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Abstract

This paper describes the implementation of the IRISA unit
selection-based TTS system for our participation to the Blizzard
Challenge 2017. We describe the process followed to build the
voice from given data and the architecture of our system. It uses
a selection cost which integrates notably a DNN-based prosodic
prediction and also a specific score to deal with narrative/direct
speech parts. Unit selection is based on a Viterbi-based algo-
rithm with preselection filters used to reduce the search space.
A penalty is introduced in the concatenation cost to block some
concatenations based on their phonological class. Moreover, a
fuzzy function is used to relax this penalty based on the concate-
nation quality with respect to the cost distribution. Integrating a
lot of constraints, this system achieves average results compared
to others.

Index Terms: speech synthesis, unit selection

1. Introduction

In recent years, research in text-to-speech synthesis essentially
focused on two major approaches. The first one is the para-
metric approach, for which HTS [1] and DNN-based systems
[2] are now dominating the academic research. This method
offers advanced control on the signal and produces very in-
telligible speech but with a low naturalness. The second ap-
proach, unit selection, is a refinement of concatenative synthe-
sis [3, 4, 5, 6, 7, 8, 9]. Speech synthesized with this method
features high naturalness and its signal quality is unmatched by
other methods, as it basically concatenates speech actually pro-
duced by a human being.

The 2017 challenge is to build an expressive voice using
children’s audiobooks in English. The main difficulty with au-
diobooks, and in particular for children, is the change of char-
acters and especially the imitation of animals (i.e. roars) as well
as other sounds that may occur. For instance, in the data pro-
vided, a bell ringing signal is given to tell the child that he/she
has to turn the page. Considering the expressivity of the voice,
the different sounds and characters we can find in such books,
the main challenges are phone segmentation and expressivity
control.

In this paper we present the unit-selection based IRISA sys-
tem for the Blizzard Challenge 2017. Basically, the system is
based on preselection filters to reduce the acoustic unit space
to explore and on a beam-search algorithm to find the best unit
sequence. The objective function minimized by the algorithm
is composed of a target cost and a join cost. The join cost re-
lies mainly on acoustic features to evaluate the level of spectral
resemblance between two voice stimuli, on and around the po-
sition of concatenation. For instance, distances based on MFCC
coefficients and especially FO are used [10, 11]. In particular,

for the challenge, we have introduced a penalty on units whose
concatenation is considered as risky. This follows the work
of [12, 13] which showed that artefacts occur more often on
some phonemes than others. For this purpose, we define a set
of phoneme classes according to their “resistance” to concatena-
tion. A phoneme is called resistant if the phones of its class are
usually unlikely to produce artefacts when concatenated. This
approach has been originally proposed in the context of record-
ing script construction in [13] to favor the covering of what has
been called “vocalic sandwiches”.

Moreover, as audiobooks for children contain very expres-
sive speech, one need a mean to control the degree of expres-
sivity selected units have. To do so, we propose two things in
our contribution. The first one is to introduce a prosodic model
to predict how should be the prosody for each text segment.
This is done using a DNN learned with the speaker’s data. Pre-
dictions are then used in the target cost to rank units based on
their prosodic properties. The second proposal is to build an
expressivity score to evaluate how expressive a speech segment
is in the acoustic space of the speaker. This score is then used
to favor less expressive segments for narrative parts and more
expressive segments during direct speech.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the voice creation process from the given data.
Section 3 details the TTS system and further details are given in
sections 4 and 5. Section 6 presents the evaluation and results.

2. General voice creation process

As in 2016, this year the challenge focuses on audiobook read-
ing for children in English. The goal is then to build a voice
based on approximately 6.4 hours of speech data provided as
a set of wave files with the corresponding text. The recordings
correspond to a set of 56 books targeted at children aged from
4 years old.

2.1. Data preparation and cleaning

The very first step has been to clean the text and make sure
that it was corresponding to the speech uttered by the speaker.
Moreover, all the quotation marks has been checked to insure
an easy detection of boundaries between narrative and direct
speech. Some parts corresponding to too expressive speech
were discarded at this step to avoid later problems during syn-
thesis. Despite of this, we still have preserved the major part of
the expressive content. This work and the sentence level align-
ment has been done manually using Praat [14].

Finally, as the signals were provided using different for-
mats, we have converted all the speech signals to standard WAV
with a sampling frequency of 16kHz for further processing. FO
is extracted using the ESPS algorithm [15] while pitch marks



are computed using our own algorithm.

