
1

The NTUT Blizzard Challenge 2013 Entry

Yuan-Fu Liao and Jiun-Yan Pan

Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
yfliao@ntut.edu.tw

Abstract
This paper describes our HMM-based speech synthesis system
(HTS) [1] submitted to Blizzard Challenge 2013 [2]. The
focus of this entry is to build a TTS without using any
provided information and speedup the training procedures by
parallel processing. In this system, the input text is tagged by
Stanford parser [3] and transformed into phone sequences by
Flite’s letter to sound module [4]. Then all utterances are
force-aligned using a phone recognizer trained using TIMIT [5]
corpus. To consider the relationship between neighboring
sentences, the linguistic features beyond sentence level are
extracted including the (1) number and forward and backward
positions of sentences in a paragraph and (2) punctuation
marks (PMs) of current and surrounding sentences. Moreover,
deterministic annealing expectation and maximization (DAEM)
[6] and minimum generation error (MGE) [7] criterions are
used to initialize and fine-tune the HTS models, respectively.

Index Terms: speech synthesis, HMM, HTS, audiobook

1 Introduction
This paper describes our HTS-based speech synthesis system
submitted to Blizzard Challenge 2013, the open evaluation
that compares the performance of different TTS systems with
a common speech database

Although, this is not our first English TTS, it is the first
one that was built all by ourselves without using any other
provided information (except utterance segmentation). In
our sytem, many open source toolkits including Stanford
parser (for part-of-speech (POS) tagging), Flite’s letter to
sound module (transform an sentence into phone sequences),
HTK (mono-phone recognizer) and HTS (for voice building)
were adopted.

Moreover, since the whole voice building procedure is
very time-consuming, some HTS and HTK commands were
executed in parallel to take the advantage of modem multi-
core CPUs training environment including (1) HCopy for
feature extraction, (2) HHEd for state clustering, (3) HERest
for context-dependent model training, and (4) HVite and
HSMMAlign for forced-alignment. The parallel processing
mechanism is implemented using modified Perl scripts (Perl’s
multi-threading feature) and a job queuing system (Sun Grid
Engine (SGE)).

In the following sections, the linguistic features extraction
frontend, the voice building backend and finally the evaluation
results will be described in more detail.

2 Linguistic Cue Extraction Frontend
Figure 1 shows the block diagram of the linguistic cue
extraction front-end. It has three major modules including (1)
a parser (POS tagging), (2) a letter to sound and (3) a phone
aligner. This frontend produces label files and feeds them to
the HTS-based voice building backend.

In the following sub-sections, some sub-modules of the
frontend and the question set for state clustering will be briefly
introduced.

Figure 1: The block diagram of the linguistic cues extraction
frontend.

2.1 POS tagging
Stanford NLP parser was adopted here to generate the POS tag
of each word in a sentence. The parser is a Java
implementation of probabilistic context-free grammars
(PCFGs) [8] parser that outputs in total 36 different POS tags.
The list of the POSs is as follows:

l "CC","CD","DT","EX","FW","IN","JJ","JJR","JJS","M

D","NN","NNP","NNPS","NNS","PDT","POS","PRP",
"PRP$","RB","RBR","RBS","RP","SYM","TO","UH",
"VB","VBD","VBG","VBN","VBP","VBZ","WDT","
WP","WP$", "WRB", “PM”

The detail explanation of the POS categories could be found in
[3] and a typical parsering result is shown as follows:

l She had two sisters to be benefited by her elevation;
l She/PRP had/VBD two/CD sisters/NNS to/TO be/VB

benefited/VBN by/IN her/PRP$ elevation/NN ;/PM

Moreover, PMs were further separated into 8 different tags
including “.”, “,”, “:”, “?”, “!”, “-”, “.--” and “..” in order to
keep the context relationship between neighboring clauses and
sentences .

