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Abstract
This paper introduces the details of the speech synthesis

entry developed by the USTC team for Blizzard Challenge
2016. A 5-hour corpus of highly expressive children’s audio-
book was released this year to the participants. An hidden
Markov model (HMM)-based unit selection system was built
for the task. In addition, we utilized deep neural networks to
improve the performance of our system, in both the front-end
text processing and back-end acoustic modeling for unit selec-
tion. Firstly, an long short term memory (LSTM)-based recur-
rent neural networks (RNN) were adopted for tone and break-
ing indices (ToBI) prediction. Secondly, another LSTM-RNN
was adopted to extract distributional representation of contex-
tual features. The context embeddings can be used for evalu-
ating contextual similarities between candidate and target units
at the unit selection time. The evaluation results show the ef-
fectiveness of the submitted system. Our system achieved the
highest scores in all metrics.
Index Terms: Unit selection, hidden Markov models, long
short term memory, recurrent neural network

1. Introduction
The USTC team have been submitting entries to the Blizzard
Challenge speech synthesis evaluation for eleven years since
2006. In 2006, our first HMM-based statistical parametric
speech synthesis system using line spectral pairs (LSP) was
submitted [1]. In the coming two years, in order to achieve
better performance of our system, an HMM guided unit se-
lection and waveform concatenation method was adopted to
exploit the advantage of the large scale of the released cor-
pus [2] [3]. The submitted hybrid system achieved promising
performance. Next year in the challenge of 2009, we adopted
the minimum generation error (MGE) criterion in decision tree
clustering and used a cross validation method to automatically
control the scale of the decision tree [4]. A globally covariance
tying strategy was utilized in order to reduce the footprint of the
model, as well as improving the modeling training efficiency in
2010 [5], as the size of released corpus is growing. In addition,
a syllable-level F0 model was further introduced to consider
the long term prosody correlations between unit candidates to
be concatenated. In the Blizzard Challenge 2011, an improved
unit selection criterion, maximum log likelihood ration (LLR)
criterion, was proposed [6] to improve the performance of uint
selection. The evaluation tasks were becoming more and more
difficult since 2012. Expressive corpus, such as audiobooks,
and many Indian language were released for system building.
In the Blizzard Challenge 2012, a set of audiobook corpus with
different recording channels were release. A channel equaliza-

tion method were utilized to compensate these channel differ-
ences [7]. A large corpus with hundreds of hours of unaligned
audiobooks were release in Blizzard Challenge 2013. The scale
of the corpus was a challenge to both the computational effi-
ciency and robustness of the participants’ system. We utilized
the phone dependent model clustering method to enable parallel
training of HMMs on such a large corpus. We also proposed an
weight optimization method to automatically tune the weights
of each component in the costs of our unit selection criterion [8].
Besides, corpus of many Indian languages were released to non-
Indian participants in Blizzard Challenge 2013, 2014 and 2015.
We adopted letter-to-sound (L2S) [9] methods to build front-
end text processing for Hindi, and used simple charactor based
front-end for other Indian languages [8]. We also adopted deep
neural network (DNN)-based data driven spectral post-filtering
techniques [10] and modulation spectrum [11] based ones to im-
prove the quality of synthetic speech [12]. A non-uniform units
were used for unit selection and concatenation in our system
to improve the stability of our system for Blizzard Challenge
2015 [13].

This year, the challenge went back to English tasks. A
highly expressive children’s audiobook corpus were released to
participants for system construction. The 5-hour speech corpus
was relatively small for building robust unit selection system.
In our system this year, we proposed 3 points to achieve this:
1) an LSTM-RNN based front-end was adopted to enable more
expressive ToBI prediction, 2) expressive labels, such as dia-
logue tags and sentence types (obtained from punctuations) are
used in our contextual information as expressive feature, 3) an-
other LSTM-RNN based distributed contextual representation
was adopted to provide a better metric for evaluating contex-
tual differences between unit candidates. Internal experiments
and evaluation results showed the effectiveness of the proposed
system.