2.2. Segmentation and feature extraction

To build the voice, we first phonetized the text thanks to
the grapheme-to-phoneme converter (G2P) included in eS-
peak [16]. Then the speech signal has been segmented at the
phone level using HTK [17] and standard forced-alignment.
The acoustic models used for segmentation are learned using
the data provided for the challenge.

Additional information is extracted from the corpus, like
POS tags, syllables. Moreover, a label is associated to each
word indicating if it is part of direct speech or not. The label
is obtained based on the quotation marks in the text. The main
idea with this label is to separate normal speech from highly
expressive speech, usually present in dialogs.

Some prosodic features are also derived from the speech
signal as energy, perceived pitch (in semi-tone) or speech rate.
For those features, we compute minimum, maximum, average
and standard deviation values at a word level. Those features are
used during the synthesis process to better control the prosodic
context associated to candidate segments.

All this information is stored in a coherent manner using
the ROOTS toolkit [18]. All conversions and interactions be-
tween the different tools are also managed with this toolkit as,
for instance, conversions from IPA (output of eSpeak) to the
ARPABET phone set used in the synthesis engine.

3. The IRISA system

3.1. General architecture

The IRISA TTS system [19, 20], used for the experiments pre-
sented in this paper, relies on a unit selection approach with a
beam-search algorithm. The optimization function is divided,
as usually done, in two distinct parts; a target and a concatena-
tion cost [4] as described below:
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where U™ is the best unit sequence according to the cost func-
tion and ., the candidate unit trying to match the n'" target unit
in the candidate sequence U. The search process is done using
the beam-search algorithm using a beam of size 300. C'(unr)
is the target cost and Ce(un—1,un) is the concatenation cost.
Wie, Wee, wy, and vy, are weights for adjusting magnitude for
the parameters. Sub-costs are weighted in order to compensate
magnitudes of all sub-costs as in [21]. In practice, the weight
for each sub-cost c is set to 1/u., where p. is the mean sub-
cost ¢ for all units in the TTS corpus. The problem of tuning
these weights is complex and no consensus on the method has
emerged yet. [22] is a good review of the most common meth-
ods.

3.2. Join cost

The concatenation cost C.(u, v) between units v and v is com-
posed of MFCCs (excluding A and AA coefficients), ampli-
tude, FO and duration euclidean distances, as below:
Ce(u,v) = Cmfec(u,v) + Camp(u,v) + Cro(u,v)
+Cdur(u7 7_)) + K(uv ’U),

Table 1: List of features used in the target cost

Phoneme position:
LAST_OF_BREATHGROUP
LAST_OF_-WORD LAST_OF_SENTENCE
FIRST_-OF-WORD

Phonological features:
LONG NASAL
LOW_STRESS HIGH_STRESS

Syllable related features:
SYLLABLE RISING SYLLABLE_FALLING

where Crfec(u,v), Camp(u,v), Cro(u,v), Caur(u,v) are
the sub-costs, resp., for MFCC, amplitude, FO and phone du-
ration. K (u,v) is a penalty taking into account the estimated
quality of the concatenation considering the distribution of the
concatenation costs for phonemes of the same class. The com-
putation of this penalty is detailed in [20, 23].

3.3. Target cost

For candidate units, we compute a numerical target cost built
upon the following components:

* A linguistic cost computed as a weighted sum of the fea-
tures given in table 1.

* A prosodic cost based on the euclidian distance between
a set of basic prosodic features predicted by a DNN and
the true value of candidate segments.

* An “expressivity” score used to control the level of ex-
pressivity of the candidates depending on their context.
The underlying hypothesis is that we can rank the speech
segments on an expressive scale and, for instance, favor
candidates with high energy during direct speech while
keeping more quiet candidates for narrative parts.

These three parts are summed up to result in the target cost.
Finally, the weights W;. and W, used in (1) to merge join and
target costs are arbitrarily set.

In the following sections, we give more details on the two
last sub-costs.

4. Prosodic target cost

In the case of story telling, the control of prosody is of first im-
portance. Consequently, we tried to introduce a model learned
on the speaker’s data to predict some prosodic parameters for
which we can compute a distance during the unit selection pro-
cess. We chose to keep track of three discretized prosodic cues:
speech rate (slow, normal, fast), FO contour shape (rising, flat,
falling), and energy level (low, normal, high). As an input to our
model, we use 142 linguistic features such as the phone identity
and some positional features (within the syllable, word, breath
group and sentence).

