more  precise  characterization  of  speech  sounds. 
The front-end part of our synthesizer translates plain input text 
into  a  sequence  of  these  units  by  syntactic  parsing  and 
applying a set of rules developed from expertise.  We use a  
Bayesian  method  to  obtain  a  particular  trainable  mapping 
from linguistic and prosodic features encoded in the Lessemes 
to a trajectory in the acoustic parameter space. Unit selection 
consists of selecting the best candidate units from a data base 
to  match  them  to  the  target  trajectory,  while  minimizing 
discontinuities between them. 
Index Terms: speech synthesis, Blizzard Challenge, Lesseme.

1. Introduction
This is our second entry to the Blizzard Challenge. For 2011 , 
Lessac  Technologies  provided  the  “Nancy”  data  base  of 
recordings and associated data to the community as the basis 
of the 2011 Challenge. The “Nancy” voice corpus consists of 
16  hours  of  high  quality  recordings  of  natural  expressive 
human  speech  made  in  an  anechoic  chamber  at  a  96K 
sampling rate during 2007 and 2008. 

One  of  our  intentions  in  making  this  “Nancy”  voice 
corpus available to the research community, was to find out to 
what extent our approach to speech synthesis has advantages 
over others, and to confirm that the advantages are not just  
attributable to our approach or a particular voice model. For 
the Blizzard submission we did not specifically build a new 
model; we used our standard approach to synthesize the test 
data. 

Section  2  provides  a  description  of  our  text-to-speech 
system. Section 3 explains the Lessac process of building the 
“Nancy” voice. In the first half of Section 3, we explain the 
approach we used in  developing  the pre-cursor  elements  of 
building  a  synthesizer,  such  as  prompts,  pitch-marks,  and 
phonetic labels. These elements of the “Nancy” voice corpus 
were made available to each Blizzard Challenge 2011 entrant.  
In the second half of Section 3, we outline how we used the 
data  available  in  the  “Nancy”  voice  corpus  to  build  our 
complete  Lessac  text-to-speech  synthesis  system.  Results 
from the listening test and related discussion can be found in 
Section 4. 

2. Lessac Technologies Text-to-Speech 
System

Similar to other systems, Lessac Technologies text-to-speech 
system consists of two main components: the front-end, which 
takes plain text as input and outputs a sequence of graphic 
symbols, and the back-end, which takes the graphic symbols 
as  input  to  produce  synthesized  speech  as  output.  In  what 
follows, we briefly discuss the properties that distinguish our 
system from others and, we believe, play an important role in 
producing expressive synthesized speech.

2.1. Use of Lessemes

Successful production of natural sounding synthesized speech 
requires  developing  a  sufficiently  accurate  symbolic  set  of 
sound representations that can be derived from the input text, 
and  that  relate  the  input  text  to  be  pronounced  with  the 
corresponding synthesized speech utterances that are heard by 
the  listener.  Rather  than  adopting  traditional  symbolic 
representations,  such as IPA, SAMPA, or ARPAbet,  Lessac 
Technologies  has  derived  an  extended  set  of  symbolic 
representations  called  Lessemes  from  the  phonosensory 
symbol  set  for  expressive  speech  as  conceived  by  Arthur 
Lessac [1]. The Lesseme system for annotating text explicitly 
captures the musicality of speech,  and from the start avoids 
the artificial separation of prosodic and linguistic features of 
speech. 

In their basic form and meaning, Lessemes are symbolic 
representations  that  carry  in  their  base  form  segmental 
information just like traditional symbolic representations. To 
be able to describe speech more accurately and to include in 
the  symbol  set  information  that  is  not  carried  by  a  typical 
phonetic  symbol,  each base Lesseme can be sub-typed into 
several more specific symbols which then represent phonetic 
information  found  in  traditional  phonetic  symbols  plus 
descriptors  for  co-articulation  and  suprasegmental 
information. Acoustic data demonstrate different properties of 
a  set  of  Lessemes which are  normally  collapsed  under  one 
phonetic label in other systems [2].

For General American English, with the present Lesseme 
specification,  there  can  be  as  many  as  1,500  different 
Lessemes.  Compared  to  other  sets  of  representations  which 
usually contain about 50 symbols, Lessemes allow more fine-
grained distinction of  sounds.  Units  of  the same type share 
closely similar acoustic properties. By having suprasegmental 
information  directly  encoded  in  Lessemes,  we  believe  our 
system can target available units for concatenation better than 
a system with a relatively impoverished intonation annotation 
scheme.  This  should  be  useful  especially  when  trying  to 
produce expressive speech from a very large database.