This paper is organized as follows: Section 2 reviews the
baseline system of the USTC unit selection system. Section
3 presents the details of system construction in Blizzard Chal-
lenge 2016 will elaborated as well as some internal experimen-
tal results. Section 4 shows the evaluation results of our pro-
posed system together with according further analysis. Lastly
in section 5, some conclusions and potential future research are
given.

2. Baseline Systems
2.1. HMM-based parametric method vs. unit selection

There are typically two kinds of approaches to build the base-
line system: the HMM-based parametric speech synthesis sys-
tem and the HMM-guided unit selection and waveform concate-
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Figure 1: The flowchart of USTC unit selection system.

nation methods. The unit selection methods may achieve high
quality of synthetic speech. However, their robustness of the
method on a small size of highly expressive corpus is a chal-
lenge. The parametric methods, on the other hand, can produce
stable speech. However, the speech quality and expressiveness
of the synthetic speech was much poorer than unit selection
ones. Therefore in the beginning, we conducted a listening test
to compare these two different methods. A preference test be-
tween these two methods on the overall impression of synthetic
speech was conducted on the Amazon Mechanical Turk (ATM)
crowd sourcing platform 1. 40 sentences were used for each
system in the test. 10 subjects participated in the test. The re-
sults shown in Tabel 1 indicates that although there are several
instability in synthetic speech of the unit selection method, it is
significantly better than the parametric based one.

Table 1: Result of preference test comparing HMM-based para-
metric speech synthesis and unit selection method.

HMM Unit Selection N/P p-value
6.94 88.34 4.72 < 0.001

2.2. The USTC unit selection system

In this section, we will briefly introduce the baseline system of
our HMM-based unit selection system. As indicated in Figure
1, our HMM-based unit selection system consist of two parts,
the training phase and the synthesis phase.

2.2.1. Training phase

At the training stage, several HMM [14] based acoustic mod-
els are trained in advance. These models are used to guide the
unit selection at synthesis time. There are six sets of HMM
based acoustic models in total, including a spectral model, an F0
model, a phone duration model, a concatenating spectral model,
a concatenating F0 model, as well as a syllable-level F0 model.

1https://www.mturk.com

The spectral model, F0 model and phone duration model
are trained using the same methods as a conventiona HMM
based parametric speech system [14]. Frame-level acoustic fea-
tures are used for model training, including mel-cepstral coeffi-
cients and F0s. The duration of each phone unit is segmented by
spectral model and F0 model using a viterbi based force align
method.

Concatenation models are trained to model the distribu-
tions of acoustic difference in spectrum and F0 at the phone
boundaries. The features for model training are the delta and
delta-delta of spectrum and F0. In addition, a syllable-leval
F0 model, which is trained with F0 features extracted from the
vowels of two adjacent syllables, are used to capture the long
term prosody dependence in F0.

The multi-space distribution HMMs (MSD-HMMs) [15]
are adopted to model the continuous probability HMMs with F0
feature. The decision tree based context clustering is adopted to
deal with the data sparsity problems. The minimum description
length (MDL) [16] based model clustering is utilized to control
the size of the decision trees. The phone durations, concate-
nating spectral features, concatenating F0 features and syllable-
level F0 features are extracted using state-frame alignment in-
formation.

