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Abstract
This paper describes the text-to-speech system entered by The
Centre for Speech Technology Research into the 2016 Blizzard
Challenge. This system is a hybrid synthesis system which uses
output from a recurrent neural network to drive a unit selection
synthesiser. The annual Blizzard Challenge conducts side-by-
side testing of a number of speech synthesis systems trained
on a common set of speech data. The task of the 2016 Bliz-
zard Challenge is to train on expressively-read children’s story-
books, and to synthesise speech in the same domain. The Chal-
lenge therefore presents an opportunity to test the effectiveness
of several techniques we have developed when applied to ex-
pressive speech data.
Index Terms: hybrid synthesis, statistical parametric speech
synthesis, deep neural network, recurrent neural network, unit
selection

1. Introduction
The CSTR entry to this year’s Blizzard Challenge builds on the
hybrid Multisyn [1, 2] system introduced in [3]. Hybrid syn-
thesis brings the benefits of extremely natural-sounding unit se-
lection (which is unaffected by the degradations introduced by
vocoding [4, 5, 6]), whilst also exploiting the flexibility of statis-
tical parametric speech synthesis (SPSS). The data used for this
year’s Challenge was obtained from professionally-read child-
directed audio books and is therefore much more prosodically
rich than the more standard prompt-based speech data used in
[3]. The amount of data (5 hours) is also greater than used in
[3] (2 hours).

The experiment presented in [3] established that improv-
ing the underlying SPSS of a hybrid synthesiser results in im-
provements to the concatenated output speech. The current sys-
tem therefore incorporated two major improvements to the un-
derlying SPSS model compared to the system prensented in
[3]: the decision tree duration model is replaced with a bi-
directional long short-term memory (LSTM) recurrent neural
network, and the feed-forward DNN acoustic model is replaced
with an LSTM network. The neural networks used in this entry
were trained using our open-source neural network TTS toolkit,
Merlin1 [7].

2. System Description
2.1. Data

The database – provided to the Challenge by Usborne Publish-
ing Ltd. – consists of the speech and text of 50 children’s au-
diobooks spoken by a British female speaker. We made use of
a segmentation of the audiobooks carried out by another Chal-

1https://github.com/CSTR-Edinburgh/merlin

lenge participant2 and kindly made available to other partici-
pants. The total duration of the audio is approximately 4.33
hours after segmentation. Three audiobooks from the given
corpus were held out to act as an internal development set
to gauge system performance before generating the final test
data. The held-out data consists of three whole short stories:
Goldilocks and the Three Bears, The Boy Who Cried Wolf and
The Enormous Turnip, having a total combined duration of ap-
proximately 10 minutes.

2.1.1. Sentence selection

Harnessing the variety of speaking styles present in
expressively-read audiobooks might enable us to produce
less robotic-sounding TTS systems. However, initial experi-
ments showed that the extreme variation in parts of the training
data for the Challenge resulting in poor unit selection. We
therefore filtered the data using the active learning approach
described in [8]: 198 utterance-level acoustic features are
extracted, and 15 sentences initially labelled as keep or too
expressive by an expert listener. Uncertainty sampling [9]
using an ensemble of decision trees was then used to select
a further informative sample to be hand-labelled; this process
continued for 20 minutes (real time). A classifier built on the
entire set of hand-labelled data was then used to determine the
subset of available sentences to be used for training. 11.5%
of the training sentences were discarded in this way; informal
comparison suggested this resulted in more stable synthesis
with fewer unwarranted prosodic excursions.

2.2. Text processing

We used the Festival English front-end with the British Re-
ceived Pronunciation version of the Combilex lexicon [10]. 127
items were added to cover words appearing in the training data
but otherwise absent from the dictionary. There were slight dif-
ferences in the lexicon-lookup procedures used in preparing the
annotation for training the SPSS model and those employed by
the Festival front-end used for Multisyn. The resulting inconsis-
tencies were dealt with by aligning the DNN’s phone sequences
to those expected by Multisyn in an ad hoc fashion. Given suf-
ficient time to retrain the system from scratch, we expect mak-
ing label creation consistent across the SPSS and unit selection
modules of our system to lead to improved synthesis quality.