2.2. Front-end with extensive linguistic knowledge

The front-end which derives Lessemes from plain text input is 
a rules-based system. The rules are based on expert linguistic 
knowledge from a wide variety of fields including phonetics, 
phonology,  morphology,  syntax,  light  semantics,  and 
discourse.  Simplistically,  the  Lessac  front-end  labels  text, 
building  from,  at  the  lowest  level,  letters,  spaces  and 
punctuation  marks.  These  letters,  spaces  and  punctuation 
marks  are  interpreted  by  the  front-end,  and  assembled  as 
syllables,  words,  phrases,  sentences,  and  paragraphs  to  be 
spoken, along with context-aware labeling for appropriate co-
articulations, intonation, inflection, and prosodic breaks.

First,  the  input  text  is  processed  by  a  syntactic  parser 
which  generates  the  most  likely  syntactic  tree  for  each 
sentence,  and  tags  words  with  part-of-speech  (POS) 
information. In the next step, words are transcribed by use of a 
pronunciation dictionary into base Lessemes accompanied by 
lexical stress. Homograph disambiguation based on POS tags 
takes place at this step. Subsequent processing steps modify 
the base Lessemes by making successive decisions based on 
the  overall  phrase  and  sentence  structure.  In  particular, 
prosodic breaks are inserted in meaningful places by taking 
into consideration factors such as punctuation, phrase length, 
syntactic  constituency,  and  balance.  In  most  phrases,  an 
operative  word  is  marked  which  carries  the  highest  pitch 
prominence  within  the  phrase.  In  addition,  Lessemes  are 
assigned  inflection  profiles  and  one  of  two  degrees  of 
emphasis.  Context-based  co-articulations  across  word 
boundaries are also captured. The result is a full Lesseme for 
each sound which encodes expressive intonational content in 
addition  to  segmental  information  found  in  traditional 
phonetic symbols. 

The  front-end  process  is  able  to  develop  a  complete 
Lesseme label stream with plain normally punctuated text as 
the sole input. This Lesseme stream is delivered to the signal 
processing back-end.

Lessac  made  the  output  of  this  front-end  process 
available to other entrants.

2.3. Voice database construction

In addition to the machine readable form used as the input to 
the  signal  processing  back-end,  Lessemes  are  also  used  in 
creating  new  voices,  namely  to  automatically  generate  a 
human readable graphic output stream which can be thought 
of  as  annotated  text  plus  a  musical  score,  as  illustrated  in 
figure 1.

      Figure 1: Lessac Technologies annotated text

In  the  annotation,  vowel  orthographic  forms  are 
designated  with  Arthur  Lessec’s  phonosensory  symbols. 
Consonant  orthographic  forms are  marked with information 
indicating  whether  the  consonant  is  sustainable  (double 
underlined) or percussive, i.e. pronounced with a brief contact 
within  the  mouth  (single  underlined),  as  well  as  how  the 
consonant  is  linked to the next  sound in connected speech. 
The musical score on top of the orthographic forms depicts 
notes  which  represents  the  intonation  pattern  that  a  person 
with  sufficient  voice  training  can  follow.  Each  syllable 

corresponds  to  a  note.  Higher  notes  are  pronounced  with 
higher pitch. Large notes define stressed syllables while small 
notes  refer  to  unstressed  syllables.  Some  notes  are  further 
specified with an inflection, which reflects a particular shape 
of pitch movement within the syllable.

During the voice database construction,  the text  to-be-
recorded  is  first  processed  by  the  front-end,  yielding  the 
stream of Lessemes. The resulting stream is then transformed 
into a human readable form, as seen in figure 1, which we use 
as the combined script and score for the trained voice talent 
during the recordings.  The way the voice talent  records the 
prompts is controlled by the annotated text and musical score. 
The recordings of the prompts are then segmented and labeled 
with the same Lessemes that underlie the script and score that 
the voice talent followed. The fact that the same Lessemes are 
output for the voice talent script as well as the labeling of the 
database creates a direct link between each speech snippet and 
its  Lesseme  label,  thus  a  high  degree  of  correspondence 
between the symbols and the sounds as actually recorded by 
the  voice  talent.  Such  high  degree  of  symbol-to-sound 
correspondence is not guaranteed in the typical voice database 
construction, where the voice talent sees only plain text and 
the  subsequent  recordings  are  labeled  with  the  symbols 
generated  by  the  front-end.  We  make  use  of  this 
correspondence  in  the  unit  selection  process  by  evaluating 
units  in  the  data  base  according  to  the  context  dependent 
linguistic and prosodic features, in order to preselect a subset 
of  unit  candidates,  which  are  then  evaluated  by  the  model 
described in the following. 