The relationship between those input features and the out-
put prosodic features is learned using a DNN. Based on empiri-
cal experiments, we decided to use a network with 3 hidden lay-
ers. The first one is a Bidirectional-LSTM layer with 256 units
while the next two hidden layers are fully connected layers with
256 nodes each. The leaky rectified linear activation function
is used for those layers. The network parameters are optimized
using the RMSProp algorithm with a MSE loss function.



The coefficient of determination, or R2, can be used to eval-
uate the ability of a model to predict real observed values. This
score evaluates the proportion of output variance that is cap-
tured by the model. The possible values range from minus infin-
ity to 1.0. A score of 0 means that the model outputs a constant
value equal to the average of outputs. The best possible value is
1. In our case, the evaluation of the model gives R? scores of
0.95 on the training set, 0.92 on the validation set and 0.87 on
the test set. Those results seem to show that the model is able
to predict quite well the prosodic features.

During synthesis, the predicted values are used to evaluate
the quality of candidate segments by computing an euclidian
distance between predicted and real values. The resulting value
is incorporated into the target cost as our prosodic cost.

5. Dealing with narrative/direct speech
parts

Story telling, especially targeted at children, involves a lot of
variations in expressivity. For instance, a great difference exists
between narration and direct speech, i.e. when the character is
speaking for himself like in a dialog. Changes can be made at
same time on the timber and/or the prosody used by the reader
to produce a living story and keep the attention of the listener.

5.1. Principle

To try to take into account such changes, we propose here to
build a system enabling to give a “normality”’/“expressivity”
score to each word of the corpus used to build the TTS voice.
The main idea behind this is (i) to characterize the normal way
of speaking of the given speaker and, (ii) to give a score to each
word based on its distance to normal events. In our case, the nar-
rative sections, which represent the main part of the corpus, are
considered as the normal way of speaking while direct speech
parts are considered as outliers.

5.2. Expressivity score

To model this space of normal events, we use the energy (min,
max, mean, std), perceived pitch (in semi-tone) and FO (min,
max, mean, std) features. One gaussian mixture model (GMM)
is built per feature family using the scikit-learn toolkit [24]. The
number of gaussian components per GMM is 8 at maximum
and is controlled using BIC. We use a low number of gaussian
components to avoid the specialization of some components for
minor clusters that can be far from the majority classes. Other
options might be chosen, such as the a posteriori elimination of
gaussian components with a low weight (i.e. representing a low
number of samples). As a consequence, common events should
have a high likelihood for the model while words pronounced
in a different way (e.g. with high energy or FO) should have a
low likelihood.

The expressivity score Sezpr is then computed as a linear
combination of the probability of the word features w for each
of the three models:

Seapr(w) = —[aclogP(w|M.) + ailogP(w|My)
+arlogP(w|My)]

where ae, a¢ and o are the mixing coefficients for energy,
tone, rate and FO. M., M; and M are the corresponding
GMM for each feature type.

The optimization of the mixing coefficients is done with a
gradient descent on the narrative class only. Other kind of fea-

tures have been tried, like speech rate but they were not relevant
here.

5.3. Integration into the cost function

The next step is to compute the score for all the words in the
corpus. During synthesis, two different target values are chosen
for narrative and dialog parts. In the target cost, we add a sub-
cost evaluating the distance between the target value and the
true value for this score.

Ideally, we expect that a low target score will constrain the
voice to remain less expressive while a higher target value will
give the preference to more atypical segments.

One limit of this approach is that if the scores of two seg-
ments are low (resp. high), all we know is that these two seg-
ments are frequent (resp. infrequent) but we have no insight into
the similarity of the two segments. Preliminary experiments
have shown interesting results in some cases.

Another problem of this approach is that it can bring ex-
pressivity while introducing strong constraints on the selected
segments. Depending on the content of the corpus, it can be
harmful for the output quality. Notably, it can lead to inconsis-
tencies during unit selection for instance concerning intonation
or stress. This is what has been observed in the results for our
system. In particular, the constraint is constant during the breath
group while it could be better to adapt it in function of the cor-
pus content and the choice of the other candidate segments in
the sequence.

