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Abstract
This paper describes a hidden Markov model (HMM) based
speech synthesis system developed for the Blizzard Challenge
2012. In the Blizzard Challenge 2012, we focused on a design
of contexts for using audio books as training data and duration
modeling of silence between sentences for synthesizing para-
graphs. It is well known that contextual factors affect speech.
We use extended contexts for using audio books to construct
appropriate model parameter tying structures. In addition, du-
ration models of silence between sentences are created to syn-
thesize more natural speech because connections between sen-
tences are important for synthesizing paragraphs. Subjective
evaluation results show that the system synthesized the high in-
telligible speech.
Index Terms: speech synthesis, hidden Markov model, context
clustering

1. Introduction
A statistical parametric speech synthesis system based on hid-
den Markov models (HMMs) was recently developed. In
HMM-based speech synthesis, the spectrum, excitation, and du-
ration of speech are simultaneously modeled by HMMs, and
speech parameter sequences are generated from the HMMs
themselves [1]. Compared to other synthesis methods, this
method has several advantages, 1) under its statistical training
framework, it can learn statistical properties of speakers, speak-
ing styles [2], emotions [3], etc, from the speech corpus; 2)
many techniques developed for HMM-based speech recognition
can be applied to speech synthesis [4, 5]; 3) voice characteris-
tics of synthesized speech can be easily controlled by modifying
acoustic statistics of HMMs [6, 7].

It is well known that contextual factors affect speech.
Therefore, context-dependent acoustic models [8, 9] are widely
used in HMM-based speech synthesis. Although a large number
of context-dependent acoustic models can capture variations in
speech data, too many model parameters lead to the over-fitting
problem. Consequently, maintaining a good balance between
model complexity and the amount of training data is very im-
portant for obtaining high generalization performance. The de-
cision tree based context clustering [10] is an efficient method
for dealing with the problem of data sparseness, for both es-
timating robust model parameters of context-dependent acous-
tic models and obtaining predictive distributions of unseen con-
texts. In HMM-based speech synthesis, the minimum descrip-
tion length (MDL) criterion is widely used as the criterion for
model selection [11], and the context clustering was separately
applied to distributions of the spectrum, F0, aperiodicity mea-
sures, and state duration.

In this context clustering, questions about contexts are pre-

pared beforehand and the model parameter tying structures are
constructed by using these questions. Thus, the constructed
state tying structures are strongly affected by questions about
contexts. In conventional HMM-based speech synthesis, only
contextual factors considering sentences are used for construct-
ing the tying structures because speech data segmented into sen-
tences is used. However, questions about only the such contexts
would not be able to construct appropriate tying structures in
using consecutive utterances such as audio books as training
data. Furthermore, various reading styles are included in audio
books because speaker read emphatically, emotionally, and so
on. Contextual factors about such various reading styles would
affect acoustic features. We use extended contexts for audio
books and construct more appropriate tying structures to syn-
thesize more natural speech.

In addition, duration models of silence for consecutive ut-
terances such as a paragraph are created. Conventional HMM-
based speech synthesis systems assume only synthesis for a sen-
tence. However, synthesis of consecutive utterances is neces-
sary for synthesizing expressive speech. Although consecutive
utterances as training data is necessary for synthesizing para-
graphs, because speech data segmented into sentences is usually
used. Duration modeling of silence between sentences is one of
the problems for synthesizing paragraphs. Silence durations be-
tween sentences are not modeled in conventional HMM-based
speech synthesis system, though silence durations of the be-
gininng and end of a utterance are modeled. Thus, appropriate
silent length between sentences can not be estimated in synthe-
sizing paragraphs and synthesized speech would be unnatural.
To solve this problem, duration models of silence between sen-
tences are created.

The rest of this paper is organized as follows. Section 2
describes our base speech synthesis system. Section 3 and 4
introduce new features of our system for the Blizzard Challenge
2012. Subjective listening test results are presented in Section 5.
Concluding remarks and future work are presented in the final
section.

2. Base system
2.1. HMM-based speech synthesis system

Figure 1 overviews a HMM-based speech synthesis system. It
consists of training and synthesis parts.

The training part is similar to that used in speech recog-
nition. The main difference is that both spectrum (e.g., mel-
cepstral coefficients and their dynamic features) and excitation
(e.g., log F0 and its dynamic features) parameters are extracted
from a speech database and modeled by HMMs. Although the
spectrum part can be modeled by continuous HMM, the F0

part cannot be modeled by continuous or discrete HMM be-



Training HMM Training part

Spectral parametersExcitation parameters

Spectral parametersExcitation parameters

Synthesis part

Waveform

Input text

Text analysis

Synthesized speech

Context-dependent
label sequence

Context-dependent
label sequences

Context-dependent
HMMs

Parameter
generation

Speech

database

Synthesis

filter
Excitation

generation

Spectral

analysis

Excitation

extraction

Figure 1: Overview of HMM-based speech synthesis system.

cause the observation sequence of F0 is composed of a one-
dimensional continuous value and discrete symbol which rep-
resents unvoiced. To model such observation sequence, multi-
space probability distributions (MSDs) [12] are used for state-
output distributions.