2.2 Letter to Sound
Flite’s letter to sound module was adopted here to transform a
sentence into phone sequence. Following the Flite’s design, 39
phonemes defined in ARPAbet were chosen as the basic units.
The list of the phonemes is as follows:

2

l "aa","ae","ao","aw","ax","ay","b","ch","d","dh","eh","e
r","ey","f","g","hh","ih","iy","jh","k","l","m","n","ng","
ow","oy","p","r","s","sh","t","th","uh","uw","v","w","y
","z", "zh"

In this procedure, each word was transformed by first

looking a modified Carnegie Mellon University (CMU)
dictionary [9] (as distributed as part of Festival). Then
decision-tree-based letter-to-sound rules were applied for
those words that could not be found in the lexicon. Moreover,
the CMU lexicon was pruned by removing those words which
the letter to sound rule models get correct.

However, due to some programming issues, in our system,
no stress marks were produced and utilized in our TTS system.

2.3 Forced-Alignment
Although, context-dependent tri-phone models are usually
used to improve automatic speech recognition’s (ASR’s)
performance, for the end of force-alignment, mono-phone
models may be already enough. Therefore, in order to prepare
the necessary segmentation information for voice building
backend, an English mono-phoneme recognizer trained using
the TIMIT corpus was applied.

Following the letter to sound module, 39 phonemes were
chosen as the basic units. Each phone was represented as a
three-state (left-to-right) hidden Markov model (HMM). And
39 dimensional mel-frequency cepstral coefficients (MFCC)
features (13-dimension MFCCs and their first and second
order derivatives) were used as the spectral parameters (with
25 ms frame window and 10-ms frame shift). The numbers of
mixtures were iteratively increased to 32 and 64 for all phones
and “sil” model, respectively.

Moreover, in order to compensate speaker and channel
mismatch between training and test phases, mean subtraction,
variance normalization and ARMA filtering (MVA) [10]
frontend was performed on a per-utterance basis.

The following table shows the performance of the
English recognizer on the TIMIT test set.

Correction Substation Deletion Insertion Error

76.31 19.59 4.10 13.07 36.76

Table 1: Performance of the mono-phone recognizer trained
and tested on TIMIT corpus.

2.4 Question Set for Clustering
The question set used for clustering all the context-dependent
phones is composed of 3 layers as listed in Table 1. It is worth
noting that for audiobook tasks, linguistic features beyond
sentence level are added including (1) PMs of current and
surrounding sentences and (2) the number and forward and
backward positions of sentences in a paragraph. Moreover, in
our system, 8 different PM groups including period, comma,
question exclamation and colon, etc., are considered.

Layer Question

Phone

the names and types of current and
surrounding phones (5-gram); the number
and forward and backward position of a
phone in a word

Word

the part-of-speech (POS) of current and
surrounding words; the number and forward
and backward position of a word in a
sentence

Sentence the punctuation mark (PM) of current and

surrounding sentences; the number and
forward and backward position of a sentence
in a paragraph

Table 2: Hierarchical structure of linguistic cues/questions for
decision tree-based context-dependent phone model clustering.

3 Voice Building Settings
HTS version 2.2 was adopted to build the voice. In this section,
the voice building settings and procedures including (1) the
audiobook database, (2) speech signal representation, (3)
training procedure and (4) parallel training procedure are
briefly given in the following sub-sections.

3.1 Audiobook Database
Due to resource constraints, only English task 2 (2013-EH2) is
considered in this entry. The goal is to build a voice from
provided segmented audio for the books Black Beauty and
Mansfield Park.

These two audiobook data is kindly provided by The
Voice Factory, from a single female speaker, provided as
approximately 19 hours of non-compressed wav files. The
wav files have been segmented into sentences and aligned
with the text by Lessac Technologies, Inc.

No external data is used for building our system. And the
corpus have been pruned a little bit to avoid some label file
generation problems (due to some programming issues).

3.2 Speech Representation
34-order mel-generalized cepstrum (MGC) [11] and
fundamental frequency, F0 was extracted using A Robust
Algorithm for Pitch Tracking (RAPT) [12] algorithm as the
spectral and excitation parameters (with 5ms frame shift).
Besides, MGCs and F0 features and their first and second
order derivatives were generated to form a 105-dimentional
feature vector for each speech frame.