2.3. Parametric system

The parametric system was implemented using LSTMs in a
conventional two-stage approach. In the first stage, a duration
model is used to predict phone durations to form frame-level
linguistic features. In the second stage, an acoustic model is
used to generate parameters from those linguistic features.

2Innoetics: https://www.innoetics.com
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2.3.1. Duration model

The duration model trained for our entry to the Challenge made
use of a modified version of the multi-level modelling approach
with LSTM mixture density networks (MDNs) proposed in [11]
for robust duration modelling. We exploit the benefits of in-
cluding long-range dependencies in duration prediction by us-
ing recurrent neural networks and by simultaneously predicting
durations at multiple levels (state, phone, syllable and word).
In [11], phone-level duration was used as a multi-task side-
objective, alongside the main task of predicting the durations
of the states within the phone. The phone-level prediction is
discarded at run-time, but requiring the network also to make
this prediction results in improvements on the main task. We
here extend this approach to include also the syllable- and word-
level. Furthermore, the duration model used is statistically ro-
bust: by training a multi-component MDN, some components
can be used to account for bad data (garbage components). By
then synthesising from a single mixture component (e.g. the one
with the largest mass), datapoints that trained the other com-
ponents – and the behaviour that led to those datapoints – are
ignored in synthesis.

The approach described was used only to predict dura-
tions for forming frame-level linguistic features as input for the
prediction of acoustic parameters. The hybrid Multisyn unit-
selection system, however, doesn’t make use of any duration-
derived features in its target cost function. Including features
based on our robust multi-level duration model in the unit se-
lection process is left for future work.

2.3.2. Acoustic model

The durations predicted by the bi-directional LSTM described
above are combined with linguistic features derived from a
set of questions about linguistic context to create the frame-
level linguistic features which is the input to the uni-directional
LSTM RNN acoustic model. This LSTM RNN is then trained
at the frame-level to map from the linguistic context to vocoder
parameters (static, delta and delta-delta features of 60 Mel-
cepstra, 25 BAPs and log-f0) and a binary feature denoting
whether the frame is voiced or unvoiced. Following the predic-
tion of the frame-level vocoder parameter distributions, maxi-
mum likelihood parameter generation (MLPG) and postfiltering
are performed to arrive at the final generated parameter trajec-
tories.

In SPSS these parameter trajectories would then be passed
through the vocoder to produce a speech waveform. Instead,
we use them as targets for selecting waveform units as follows.
First, the synthesised parameters for each phoneme are split uni-
formly across time into 4 section. In each of the 4 sections, a
Gaussian distribution is fitted to each of the vocoder parame-
ters. The variances of these Gaussian distributions are floored
at 1% of the global variance per parameter, following [3]. These
4 uniform sections per phone allow diphone representations to
be created from the phone predictions produced by the SPSS
system: 2 sections from each of the phones associated with a
diphone are used to create a representation for that diphone.

Comparable distributions were generated for the candidates
in the unit database, based on vocoder parameters derived from
the training data and natural durations obtained by forced align-
ment.

2.3.3. Feature extraction for acoustic model training

We obtained a state-level forced alignment of the sentence-
segmented data described above using context independent
HMMs, similar to [12]. Festvox’s ehmm [13] was used to in-
sert pauses into the annotated phone sequences based on the
acoustics. Each phone was then characterised by a vector of 481
text-derived binary and numerical features: these features are a
subset of the features used in decision-tree clustering questions
from the HTS public demo [14]; numerical features queried by
those questions were used directly where possible.

For duration modelling, all these features were used as in-
put and normalised to the range of [0.01, 0.99]. The output for
training is an eight-dimensional vector of durations for every
phone, comprising five sub-state durations, the overall phone
duration, syllable duration and whole word duration. We use
this form of multi-task learning to improve the model; the three
additional features (phone, syllable, and word durations) act as
a secondary task to help the network learn more about supraseg-
mental variations in duration at word level.