The synthesis part does the inverse operation of speech
recognition. First, an arbitrarily given text to be synthesized
is converted to a context-dependent label sequence, and then
a sentence HMM is constructed by concatenating the context-
dependent HMMs according to the label sequence. Second,
state durations of the sentence HMM are determined based on
the state-duration distributions. Third, the speech parameter
generation algorithm generates sequences of spectral and exci-
tation parameters that maximize their output probabilities under
the constraints between static and dynamic features [13]. Fi-
nally, a speech waveform is synthesized directly from the gener-
ated spectral and excitation parameters using a speech synthesis
filter. The most attractive part of this system is that voice char-
acteristics, speaking styles, or emotions can easily be modified
by transforming HMM parameters using various techniques,
such as adaptation [5], interpolation [14], or eigenvoices [15].

2.2. Hidden semi-Markov model

In HMM-based speech synthesis, rhythm and tempo are con-
trolled by state duration probability distributions. One of ma-
jor limitations of HMMs is that they do not provide an ade-
quate representation of the temporal structure of speech. This
is because state duration probabilities decrease exponentially
with time. To overcome this problem, the hidden semi-Markov
model (HSMM) based speech synthesis framework [4] was
used in our system. This framework introduces an HSMM,
which is an HMM with explicit state duration probability distri-
butions, into not only the synthesis part but also the training part
of the HMM-based speech synthesis system. It makes possible
to estimate state output and duration probability distributions si-
multaneously. The effectiveness of the HSMM-based approach
has been reported in [4].

2.3. STRAIGHT vocoding

As a high-quality speech vocoding method, we use STRAIGHT,
which is a vocoder type algorithm proposed by Kawahara et
al. [16]. It consists of three main components; F0 extraction,
spectral and aperiodic analysis, and speech synthesis.

It is well known that extracting F0 is difficult task because
F0 includes various errors. In this paper, F0 used for acoustic
features is created by filtering F0 extracted from a number of F0

extractor with a median filter. Since estimating voice or unvoice
is necessary for extracting F0, voice or unvoice is determined by
the number of voice and unvoice candidates in a filter and only
voice candidates are filtered with median filter to determine F0

values in voice regions. We used 3 F0 extractor STRAIGHT
[16], RAPT [17], and SWIPE [18]. Filter length is 5 frame of
current frame and 2 front and back frames in total.

Using the extracted F0, we use the STRAIGHT method to
perform pitch-adaptive spectral analysis combined with a sur-
face reconstruction method in the time-frequency domain to re-
move signal periodicity. As a spectral parameter, we use the 0th
through 49th mel-cepstral coefficients to which the smoothed
spectrum analyzed by the STRAIGHT is converted. An aperi-
odicity measure in the frequency domain [19] is also extracted.

2.4. Parameter generation algorithm considering global
variance

The HMM-based speech synthesis method generates speech pa-
rameters from the HMMs directly, so that an output probabil-
ity of the parameter is maximized under a constraint on an ex-
plicit relationship between static and dynamic features. Conse-
quently, a smoothed parameter trajectory is generated but it is
excessively smoothed due to the statistical processing. There-
fore, the synthesized speech using over-smoothed parameters
sounds muffled. To reduce this effect, we applied a parameter
generation algorithm considering global variance (GV) of the
generated parameters [20] to both spectral and F0 parameter
generation processes.

One GV is calculated from a parameter sequence over the
entire of one utterance. It should be noted that only voiced
frames are used for calculating GV of F0 parameters. The
probability density on GV is modeled using a Gaussian distri-
bution with a diagonal covariance matrix. In parameter gener-
ation, first a parameter trajectory is generated with the speech
parameter generation algorithm. Then, the generated trajectory
is converted, so that its GV is equal to a mean of the Gaus-
sian distribution. Using this converted trajectory as an initial
value, the parameter trajectory is calculated iteratively to max-
imize a likelihood function with the Newton-Raphson method.
This likelihood function consists of the output probability of the
parameter sequence and that of its GV.

In order to improve the estimation accuracy of GV mod-
els, we use the GV features calculated from only speech region
excluding silence and pause regions and estimate the context-
dependent GV models instead of a single global GV model.
The silence and pause regions are determined by the automatic
phone aligner using HSMMs [21] included in the latest HTS.

The context-dependent GV models are tied by the decision-
tree based context clustering method in a similar way to acoustic
model parameter tying. The number of leaf nodes of the deci-
sion trees is automatically determined by the minimum descrip-
tion length (MDL) criterion [11]. In this paper, to simplify the
implementation, only sentence-level contextual features (e.g.,
number of phonemes in a sentence) were used.