3.3 Training Procedures
The voice building steps are showed in Fig. 3. Two advanced
algorithm, DAEM and MGE training algorithm supported by
HTS version 2.2 are utilized in order to build a better voice.
The numbers of iterations for DAEM and MGE are
experimentally set to 10 and 50, respectively.

Figure 2: The block diagram of the HTS training procedure

3

3.4 Parallel Processing
The whole training procedure is very time-consuming;
therefore, some HTK and HTS commands were executed in
parallel to take the advantage of modem multi-core CPUs
training environment. They are (1) HCopy for feature
extraction, (2) HHEd for clustering, (3) HERest for context-
dependent model training, HVite and HSMMAlign for forced-
alignment.

Parallel processing of HCopy, HERest, HVite and
HSMMAlign commands are done by executing modified Perl
scripts in a job queuing system (Sun Grid Engine, SGE is
adopted here) to:
l Divide the list of data files
l Send the divided jobs to the processors
l Check for job completion
l Combine the results
The detail explanation of the integration of the Perl script and
job queuing mechanism could be found in [13].

On the other hand, for HHEd procedure, the “JM”
command of HHEd was used to modify the standard training
Perl script in order to run state clustering in parallel (using
Perl’s multi-threading features) [14]. In the end, the
computation time of HHEd could be greatly reduced to about
1/5 (for 5-state phone models).

It is also worthy noting that for the MGE procedure, the
HTS command “HMgeTool” already could fully utilize the
power of multi-core CPUs.

3.5 Computation
The whole system was run in a Linux machine equipped with
a 3.2 GHz Intel Core i7 2930K, 6-core/12 threading CPU and
64 GB memory. The job queuing system implemented using
Sun Grid Engine, was configured with 12 slots and a task was
divided into 30 sub-jobs to fully occupy all CPU cores at the
same time.

During the parallel processing procedure, HTS ate more
than 50 GB memory. Especially The most memory
consumption procedures are the state clustering (HHEd) and
full-context model re-estimation (HERest). Finally, the total
required time to finish all procedures is about 3 days.

4 Evaluation Results
All participants of 2013-EH2 task were asked to synthesize
2409 utterances including 209 book paragraphs, 100 address,
200 book, 100 novel, 500 reportorial and 900 semantically
unpredictable sentences (SUS) sentences. And, several
hundred online-volunteers, speech experts and paid listeners
were involved in the listening test.

Figure 3 and 4 shows similarity and naturalness evaluation
results of all participants of 2013-EH2 task. The average mean
opinion scores (MOSs) of our entry were 2 and 1 (marked
with symbol “G”) for similarity and naturalness, respectively.
These results show our system is not good enough, especially
for naturalness measurement.

These may due to the lack of stressed syllable cues in our
letter to sound processing. Besides, there is also no prosodic
model in our system, especially, the pause durations between
neighboring sentences were not treated differently. This may
further degrade the naturalness of the synthesized voice for
audiobook applications.

Another possible room for improvement is to use a larger
corpus in the future, for example the Wall Street Journal (WSJ)
corpus [15-16], to train a better mono-phone recognizer for
more precise forced-alignment. Moreover, pronunciation
variation should also be well considered during forced-

alignment. Because, it was found that DAEM algorithm may
produce worse initial model than standard HInit command.

Finally, advanced speech representation other than MGCs
should be adopted, such as STRAIGHT [17] features, to
improve the similarity of our synthesized speech.

Figure 3. Similarity evaluation results (mean opinion scores
(MOSs) reported by all listeners) of all participants of 2013-
EH2 task.

Figure 4. Naturalness evaluation results (mean opinion scores
(MOSs) reported by all listeners) of all participants of 2013-
EH2 task.

However, Figure 5 shows that paid listeners gave our
system a little bit higher similarity score than other listeners.
And Figure 6 indicates that all listeners felt that our system
performed more natural on the novel utterances synthesis than
other sentence styles.