For acoustic modelling, the input uses the same features
as duration prediction, to which 9 numerical features were ap-
pended. These capture frame position in the HMM state and
phoneme, state position in phoneme, and state and phoneme
duration, similar to [12]. For output features, STRAIGHT [15]
was used to extract 60 mel-cepstrum coefficients, 25 band ape-
riodicities, logarithmic fundamental frequency (logF0) along
with delta and delta-delta features every 5ms. Unvoiced re-
gions of logF0 were linearly interpolated before computing
delta and delta-delta features. To which, a binary feature de-
noting whether the frame is voiced or unvoiced was added. For
both the duration and acoustic data, a per-component mean and
variance normalisation was applied prior to model training, with
the transformation reversed as part of synthesis.

2.3.4. Duration and acoustic model training

The duration model used phone-level linguistic features as in-
put and are optimised to predict the (mean and variance nor-
malised) duration of the phones in the training data. For train-
ing, the model was configured with five feed-forward layers
of 1024 nodes each and a final bi-directional LSTM hidden
layer consisting of 512 nodes. The output layer was config-
ured with a single-component, maximum-likelihood Gaussian
MDN. Whereas, the acoustic model used frame-level linguistic
features as input to predict the vocoder parameters. For training,
the model was configured with five feed-forward layers of 1024
nodes each and a final uni-directional simplified LSTM hidden
layer consisting of 512 nodes [16].

Both the networks were initialised using small random
weights, with no pre-training. Each prediction system was
trained with a fixed learning rate, manually tuned to yield close-
to-optimal results on the development set in 30 epochs or less.
Early stopping was used to avoid overfitting, by aborting train-
ing once the objective function on the development set had
failed to improve for five epochs. The neural network train-
ing was performed broadly as for the basic system described in
[12, 16] using Merlin [7].

2.4. Unit selection waveform renderer

A modified form of Festival’s Multisyn engine [2] was used for
the unit selection stage of our system. To compare the suitability
of a given candidate diphone in the unit database with the 4 dis-
tributions representing a synthesised diphone, the symmetrised
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Figure 1: Our system(Q): Mean opinion score for naturalness
of the synthesized speech with ratings from all listeners.

Kullback Leibler divergence (KLD) [17] is used. The KLD is
computed between each of the 4 candidate unit’s distributions
and the corresponding target unit distributions individually. The
resulting 4 scores are then summed to produce the final target
score.

The standard Multisyn join cost (sum of distances between
12 MFCCs, f0 and energy from the frame either side of the
join) is retained, as well as the standard pre-selection criterion
of candidate units (by matching diphone identity). The standard
Multisyn Viterbi search (with pruning to reduce the search time)
is performed in order to optimise target cost and join cost. Also
the standard Multisyn back-off rules are used where the target
diphone to be synthesised is not present in the training data.

2.5. Speech synthesis

At synthesis time, duration is predicted first, and is used as
an input to the acoustic model to predict the speech parame-
ters. Maximum likelihood parameter generation (MLPG) using
pre-computed variances from the training data is applied to the
output features for synthesis, and global-variance (GV statis-
tics computed from training material) is applied to the resulting
MCC trajectories. These parameter trajectories are then used
to produce diphone coefficients. The Festival Multisyn engine
was used to compute the target and joint cost between target
unit and pre-selected candidate units to select the final candi-
date, as explained above. The final waveform synthesis was
done by joining the selected units. No additional smoothing or
post-modification of prosody was performed after joining the
units: this is left for future work.

From the sentences synthesised in this way, files were made
containing whole paragraphs, chapters and books as required by
the Challenge by simply concatenating the waveforms. While
proper exploitation of long-distance contexts ought to improve
synthesis quality, no contexts outside the current sentence were
used for the present submission.
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Figure 2: Our system(Q): Mean opinion score for speaker sim-
ilarity with ratings from all listeners.