3. Design of contexts for audio books
Speech parameters such as spectrum, excitation, and duration
depend on a variety of contextual factors such as phoneme iden-
tities, accent, parts-of-speech, etc. In the HMM-based speech
synthesis system, context dependent models are generally used
to capture these contextual factors. If combinations of these
contextual factors are taken into account, we can obtain more
accurate models. However, as the number of contextual factors
increases, the number of possible combinations also increases
exponentially. It is difficult to robustly estimate model parame-
ters due to the lack of the training data. Furthermore, it is im-
possible to cover every possible combinations of contextual fac-
tors for a finite set of the training data. Various parameter tying
techniques have been proposed to prevent this problem. A de-
cision tree based context clustering technique has been widely
used [11]. In this technique, top-down clustering is performed
to maximize the likelihood of model parameters with respect
to the training data by using questions about contexts. Then,
parameters of all states belonging to the same leaf node are
tied. Unseen models can be generated by traversing the deci-
sion trees.

In this context clustering, questions about contexts are pre-
pared beforehand and the model parameter tying structures are

Table 1: Contextual factors extracted from a sentence

the {phoneme before the previous, previous, current, next,
phoneme after the next} phoneme identity
position of the current {phoneme identity / syllable / word}
in the current {syllable / word, phrase / phrase}
whether the {previous, current, next} syllable
{stressed, accented}
the number of phonemes in the {previous, current, next}
syllable
the number of {stressed, accented} syllables {before, after}
the current syllable in the current phrase
the number of syllables from the previous
{stressed, accented} syllable to the current syllable
the number of syllables from the current syllable to the next
{stressed, accented} syllable
name of the vowel of the current syllable
guess part-of-speech of the {previous, current, next} word
the number of syllables in the {previous, current, next} word
the number of content words {before, after} the current
word in the current phrase
the number of words from the {previous content / current}
word to the {current / next content} word
the number of {syllables, words} in the {previous, current,
next} phrase
position of the current phrase in this utterance
TOBI endtone of the current phrase
the number of {syllables, words, phrases} in this utterance

Table 2: Additional contextual factors

book
the number of chapter
position of the paragraph in the chapter
the number of sentences between the double quotes
position of the sentence between the double quotes

Figure 2: How to create training data for silence duration mod-
els.

constructed by using these questions. Thus, the constructed
state tying structures are strongly affected by questions about
contexts. In conventional HMM-based speech synthesis, only
context factors considering sentences are used to construct ty-
ing structures. Table 1 shows the conventional context factors
considering sentences.

However, questions about only the such contexts would not
be able to construct appropriate tying structure in using au-
dio books as training data. Furthermore, various reading styles
are included in audio books because speaker read emphatically,
emotionally, and so on. Hence, we use extended contexts to
construct appropriate model parameter tying structures for au-
dio books as training data . Table 2 shows additional context
factors for audio books. There is a big amount of training data in
audio books , so acoustic features would be affected by context
factors about books, chapters, and paragraphs even if speaker
is the same. Furthermore, reading styles are affected by double
quotes because double quotes mean lines, emphasis, characters,
and so on. Since speeches in the double quotes are different
from normal speech, the appropriate tying structures would be
constructed with context factors about double quotes.

In synthesis phase, there are unclear context factors about
books, chapters, and paragraphs, so “no” is applied about ques-
tions for such contexts.

4. Duration models of silence between
sentences

Although consecutive utterances such as audio books as training
data is necessary for synthesizing paragraphs, modeling of such
consecutive utterances is difficult because speech data is seg-
mented into sentences in HMM-based speech synthesis. Dura-
tion modeling of silence between sentences is one of the prob-
lems for synthesizing paragraphs. Silence durations between
sentences are not modeled in conventional HMM-based speech
synthesis system, though silence durations of the begininng and
end of a utterance are modeled.

In this work, duration models of silence between sentences
are created using silence data connected the beginning and end
silence of a utterance front and back. Figure 2 shows that how
to create training data for duration models of silence between
sentences. The alignment information of silence regions is re-
quired for creating training data for duration models of silence.
The silence regions are determined by the HSMM-based auto-
matic phoneme aligner [21] included in the latest HTS. In train-
ing phase, HSMMs are trained using created silence data and
duration models of this HSMMs are used as duration models of
silence between sentences.

Figure 3 shows speech synthesis procedure using duration
models of silence between sentences. The procedure for syn-
thesis with duration models of silence between sentences is de-
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Figure 3: Speech synthesis procedure using estimated silent
length with silence duration models.

fined as follows. 1) Each sentence of a paragraph is synthe-
sized with conventional acoustic models. 2) Silence length of
the beginning and end of synthesized speech is compared with
estimated silence length with duration models of silence be-
tween sentences. 3) When silence length of synthesized speech
is shorter than estimated silence length with silence duration
models, silence between sentences is adjusted by interpolating
silence. Otherwize two synthesized speech are connected with-
out adjustment.