2.2.2. Synthesis phase

There are two steps in the synthesis phase: unit selection and
waveform concatenation. A sequence of phone units are se-
lected under the Maximum Likelihood criterion for the input
sentence to be synthesized. Let N be the number of phonemes
in the utterance to be synthesized with context feature sequence
C. At the unit selection stage, a sequence of phone unit candi-
dates U = {u1, u2, · · · , uN} are search out from the database
under the following statistical criterion

U∗ = argmax
U

6∑
m=1

wm[logP (X(U ,m)|C, λm)

−wKLDDm(C(U), C)], (1)

where λm indicates the acoustic models described in the previ-
ous section, and wm corresponds to their weights. The weights
were manually tuned on a development set. X(U ,m) and
C(U) extract corresponding acoustic features and context fea-
tures from a phone unit, Dm() denotes the Kullback-Leibler
divergence (KLD) [17] of corresponding acoustic model. A dy-
namic programming (DP) search algorithm is applied to find
the optimal unit sequence, and a KLD-based unit pre-selection
method is adopted to reduce the computational complexity in
the DP based search.

Finally, in the concatenation step, the waveforms of every
two consecutive candidate units in the optimal unit sequence are
concatenated to produce the synthetic speech. The cross-fade
technique [18] is used here to smooth the phase discontinuity at
the concatenation points of unit boundaries.

3. System Building
3.1. LSTM-based recurrent neural network

In recent years, the long short term memory based recur-
rent neural network has been successfully applied to many
tasks, such as acoustic modeling in speech recognition [19] and
speech synthesis [20], natural language understanding [21], be-
cause of its powerful ability in modeling sequential features.

https://www.mturk.com


Figure 2: The structure of a long short term memory cell.

Fig. 2 shows the structure of a LSTM cell, which is in-
cluded in the red block. xt is the input of the cell while ht is the
output of the cell. Dashed lines represent the recurrent connec-
tion from the output of the cell at the previous time step. There
are three gates in the structure: the input gate it, forget gate
ft and output gate ot. The input gate enables the memory cell
to memorize or ignore the information in the input of current
time step. The forget gate, on the other hand, enables the cell to
memorize or clear the information in the previous inputs of the
sequence. The output gate controls the information output flow
of current cell. With these gates, an LSTM cell has the ability
to model the sequential characteristics of the input frames from
the beginning to current time step.

The formulas of the LSTM cell is given by:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (2)
ft = σ(Wfixt +Whfht−1 +Wcfct−1 + bf ), (3)
at = τ(Wxcxt +Whcht−1 + bc), (4)
ct = ftct−1 + itat, (5)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo), (6)
ht = otφ(ct), (7)

where W∗ and b∗ are the parameters of the cell, σ(·), τ(·) and
φ(·) are activation functions.

3.2. ToBI prediction

Firstly, we used LSTM-RNNs for ToBI prediction. ToBI tags
are important for prosody modeling of standard English [22].
Three LSTM-RNNs were used to predict the accent, phrase
boundary and boundary tone separately from the text to be syn-
thesized. ToBI prediction is a sequence labelling, to which
LSTM-RNN has been successfully applied [23] [24]. The key
point is to define the input and output of the model.

3.2.1. Accent prediction

The input feature for accent prediction includes word feature,
part-of-speech (POS) tag, position of current word in the sen-
tence, number of phonemes in current word, number of stresses
in current word, word frequency and word case style. An one-
hot vector was used as the word feature. Another one-hot vector
was used as POS feature. 35 POS tags were used in our system.
The position of word was normalized by the length of the sen-
tence. Number of phonemes and number of stresses were given
by the Lexicon. The word frequencies were obtained from an
additional large scale corpus. Words with lower frequency tend

to be accented more frequently. On the other hand, all words in
our dictionary are in lower case. However, the case sensitivity
of words may be important for ToBI predicting. Therefore, we
additionally used four one-hot features for different word case
style: in lower case, in upper case, first character in upper case
and others. The output layer of the LSTM-RNN is a binary clas-
sification layer, predicting the probability of the current word
being accented.

3.2.2. Phrase boundary prediction

The input feature for phrase boundary prediction includes the
word, POS tag, word position and word case style. These fea-
tures are the same as the ones described in section 3.2.1 except
the word position feature. The absolute position of current word
from the beginning and end of the sentence were used as the
word position feature.