2.4. Hierarchical  Mixture  of  Experts  for  mapping 
linguistic features to acoustic parameters 

To  enhance  methods  for  target  cost  calculation  and  unit 
selection,  we  apply  the  Hierarchical  Mixture  of  Experts 
(HME) model [3] [4] to learn the parameters of a statistical  
model of the relationship between the Lesseme representation 
of  the  input  text  and  the  ideal  acoustic  observables  in  the 
recordings.

A functional  diagram of  the  HME model  is  shown in 
figure 2.

        Figure 2: Hierarchical Mixture of Experts model.
     (E: experts, G: gates, x: input, y: output)

The  HME  model  applied  to  the  problem  of  mapping 
prosodic  features  to  acoustic  observables  makes  use  of  the 
interpretation  of  the  model  as  a  parameterized  mixture  of 
Gaussians.  Each  expert  in  the  model  represents  one  multi-
dimensional  normal  distribution  with a  variable  expectation 
vector that depends on the input x. The parameters for each 
expert also include a full covariance matrix that is estimated 
and updated during the training. Each block of experts in a 



group or clique (Figure 2 shows 3 experts in each of 2 cliques)  
together  with  a  gating  network  represent  one  mixture  of 
Gaussians whereby the mixture coefficients are computed in 
the gates as a function of the input. Multiple groups of experts 
can  be  combined  by  another  gate  in  a  similar  way.  The 
complete  network represents  a  mixture  of Gaussians whose 
parameters are trained from pairs of known input and output. 
During the learning process, the parameters in the experts and 
gates  are  adjusted  so  that,  for  a  given  known input  x,  the 
probability  of  obtaining  the  desired  known  output  y  is 
maximized over all available data.

In  our  application  of  the  HME  model,  the  input  x 
includes the linguistic and prosodic features and the output y 
are acoustic observables, which include MFCC's, F0, duration, 
and  intensity,  mostly  the  same  type  of  parameters  used  in 
database segmentation, see below. The model is applied and 
trained  as  a  recurrent  system,  which  means  that  the 
predictions  of  acoustic  observables,  y[n],  for  one  sound at 
time  index  n  are  included  in  the  input  x[n+1]  for  the 
prediction of the next y[n+1].

We use supervised learning with the HME model to map 
linguistic  feature  sequences  to  a  trajectory  in  the  acoustic 
parameter space, which is represented by via points and for 
some of the parameters their velocity or rate of change. The 
structure of the model is shown in figure 3. The system steps 
through  a  sequence  of  Lessemes  and  predicts  for  each 
Lesseme the  vector  of  acoustic  parameters  that  specify  the 
unit,  whereby the input to the model consists of the feature 
information  of  the  previous,  the  current  and  the  next  two 
Lessemes. Further, by feeding back the previously predicted 
acoustic parameter vectors as input to the model, the model 
becomes partially auto-regressive. This facilitates the learning 
task because the model only has to learn to predict the current 
acoustic vector conditioned on the last two acoustic vectors 
and  the  input  linguistic  features.  Learning  proceeds  in  two 
phases. Initially, the looped-back input to the model consists 
of  the  actual  acoustic  vectors  until  the  model  begins  to 
converge.  Then,  training  is  continued  by  having  the 
predictions for the last two time slots become inputs for the 
prediction of the current time slot. Learning then proceeds by 
repeatedly  processing  a  large  number  of  sentences  in  the 
database, until the error variance can not be lowered further.

  Figure 3: Recurrent and partially auto-regressive prediction  
    of intonation contour and other acoustic targets by HME

During the target cost calculation process, we compute 
the  cost  as  the  distance  of  the  acoustic  parameters  of  a 
candidate  unit  from  the  ideal  trajectory,  which  is  in  turn 
directly  predicted from the linguistic  feature  variables.  This 
distance  measure  makes  use  of  the  predicted  mixture 
covariance matrix which is obtained by combining the experts' 
covariances according to the gating weights, see Figure 2. To 
reduce processing time, we reduce the number of candidates 
first by applying a rapid search with binary patterns generated 
from some of the features, and then compute the exact target 
cost for a smaller subset of close candidates. Since the HME 
provides  the  parameters  of  a  probability  density  in  the 
acoustic  parameter  space,  we  compute  for  the  remaining 

candidates their probability under this distribution and use as 
target  cost  a  penalty  that  is  proportional  to  the  negative 
logarithm of the candidates' probability. 