4

Figure 5. Similarity evaluation results (mean opinion scores
(MOSs) reported by paid listeners) of all participants of 2013-
EH2 task.

Figure 6. Naturalness evaluation results on novel set (mean
opinion scores (MOSs) reported by all listeners) of all
participants of 2013-EH2 task.

5 Conclusions and Future Works
This paper describes our HTS-based English TTS submitted to
Blizzard Challenge 2013. This system was built all by
ourselves with open source toolkits. Moreover, many
command were executed in parallel to take the advantages of
modem multi-core CPUs. However, there are still many rooms
to improve our system. Especially, the letter to sound module
need to be modified to output stressed syllable marks and a
prosodic model should be incorporated to predict the pause
positions and durations.

Acknowledgements
This work was partially supported by the National Science
Council, Taiwan, under the projects with contract NSC 101-
2221-E-027-129 and 102-2221-E-027-070.

References
[1]. HMM-based Speech Synthesis System,

http://hts.sp.nitech.ac.jp/, Aug. 2013
[2]. Blizzard Challenge,

http://www.synsig.org/index.php/Blizzard_Challenge,
Aug. 2013

[3]. The Stanford Parser: A statistical parser,
http://nlp.stanford.edu/software/lex-parser.shtml, Aug.
2012

[4]. Flite (festival-lite) is a small, fast run-time synthesis
engine, http://www.festvox.org/flite/, Aug. 2013

[5]. TIMIT Acoustic-Phonetic Continuous Speech Corpus,
LDC corpus,
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?cat
alogId=LDC93S1, Aug. 2013

[6]. Y. Itaya, H. Zen, Y. Nankaku, C. Miyajima, K. Tokuda,
and T. Kitamura. Deterministic annealing EM
algorithm in acoustic modeling for speaker and speech
recognition. IEICE Trans. Inf. & Syst., E88-D(3):425–
431, 2005.

[7]. Y.-J.Wu, R.-H.Wang, 2006. Minimum Generation
Error Training for HMM-Based Speech Synthesis, In:
Proc. of IEEE International Conference on Acoustics,
Speech, and Signal Processing(ICASSP), vol. 1, pp.
889–892.

[8]. Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. Proceedings of the 41st Meeting
of the Association for Computational Linguistics, pp.
423-430.

[9]. The CMU Pronouncing Dictionary,
http://www.speech.cs.cmu.edu/cgi-bin/cmudict, Aug.
2013

[10]. C.-P. Chen, K. Filali, and J. Bilmes, MVA Processing
of Speech Features, IEEE Transactions on Audio,
Speech, and Language Processing, Volume:15 , Issue:
1 , 2007

[11]. Satoshi IMAI,Cepstral analysis synthesis on the mel
frequency scale, Acoustics, Speech, and Signal
Processing, IEEE International Conference on ICASSP
'83, 1983.

[12]. D Talkin, A Robust Algorithm for Pitch Tracking
(RAPT), Chapter 15, Speech Coding and Synthesis,
Elsevier, 1995.

[13]. Bowon Lee, Parallel Processing of the HTK Commands,
http://www.ifp.illinois.edu/~bowonlee/research/cluster/
HTK_parallel.htm, Aug. 2013

[14]. Xuchen Yao and Feng Ding, Multi-process supporting
patch for HTS-demo_CMU-ARCTIC-SLT,
http://hts.sp.nitech.ac.jp/hts-
users/spool/2008/msg00415.html, Aug. 2013

[15]. CSR-I (WSJ0) Complete, LDC corpus,
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?cat
alogId=LDC93S6A, Aug., 2013

[16]. CSR-II (WSJ1) Complete, LDC corpus
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?cat
alogId=LDC94S13A, Aug., 2013

[17]. STRAIGHT, a speech analysis, modification and
synthesis system, http://www.wakayama-
u.ac.jp/~kawahara/STRAIGHTadv/index_e.html, Aug.
2013