3. Results
The identifier for our system in the published results is Q.

3.1. Naturalness

We first consider the results for naturalness (making use of the
published statistical analysis of significant differences between
naturalness of systems at the 1% level with Bonferroni corrected
alpha) [18]. Mean opinion scores for naturalness from all lis-
teners on book sentences are shown in Figure 1. Our system
outperformed all three baseline systems(B–D). Among the 13
challenge participants, our system is outperformed by only a
single system (L). The same trend can be seen across the scores
made by paid listeners, speech experts and on-line volunteers.

3.2. Speaker similarity

We now consider mean opinion scores for speaker similarity.
The mean opinion scores for speaker similarity from all listen-
ers on book sentences are shown in Figure 2. Considering rat-
ings from all listeners (or any other listener group), no other
system was significantly better than ours and our system was
in turn significantly better than 11 other systems. These results
show the effectiveness of waveform concatenation systems for
speaker similarity.

3.3. Evaluation of audiobook paragraphs

We now consider the results for evaluation of audiobook para-
graphs – that have been evaluated on several other factors
like stress, intonation, emotion, pleasantness, listening effort,
speech pauses and overall impression. Considering ratings from
all listeners on overall impression, our system showed similar
performance as in the case of the isolated sentence evaluation
of naturalness and speaker similarity. Only two systems (L and
M) outperformed us and our system was significantly better in
turn than the remaining systems (cf. Figure 3). Considering rat-
ings from paid listeners on overall impression, only system L
outperformed ours. Considering ratings for other individual fac-
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Figure 3: Our system(Q): Mean opinion score for overall im-
pression with ratings from all listeners.

tors (e.g., stress, intonation and pleasantness) from all listeners,
only the aforementioned systems L and M consistently outper-
formed ours. Overall, our system outperforms between 9 and 13
other systems in evaluation of each of these factors, performing
best in emotion and pleasantness.

3.4. Intelligibility (SUS)

We now consider the results for intelligibility of semantically
unpredictable sentences (making use of the published statisti-
cal analysis of significant difference between word error rates
of the systems). Taking into account ratings from all listeners,
there are only three other systems out of 16 (D, F, L) signifi-
cantly better than ours. Considering only paid listeners, there
are only two other systems (F and L) significantly better than
ours. Out of 16 systems evaluated by paid listeners, 10 were
not significantly more or less intelligible than ours, 3 were sig-
nificantly less intelligible, and only 2 significantly more intel-
ligible. The results show that our system is quite effective on
intelligibility as well. Overall, our system has shown consistent
performance (standing in top four) in all the factors evaluated
for the Challenge.

4. Conclusions & future work
For this year’s CSTR Blizzard Challenge entry the hybrid sys-
tem introduced in [3] was improved (both its duration model
and acoustic model) and applied for the first time to expressive
speech data.

The results of the evaluation are on the whole very positive,
but there are still a number of potential future improvements
which could be made to the hybrid synthesis system described
here. These include adopting consistent lexicon-lookup for both
the SPSS and unit selection systems, performing modifications
to smooth the joins between units, and the explicit inclusion of
predicted duration in the unit selection synthesis target cost.

5. Acknowledgements
We thank Robert A. J. Clark for useful discussion and ad-
vice. This research was supported by EPSRC Programme
Grant EP/I031022/1, Natural Speech Technology (NST). The
NST research data collection may be accessed at http://
datashare.is.ed.ac.uk/handle/10283/786.

6. References
[1] R. A. Clark, K. Richmond, and S. King, “Festival 2–build your

own general purpose unit selection speech synthesiser,” in Proc.
SSW, 2004.

[2] R. A. Clark, k. Richmond, and S. King, “Multisyn: Open-domain
unit selection for the Festival speech synthesis system,” Speech
Communication, vol. 49, no. 4, pp. 317–330, 2007.

[3] T. Merritt, R. A. J. Clark, Z. Wu, J. Yamagishi, and S. King, “Deep
neural network-guided unit selection synthesis,” in Proc. ICASSP,
2016.