A softmax output layer was used for phrase boundary pre-
diction. The probability of three classes were predicted: begin-
ning, intermediate and end of a phrase boundary.

3.2.3. Boundary tone prediction

All the input features for accent predicting were used in the in-
put feature for boundary tone prediction. In addition, the bound-
ary tone should be predicted only for the word in the end of a
phrase or sentence. Therefore, an additional feature indicating
whether the current word is the end of a phrase or sentence.
This feature is given by the phrase boundary prediction model.

A 6-class softmax output layer was used for phrase bound-
ary tone predicting, including the beginning, intermediate, end
of a phrase with L-L tone and beginning, intermediate, end of a
phrase with L-H tone.

3.2.4. Internal experiment

In our internal experiment, a corpus of 49,700 sentences was
used to build these three models. 44,730 sentences were used to
train the models and the remaining 4,970 sentences were used
to tune the parameters. The released training data of Blizzard
Challenge 2016 were manually annotated for evaluation. There
are 3753 sentences in the test set.

We compared the proposed LSTM-RNN based ToBI pre-
diction method with a conventional decision tree (DT) based
one [25]. Bi-directional LSTM-RNNs were used in this exper-
iment. The results (F-scores) are shown in Table 2. It can be
seen that the LSTM-RNNs significantly outperform the DT in
all tasks.

Table 2: F-score of decision tree and LSTM-RNN on ToBI pre-
dicting.

DT LSTM-RNN
Accent 0.361 0.409

Phrase Boundary 0.486 0.504
Boundary Tone 0.302 0.402

3.3. Acoustic modeling

3.3.1. LSTM-RNN based context embedding

In the conventional HMM-based speech synthesis system, the
context features are manually designed and they are mostly dis-
crete [14]. This may cause several problems:
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Figure 3: The structure of the LSTM-RNN for acoustic model-
ing.

1) It is difficult to cluster these features. Although decision
tree based context clustering [16] can be applied, there
are still many problems [26].

2) Manually designed context feature cannot include suffi-
cient context information in the whole sentence.

3) Most importantly, it is difficult to directly evaluate the
distance between two different context features.

A DNN based context embedding method was proposed in
[27]. The DNN was used to transform input discrete context
features into fixed dimensional continuous features. Therefore,
context features can be evaluated using Euclid distance or KLD
in the embedding space. This method can address the problem
1) and 3) mentioned above and it was applied to unit selection
based speech synthesis [28]. However, the DNN is a frame-wise
model, it can not encode sufficient information about the whole
input contextual sequence.

In this paper, we propose to use an LSTM-RNN for context
embedding instead of a DNN. An LSTM-RNN is a sequential
model with powerful ability in memorized the while sequence,
it has the potential ability to address these three problems simul-
taneously. The structure of the LSTM-RNN is shown in Fig. 3.
There are three hidden layers in this architecture. Each hidden
layer has a projection output [29] in order to compress the di-
mensionality of layer output. Therefore the number of parame-
ters and computational cost are significantly reduced. Note that
in our structure, a delayed output is adopted, which means that
t− d-th frame of acoustic feature is output at time step t. With
this structure, the model can see a few future information with
a uni-directional recurrent structure. In this paper, time delay d
is set to 10 frame.

At unit selection time, the output of the first hidden layer is
used as the context embedding vector. Therefore, the statistical
criterion for unit selection becomes

U∗ = argmax
U

6∑
m=1

wm[logP (X(U ,m)|C, λm)

− wKLDDm(C(U), C)]

− wceDe(H(C(U)), H(C)), (8)

in which the first two terms of the right hand side of equation
is exactly the same as those in the baseline system. H(C) is
the context embedding sequence of context feature sequence C.
De denotes the Euclid distance between two context embed-
ding sequences. Phone-level linear interpolation was utilized to
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Figure 4: Mean opinion score on naturalness of three compared
systems.

normalize the lengths of phone units with duration. wce is the
weight of this term that need to be tuned.