Using the Lesseme representation of speech sounds, the 
output of the front-end results in a large number of features, 
which is augmented further by bundling neighboring features 
as  shown in  the  figure  3.  The  HME model  overcomes  the 
sparsity  problem in the data  base by mapping the Lesseme 
features and context onto the acoustic  parameter  space as a 
target trajectory. At the same time it automatically provides a 
variable  metric  near the target  trajectory,  against  which the 
candidates in the data base are matched during unit-selection. 

3. Building 'Nancy' Voice
For the Blizzard Challenge 2011 we did not need to build a 
new  voice,  since  we  provided  our  already  existing  voice 
database to all participants. The following describes the steps 
that were taken earlier to create this voice.

3.1. Transcription to Lessemes

The speaker, Nancy Krebs, is a professional voice teacher and 
instructor for voice acting with the Lessac Institute. She was 
actively involved in the methodological layout and design for 
the symbolic system later developed by Lessac Technologies, 
which  is  closely  related  to  the  pictorial  method  of  speech 
annotation  shown  in  an  example  in  Figure  1.  Lessac 
Technologies  then  developed  a  computational  method  that 
allows  us  to  generate  automatically  from arbitrary  text  the 
sequence of Lessemes that can then be presented in a form as 
shown in Figure 1 to the voice actor, while at the same time it  
provides the input information for the synthesizer's back-end.  

For  the  segmentation  of  the original  recordings in  order  to 
create the voice data base, the large number of Lessemes is 
usually a disadvantage because the number of possible states 
in  an  HMM  based  segmentation,  as  used  in  the  festvox 
toolbox,  is  much  larger  than  for  a  system  based  on  a 
traditional phoneme set. To circumvent this sparsity problem 
we made use of the hierarchical organization of the Lessemes; 
each Lesseme label can be fully or partially collapsed into a 
much smaller number of less fully described Lesseme labels, 
with base Lessemes,  similar  to phonemes,  being the lowest 
level. We can then train an HMM model using this collapsed 
inventory of symbols, and later refine both the HMM model 
and the segmentation by including more information into the 
HMM models. 

Regarding the dictionary, we used an American English 
pronunciation  dictionary  to  transcribe  the  words  into 
Lessemes. 

The acoustic features used for segmentation and similarly 
for  the  training  of  the  HME  model,  were  12  MCEPS 
coefficients  and  their  rates  of  change,  together  with  F0, 
intensity,  and  zero  crossing  rates,  but  reduced  to  a  lower 
dimensional representation by principal component analysis. 
The EHMM model in speech tools was used, with some minor 
modifications for processing the segmentation. 

3.2. Pitch-Marking

Since it was the weakest point of our technology as presented 
in the last Blizzard Challenge, we put a significant portion of 
our recent effort into better pitch-marking and concatenation 
methods.  We have observed that minimal  pitch mismatches 
can  cause  noticeable  synthesis  artifacts.  These  artifacts  can 
often be minimized by adjusting pitch around the join point to 
meet at the mean pitch of the ends of the units to be joined.

Herein is a dilemma: If the specific pitch marks are not 
accurate, then we can assume the adjustment of pitch will also 
be  inaccurate.  Experimentation  has  found  that  pitch 
synchronous  techniques  using  a  more  robust  pitch  marking 



technique yield very satisfactory results and reduce synthesis 
artifacts. 

Instead of using pitch marks generated by Praat we are 
now using techniques developed by Mike Baumgartner, one 
of  the authors.  The system we used for Blizzard 2011 is  a 
parameter driven system which relies on an expert adjusting 
the parameters to obtain the statistically best performance for 
a given voice talent. It relies on analyzing the signal to place  
pitch markers within specifiable probability boundaries of the 
most likely place of glottal closure. This is also a requirement  
for our new concatenation method which is implemented as a 
completely  separate  module  and  can  in  principle  run  on  a 
separate server. 