Duration models of silence between sentences would esti-
mates appropriate silence length and synthesized speech would
become more natural by interpolating silence.

5. Blizzard Challenge 2012 evaluation
We used 11,441 utterances, which were selected according
to the alignment likelihood from “A Tramp Abroad”, “The
Adventures of Tom Sawyer”, and “The Man that Corrupted
Hadleyburg”. Speech signals were sampled at a 44.1 kHz
rate and windowed by an F0-adaptive Gaussian window with
a 5 ms shift. Feature vectors comprised 303-dimensions: 49-
dimension STRAIGHT [16] mel-cepstral coefficients (plus the
zero-th coefficient), log F0, 49 band-filtered aperiodicity mea-
sures, and their dynamic and acceleration coefficients. We
used 5-state left-to-right context-dependent multi-stream MSD-
HSMMs [4, 12] without skip transitions as acoustic models.
Each state output probability distribution was composed of
spectrum, F0, and aperiodicity streams. The spectrum and ape-
riodicity stream was modeled by single multi-variate Gaussian
distributions with diagonal covariance matrices. The F0 stream
was modeled by a multi-space probability distribution consist-
ing of a Gaussian distribution for voiced frames and a discrete
distribution for unvoiced frames. Each state duration distribu-
tion was modeled by a one-dimensional Gaussian distribution.

In order to improve the estimation accuracy of GV models,
we used the GV features calculated from only speech region
excluding silence and pause regions and estimated the context-
dependent GV models instead of a single global GV model. The
decision tree-based context clustering technique was also ap-
plied to the context-dependent GV models. The decision tree
was automatically selected by the MDL criterion. In this sys-
tem, only sentence-level contextual features (e.g., number of

Figure 4: Results of MOS on naturalness of sentences.

phonemes in a sentence) were used.

5.1. Experimental results

To evaluate naturalness and similarity of sentences, 5-point
mean opinion score (MOS) tests were conducted. The scale
for the naturalness was 5 for “completely natural” and 1 for
“completely unnatural”. The scale for the similarity was 5 for
“sounds like exactly the same person” and 1 for “sounds like
a totally different person” compared to a few natural example
sentences from the reference speaker. To evaluate naturalness
of paragraphs, 60-point MOS tests were conducted (for exam-
ple “bad”=10 and “excellent”=50).

Figure 4 and 7 shows the evaluation results on naturalness
and similarity of sentences respectively. Figure 5 and 6 shows
the evaluation results on naturalness and naturalness of speech
pauses of paragraphs respectively. Figure 8 shows the evalua-
tion results on intelligibility.

In these figure, “A”, “B”, and “H” correspond as follows.

• A: Natural speech.

• B: A Festival benchmark system. This system is a stan-
dard unit-selection voice built using the same method as
used in the CSTR entry to Blizzard 2007.

• H: The 2012 NIT HMM-based speech synthesis system.

The results of listening tests showed that our system “H”
was worse than the benchmark unit-selection system “B” in nat-
uralness of speech and speaker similarity. However, in terms of
speech pauses of paragraphs our system “H” outperformed the
benchmark unit-selection system “B”.

In terms of intelligibility, our system “H” outperformed the
benchmark unit-selection system “B”. [22] also showed that a
HMM-based speech synthesis system was significantly more in-
telligible than a unit-selection based speech synthesis system.

These results indicate that our system “H” can generate the
high intelligible speech although the naturalness and speaker
similarity do not reach high enough levels. It seems that the
buzziness of speech cause these results. Therefore, we need to
improve the excitation model and feature extraction.



Figure 5: Results of MOS on naturalness of paragraphs.

Figure 6: Results of MOS on speech pauses of paragraphs.

6. Conclusions
We described HMM-based speech synthesis system developed
at the Nagoya Institute of Technology (NIT) for the Blizzard
Challenge 2012. we used extented contexts for using audio
books as training data to construct appropriate model param-
eter tying structures. In addition, duration models of silence
between sentences for estimating appropriate silence length be-
tween sentences were created. The results of listening tests
showed that that our system was worse than the benchmark unit-
selection system in naturalness of speech and speaker similarity.
However, in terms of speech pauses of paragraphs our system
“H” outperformed the benchmark unit-selection system “B”.

In terms of intelligibility, our system competed with natural
speech and outperformed the benchmark unit-selection system
although there was no significant difference. These results indi-
cate that our system can generate the high intelligible speech al-
though the naturalness and speaker similarity do not reach high
enough levels.

Figure 7: Results of MOS on speaker similarity.

Figure 8: Results of WER.
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