3.3.2. Dialogue and sentence type embedding

Since the corpus for the challenge this year is highly expres-
sive, our conventional context feature is insufficient for prosody
modeling. To enrich the context feature, we added the dialogue
embedding and sentence type embedding into the input of the
LSTM-RNN. Dialogue embedding indicates whether the cur-
rent phoneme is a dialogue in the story. Sentence type was ob-
tained from the raw text according to its punctuation.

3.3.3. Internal experiment

Table 3: Systems compared in the subjective text.

system description

HMM The HMM-based baseline unit selection system.
RNN HMM + context embedding.

RNN-SD RNN + sentence type embedding and
dialogue embedding.

We conducted a listening test on the AMT to verify the per-
formance of the proposed method. Table 3 presents the three
systems that were compared in the test. Results in Fig. 4 proved
the effectiveness of the proposed method. The RNN-SD system
was used to build our final submitted voices.

4. Evaluation
In this section, we will present the official evaluation results of
our system. Our system identifier is L.

Fig. 5 presents the boxplot of mean opinion scores (MOS)
of each submitted system on similarity. Since we built our
unit selection and waveform concatenation system directly us-
ing speech recordings with high sampling rate of 44.1 kHz, our
system L achieved a high mean opinion similarity score of 4.2,
which is higher than all other submitted systems. Our system is
significantly better than other systems except system M, whose
MOS is 3.9.

Fig. 6 shows the boxplot of MOS of each system on nat-
uralness. Our system also achieve MOS of 4.2, higher than all
other systems. And our system is the only system that is higher
than 4.0. The difference between our system and other submit-
ted system is significant except M, whose MOS is 3.9.



●●●●●●

●

●●

●

●●●

●

●●●●●●●

●

●

●●●●●

●

●●●●●

●●

●●●

●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●

●

●

●●●

●

●●●●● ●●●

●

●●

●

●●●● ●●●●●●●● ●●●●

189 189 190 191 189 189 189 189 191 190 189 189 190 189 189 189 189n

A L M Q B F H O E D G J K P I C N

1
2

3
4

5

Mean Opinion Scores (similarity to original speaker) − All listeners

System

S
co

re

Figure 5: Boxplot of similarity scores of each submitted system.
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Figure 6: Boxplot of naturalness scores of each submitted sys-
tem.

Our system also performed the best on the intelligibility
test. As shown in Fig. 7, the word error rate (WER) of our
system is 26%. Better units can be selected using our new cri-
terion with the LSTM-RNN based context embedding for unit
selection. This leads to a better WER result in the evaluation,
even better than the HMM base parametric speech synthesis ap-
proaches.

The scores of our system in the paragraph test are presented
in Table 4. An additional comparison between our system and
the best system other than our system, which is system M, is
shown in Fig 8. It can be seen that our system outperform other
systems in all metrics.
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Figure 7: WER of each submitted system.
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Figure 8: The structure of LSTM-RNN for acoustic modeling.

Table 4: Mean opinion scores of paragraph test.

MOS
Pleasantness 39

Speech Pauses 36
Stress 36

Intonation 38
Emotion 38

Listening effort 38

5. Conclusions
This paper presented the details of building the USTC system
for the evaluation of Blizzard Challenge 2016. The LSTM-
RNN based models were used in our system in both front-end
text processing and back-end acoustic modeling. We adopted
them for ToBI prediction, such as accent, phrase boundary and
boundary tone prediction. Context embeddings were also ex-
tracted by an LSTM-RNN to help the acoustic modeling and



unit selection. Dialogue embeddings and sentence type embed-
dings were included for better prosody modeling to enrich the
expressiveness of synthetic speech. The effectiveness of our
system is verified by both our internal experiments and official
evaluation results. Our system outperformed all other submit-
ted systems. The future work will be further investigating the
LSTM-RNN based context embedding in unit selection based
speech synthesis.
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