The pitch-marking program uses two checks to determine 
pitch.  The  first  is  a  modified  cross  correlation.  This  cross 
correlation is performed several times with stepped window 
sizes that are limited to the pitch range of the voice talent. The 
best  cross  correlation  performance  obtained  provides  pitch 
prediction  by  the  window  size  of  the  best  performance. 
Another robust technique of pitch determination is the product 
of (vectors) of the frequency bins of the DFT of a windowed 
speech  segment.  The  bins  are  multiplied  cumulatively  in 
increments of n = 1, 2, 3, etc. Only half of the DFT frequency 
bins are used, what is left over is zero padded. If the speech 
signal  is  periodic,  a  nice  peak  corresponding  to  the  first 
harmonic  appears  in  the  cumulative  product,  the  peak  is 
formed by the product of energy of the 1st, 2nd, 3rd harmonic 
etc.  The  performance  of  these  two  techniques  tend  to 
complement  each other. When results are not in agreement, 
this is a good indication of unvoiced segments. 

Once  the  pitch  is  determined,  then  the  glottal  closure 
instant is estimated. The current estimation is an elementary 
one. The speech signal has a higher slew rate after the glottal 
closure instant. A moving window is used for a segment of 
speech.  Using the pitch  of  the  signal  to  determine  window 
size, the window is used in halves. The sum of the differences 
in the samples in the right half is divided by the sum of the 
differences  in  the left  half.  This  gives  a  rough peak and  a 
starting point for finding glottal closures. The speech signal is 
window averaged to low pass the signal (window size is one 
of  the  parameters).  This  removes  the  higher  formant 
frequencies that would give several zero crossings. 

We  are  currently  completing  the  work  for  a  fully 
automatic  pitch-marking  method  by  an  innovative  use  of 
neural  network machine learning techniques to successively 
calculate  and  weight  pitch-marking  parameters  at  several 
levels of abstraction.  This has proven to further improve pitch 
marking,  and  will  be  used  for  our  Blizzard  2012 
demonstration. 

3.3. Database creation

As our labeling and metrics for prosodic structure are different 
from methods  presently  used;  we modified  Festival  feature 
functions to produce relevant  linguistic  features at  segment, 
syllable, word, and phrase levels based on the Lessemes and 
prosodic breaks that the front-end provides as output. The end 
time  of  each  unit  came  from  the  label  files  produced  by 
automatic  segmentation.  Our  segmentation  procedures  are 
based on a slightly modified version of the EHMM software 
that is part of speech tools and Festvox. Acoustic parameters 
were  computed  for  each  prompt,  and  a  dimensionality 
reduction was obtained by principal component analysis. The 
resulting  set  of  parameters  were  then  used  in  building  the 
HMM model for segmentation. For building the catalogue, all 
the linguistic features coming from the front-end analysis and 
the acoustic parameters were collected into a binary catalog 
file,  which was then used to train the HME model off-line.  
The same binary catalogue is called by the synthesizer during 
run-time. 

3.4. Synthesizer

While Lessemes help narrow the pool of candidates for unit 
selection  and  enable  more  precise  targeting,  labeling  units 
with Lessemes can lead to the problem of non-existing or a 
sparse  number of  units  of  particular  labels  in  the  database, 
especially  in  a  small  database.  We handle  this  problem by 
incorporating  a  set  of  fail-over  rules.  Whenever  the  target 
Lesseme has a very limited number of or even no matching 
candidates in the database, the fail-over rules look for closely 
matched Lessemes, e.g.,  those with a different  inflection or 
pitch level, to include among the candidates for the target and 
join  cost  calculations.  The  target  cost  is  computed  as  a 
weighted  distance  to  the  acoustic  target  trajectory  that  is 
generated  by  the  HME  model.  The  target  penalty  cost  is 
derived from a logarithmic probability that can be computed 
for each candidate using the parameters provided by the HME 
model, namely target acoustic feature vector and covariances. 

Similar  to  Kominek  [5],  our  join  cost  calculation 
discourages joins between sonorant sounds. The join penalty 
varies depending on the types of sonorants being joined. For 
example, the join between two vowels gets a higher penalty 
than the join between a vowel and an onset lateral sound. We 
also  make  use  of  the  HME  output,  namely  the  variance 
information, to modulate the spectral weights used in the join 
cost computation. 

 3.4 Concatenation 
After the best units are selected,  they are concatenated 

together in a process that works entirely in the time-domain. 
For this we are no longer using Festival  but instead built  a 
separate  module which receives  only the information  about 
the  units  to  be  concatenated.  The  concatenation  of  voiced 
sounds  is  done  pitch  synchronously,  and  some  mutual 
adjustments of two sounds that are concatenated are made to 
increase the coherence and to reduce clicks and warbles. F0 
modifications and also duration modifications are also done 
independently of Festival in the concatenation module, using 
information  that  is  transmitted to  the concatenation  module 
from the HME model. 