6. Evaluation and results

The evaluation assessed a number of criteria (overall impres-
sion, speech pauses, intonation, stress, emotion, pleasantness
and listening effort) for book paragraphs as well as similarity to
the original speaker, naturalness and intelligibility. The evalu-
ation has been conducted for different groups of listeners: paid
listeners, speech experts, and volunteers. In this section, we
only give results including all participants. In every figure, re-
sults for all 17 systems are given. Among the system, we have
the following : system A is natural speech, system B is the Fes-
tival benchmark system (standard unit selection), system C is
the HTS benchmark and system D is a DNN benchmark. Sys-
tem Q is the system presented by IRISA.

6.1. Evaluation with paragraphs

Overall results are shown on figure 1 taking into account all lis-
teners. For each criterion, our system achieves average results.
These average results are likely to be explained by inconsisten-
cies in the prosody and stress placement. A positive point is
that the emotion criterion obtains a mark of 2.8 which seems to
show that the proposed expressivity score has an impact.

6.2. Similarity to original speaker and naturalness

The similarity of the speech produced, as shown on figure 2, is
among the average systems with a mean score of 2.8 and the
median value at 3. Similarly, naturalness is also quite good as
shown on figure 3 with an average of 3.1 and a median of 3. For
naturalness, our system is comparable to the baseline festival
system.

Despite of that, those results are far from the best systems.
They seem to reinforce the conclusion that too many constraints
have been introduced during the selection. Sometimes, the sys-
tem performs very well but on average it makes many errors
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Figure 1: Mean Opinion Scores for the different criteria and
the systems evaluated. “Natural” system is shown in yellow
and IRISA system in red while other participants are in green.

penalizing the similarity and the naturalness criteria. More-
over, the downsampling to 16kHz of the speech signal may be
a reason for the similarity degradation compared to our entry in
2016.

6.3. Intelligibility

Concerning intelligibility, our system is comparable to other
systems with an average word error rate of 44%. Detailed re-
sults are given on figure 4. Compared to last year, the correc-
tions we made have improved the intelligibility, even if our sys-
tem is not performing well on other criteria.

7. Discussion

Despite of the improvements we added to our system, the results
are not satisfying. After inspecting them and also the configu-
ration of system, it appears that some elements can be corrected
quite easily and seem to have a large impact on the synthesis
quality. First, we have implemented a mechanism enabling to
relax stress constraints in case not enough units are present in
the right context. This mechanism introduces some inconsisten-
cies in the stress placement as a lot of segments are not well rep-
resented in the corpus. By activating this threshold only when
it is really needed (less than five units in the corpus), the stress
placement seems to be improved, at least during informal lis-
tening tests.

Moreover, the expressivity score should be predicted word
by word during synthesis instead of being chosen arbitrarily for
an entire breath group. What appears here is that a constant
target expressivity score may have an overall negative impact
on intonation. In future work, we should focus on that partic-
ular problem. The introduction of a neural network to guide
unit selection seems to work well and helped to control realized
prosody thus avoiding very low score for intonation.

During the development of the expressivity score, we
checked the ranking of the words informally by listening to the
words with the highest and the lowest scores. Doing that helped
us detect big segmentation errors and thus improve the quality
of the corpus. For instance, we found that we had some extra
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Figure 2: Mean Opinion Scores, similarity to the original
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Figure 4: Word Error Rates, intelligibility evaluation, all listen-
ers.

text in some books that the segmentation system was not able to
align.

Finally, other parameters as the size of the beam for the
search, or the size of the candidates short list, are still difficult
to tune. One important point is that those two parameters need
to be chosen considering a trade-off between the number of con-
straints added during the unit selection and the variability of the
corpus.

8. Conclusion

We described the unit-selection based IRISA system for the
Blizzard challenge 2017. The unit selection method is based on
a classic concatenation cost to which we add a fuzzy penalty
that depends on phonological features. In order to improve
the system, we added specific costs to deal with prosody and
transitions between narrative third-person and first person text.
Despite the improvements we have made, our system obtained
average results. One explanation is that by using the narra-
tive/direct speech sub-cost, we added to many constraints dur-
ing the unit selection process leading to inconsistencies in stress
and prosody. Bad stress placement is also the result of the relax-
ation of stress constraints when it should not be the case. These
two elements were the cause of a drop in nearly all criteria.
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