[4] T. Merritt, T. Raitio, and S. King, “Investigating source and fil-
ter contributions, and their interaction, to statistical parametric
speech synthesis,” in Proc. Interspeech, 2014, pp. 1509–1513.

[5] G. E. Henter, T. Merritt, M. Shannon, C. Mayo, and S. King,
“Measuring the perceptual effects of modelling assumptions in
speech synthesis using stimuli constructed from repeated natural
speech,” in Proc. Interspeech, 2014, pp. 1504–1508.

[6] T. Merritt, J. Latorre, and S. King, “Attributing modelling errors
in HMM synthesis by stepping gradually from natural to modelled
speech,” in Proc. ICASSP, 2015.

[7] Z. Wu, O. Watts, and S. King, “Merlin: An Open Source Neu-
ral Network Speech Synthesis System,” in Proc. SSW, Sunnyvale,
USA, 2016.

[8] O. Watts, A. Stan, R. Clark, Y. Mamiya, M. Giurgiu, J. Yamag-
ishi, and S. King, “Unsupervised and lightly-supervised learning
for rapid construction of TTS systems in multiple languages from
’found’ data: evaluation and analysis,” in 8th ISCA Workshop on
Speech Synthesis, Barcelona, Spain, Aug. 2013, pp. 121–126.

[9] D. D. Lewis and W. A. Gale, “A sequential algorithm for training
text classifiers,” in Proceedings of the 17th annual international
ACM SIGIR conference on Research and development in informa-
tion retrieval.

[10] S. Fitt and K. Richmond, “Redundancy and productivity in the
speech technology lexicon - can we do better?” in Proc. Inter-
speech 2006, Sep. 2006.

[11] G. E. Henter, S. Ronanki, O. Watts, M. Wester, Z. Wu, and
S. King, “Robust TTS duration modelling using DNNs,” in Proc.
ICASSP, vol. 41, Shanghai, China, March 2016, pp. 5130–5134.

[12] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neu-
ral networks employing multi-task learning and stacked bottle-
neck features for speech synthesis,” in Proc. ICASSP, 2015, pp.
4460–4464.

[13] K. Prahallad, A. W. Black, and R. Mosur, “Sub-phonetic modeling
for capturing pronunciation variations for conversational speech
synthesis,” in Proc. ICASSP, 2006, pp. I–853–I–856.

[14] H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. Black,
and K. Tokuda, “The HMM-based speech synthesis system (HTS)
version 2.0,” in Proc. SSW, vol. 6, 2007, pp. 294–299.

[15] H. Kawahara, “STRAIGHT, exploitation of the other aspect of
VOCODER: Perceptually isomorphic decomposition of speech
sounds,” Acoust. Sci. Technol., vol. 27, no. 6, pp. 349–353, 2006.

[16] Z. Wu and S. King, “Investigating gated recurrent networks for
speech synthesis,” in Proc. ICASSP, 2016, pp. 5140–5144.

[17] J. R. Hershey and P. A. Olsen, “Approximating the Kullback-
Leibler divergence between Gaussian mixture models,” in Proc.
ICASSP, 2007.

[18] R. A. Clark, M. Podsiadlo, M. Fraser, C. Mayo, and S. King, “Sta-
tistical analysis of the Blizzard Challenge 2007 listening test re-
sults,” Proc. Blizzard Challenge Workshop, 2007.

http://datashare.is.ed.ac.uk/handle/10283/786
http://datashare.is.ed.ac.uk/handle/10283/786

	1  Introduction
	2  System Description
	2.1  Data
	2.1.1  Sentence selection

	2.2  Text processing
	2.3  Parametric system
	2.3.1  Duration model
	2.3.2  Acoustic model
	2.3.3  Feature extraction for acoustic model training
	2.3.4  Duration and acoustic model training

	2.4  Unit selection waveform renderer
	2.5  Speech synthesis

	3  Results
	3.1  Naturalness
	3.2  Speaker similarity
	3.3  Evaluation of audiobook paragraphs
	3.4  Intelligibility (SUS)

	4  Conclusions & future work
	5  Acknowledgements
	6  References