4. Results and Discussion
Twelve systems participated in the EH1 task (building a voice 
from the full dataset). In addition, the original speaker’s voice 
was evaluated  as a benchmark,  or pseudo thirteenth system 
(system A). During the online evaluation of the task, listeners 
were asked (i) to judge how similar a system is to the original 
speaker,  (ii)  to  provide  mean  opinion  scores  (MOS) 
representing how natural or unnatural the utterances from the 
news and novel domains sound, (iii)  to transcribe addresses 
read  by  the  synthesizer,  and  (iv)  to  listen  to  synthesized 
semantically  unpredictable  sentences  (SUS)  and  transcribe 
what  they  heard.  The  listeners  included  paid  participants, 
volunteers,  speech  experts,  native  and  non-native  English 
speakers. Results for our system in comparison with standard 
Festival  unit-selection  systems  and  others  are  presented 
below.

4.1. Naturalness and similarity to original speaker

A 5-point  mean opinion scale  (MOS) was used to evaluate 
both how natural synthesized speech sounds, and how similar 
synthesized speech sounds to the original voice. With respect 
to naturalness of our synthesized speech, Lessac Technologies 
(system E) received a mean MOS score of 3.3 for all data and 
a median of 3. 



For similarity  to  the  original  speaker,  we  received  a  mean 
score  of  3.1  and  median  of  3.  Overall  we  were  ranked  in 
second place, based on pairwise Wilcoxon signed rank tests. 
One  system  (system  G)  ranked  higher  on  a  statistically 
significant basis than our system and all others. 

4.2. Word error rates

The increased expressiveness of the “Nancy” database in 2011 
vs. the “RJS” databases in 2010 led to higher overall  word 
error rates for most systems, as exemplified by the lower word 
error rate accuracy of the natural voice, that is,  the original 
speaker reading “nonsense” sentences. The mean error rate for 
the natural voice (system A) was 17% this year versus 12% in 
last year's SUS test. 

Despite  the  increased  difficulty,  our  word  error  rate 
improved. For reading addresses, our median word error rate 
was  10.5%  and  the  mean  error  rate  was  15%.  For  the 
semantically  unpredictable  sentences  (SUS)  we  received  a 
median error rate of 14% and a mean rate of 22%. Overall,  
our median word error rate was 12.5%, and the median error  
rate  was  19%.   All  of  these  scores  are  a  significant 
improvement over our system's performance last year. 

The  Wilcoxon  signed  rank  test  resulted  in  little 
information that would give a significant rank ordering of the 
different systems. Based on the Wilcoxon signed rank test, our 
word error  rate  is  worse than  natural  recorded  speech,  and 
comparable to the other systems (worse than none, and better 
than only one to  a  statistically  significant  degree).  In other 
words, for nonsense sentences our system gets by with similar 
word recognition rates as most other systems. 

5. Conclusions
We  have  made  good  progress  in  producing  near  natural 
sounding  synthesized  human  speech  highly  similar  to  the 
original  speaker.  We attribute  much of  this  progress to our 
recent  improvements  in  the  signal  processing  used  for 
concatenation, which we indicated as our weakest point after 
last year's competition.

The overall performance of our system as one of the best  
in the Blizzard Challenge (2nd,,  closely followed by another 
system) gives us some confidence in support of our general 
strategy to try to represent and capture in the synthesis model 
idiosyncratic  properties  of  the  original  voice  that  are  not 

directly  represented  by  known  explicit  models.  For  the 
symbolic representation of speech sounds for synthesis we use 
a novel method that is a departure from traditional phonetics 
by  introducing  Lessemes,  which  carry  both  segmental  and 
suprasegmental  information  and  allow for  much  more  fine 
grained tagging of speech. This tagging process is done fully 
automatically,  starting  from  plain  text.  Accordingly,  the 
processing done by the front-end results in a very rich stream 
of features that are encoded with the speech samples in the 
database.  We use methods  of  machine  learning  to  create  a 
sufficiently comprehensive model of the voice without having 
to  make  too  many  assumptions  about  the  nature  of  the 
relationship  between  acoustic  parameters  and  perceived 
prosody. 

Our hope is to demonstrate  that  since all  of our voice 
building processes are fully automatic, and we do not rely on 
any  manual  pitch-marking,  segmentation  or  labeling 
processes,  Lessac  techniques  can  be used to  build  multiple 
near natural human sounding synthetic voices quickly.

Participating in the Blizzard Challenge has proven very 
helpful  for  us  in  guiding  further  improvements  of  our 
technologies. 
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