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Abstract

In this paper we present the entry from CMU to Blizzard
speech synthesis challenge 2018. We begin with a description
of build process for our base voice. We then present the fol-
lowing modifications to base voice: (1) Since the data is chosen
from children’s stories, we employ Rhetorical Structure The-
ory to obtain relationships between sentences. We specifically
model the contrastive relationship between the sentences within
a paragraph. (2) The original speaker attempts to use different
ways of speaking depending on character and the situation in
the story. To model this, we condition our acoustic model on
the character and quote type information. (3) For improving the
voice quality we present ‘segmental wavenet’ - a variant of the
popular autoregressive framework Wavenet.
Index Terms: speech processing, convolutional neural net-
works, strength of excitation, classification, emotion

1. Introduction
Blizzard speech synthesis challenges were devised to better un-
derstand different corpus driven speech synthesis techniques on
a common dataset. The current challenge is a continuation from
the previous year and is aimed at synthesizing children‘s audio-
books. Our submission to this year‘s challenge was based on
statistical parametric speech synthesis. There have been contin-
uous and significant improvements in all aspects of this frame-
work of speech synthesis from textual representations through
post filtering. [1] has developed generic methods to enable the
usage of distributional analysis of text at phone, word and char-
acter level in an unsupervised fashion. These techniques have
been utilized in building systems both for new languages [2] as
well as improving the models for existing languages [3, 4]. The
world of acoustic modeling has witnessed the advent of neural
models [5, 6, 7, 8, 9] while [10, 11] have proposed the use of
alternatives. [12] investigates the incorporation of filled pauses
and [13, 3, 14] present techniques to accomplish better phrase
break prediction. [15, 16] investigate the postfilters.

In this paper, we present our submission to this yearś evalu-
ation. Broadly, we have investigated the following approaches:

• Since the data is chosen from children’s stories, we
employ Rhetorical Structure Theory to obtain relation-
ships between sentences. We specifically model the con-
trastive relationship between the sentences within a para-
graph.

• The original speaker attempts to use different ways of
speaking for different characters in the story. To model
this, we condition our acoustic model on the character
and quote type information.

• For improving the voice quality we present ‘segmental
wavenet’ - a variant of the popular autoregressive frame-
work Wavenet [17].

The rest of this paper is organized as follows: We begin
with a description of our base voice in section 2. We then
present various approaches we investigated in section 3. This
is followed by evaluation results and discussion. We present the
evolution of our system and conclude this report.

2. BaseVoice
In this section, we describe our base voice built using the
CLUSTERGEN statistical parametric framework [18]. In brief,
our system predicts acoustic vectors on a per frame basis based
on models that use phonetic, metrical and prosodic contexts.
The predicted vectors are then passed through an MLSA filter
to generate speech. In addition, we also perform the following:

• Improving the labels: We try to improve upon the la-
bels originally obtained using forced alignment by an
EHMM.

• Removal of Outliers and pruning frames: We perform
data pruning at two stages. First, we remove the outlier
examples using duration as the prosody feature so that
we obtain reliable prosody models with high correlation.
We then also perform pruning using spectral distortion
after the base voice is built using a development.

• We employ Random Forest based acoustic model as the
averaging effect of individual decision tree based models
has been shown to improve the MCD.

2.1. Data

The database used was provided by Usborne Publishing Ltd.
and consists of the utterances from childrens audiobooks spo-
ken by a native British female speaker. We are given about 5
hours of speech data. We have removed the ‘bell’ sounds which
were present in the speech and all the other expressions like
‘uh..’, ‘hm..’. The total duration of the audio is approximately
4.5 hours after segmentation.

2.2. Tokenization and G2P

We consider any text entry separated by white space as a to-
ken. From the training data, we have observed that there are in-
stances where the calendar entries such as 1859 are represented
both in numeric form as well as the expanded form(eighteen
hundred and fifty nine). Further, we noticed that tokens like
hyphen played a varied role in the pronunciation of the accom-
panying word(s). For example, here are the different instances
where hyphen was used:

• To indicate hesitation in speaking or transient sounds.
This can be observed in the pronunciations for words ‘S-
s-sorry’, ‘Cr-r-rock’, ‘W-w-what’.

• To indicate repitition: ‘tap-tap-tap’, ‘glug-glug-glug’.

• As a placeholder joining two words: broken-hearted
bulls-eye chinny-chin-chin



• As a phrase break: ’You cant pretend to not know John
Canty - your own father’

We have used a decision list based disambiguator built fol-
lowing [19] to tokenize such occurrences appropriately. Once
tokens are obtained, we have analysed the usage of two different
phonesets: US phoneset which performed G2P mapping based
on CMU pronunciation dictionary and UK phoneset which per-
formed G2P mapping based on Unilex pronunciation dictionary.
As we did not find striking differences in the final voice qual-
ity between the two phonesets, we have continued the system
design with US phoneset.

2.3. Pronunciations for OOV words

There were words in the training corpus which were absent from
the CMU pronunciation dictionary. Most of these words were
observed to be proper nouns and therefore, we concluded that it
would be better to build a generic model to predict the pronun-
ciations for such words. For this, we have employed word to
phone mapping [20] using automatic epsilon scattering method
[21]: We first use epsilon scattering method to align the letters
and phones for a set of words in the given database. Each letter
is assumed to be specifying a phonetic correspondence to one
or more phones and in case a letter is not mapped to any phone
then epsilon is used as a placeholder. We first aligned the letter
(graphemic) and phone sequences by estimating the probabil-
ities for one letter (grapheme) G to match with one phone P.
We then used string alignment to introduce epsilons maximiz-
ing the probability of the alignment path of that word. Once
all the words have been aligned, the association probability is
calculated again and this is repeated until convergence. Once a
reliable alignment has been obtained, we use a statistical map-
ping from letters to phones which can be seen as maximizing
the expression:

Π
i,j∈S,W

Prob(si|wj) (1)

for each word w wherew ∈W d is the word in the database
with a vocabulary(W) of size d.

2.4. Improving the labels

Table 1: Analysis of Improving the labels

Pass No. of Moves MCD F0 Error Duration Error

1 73898 4.671 28.829 0.943

2 63587 4.646 28.736 0.943

3 57072 4.634 28.814 0.943

4 53376 4.641 28.795 0.946

5 51033 4.636 28.835 0.948

6 48881 4.627 28.823 0.946

7 48460 4.626 28.911 0.946

8 46013 4.618 29.022 0.946

9 44776 4.620 28.926 0.947

We perform text segmentation of the utterances at the seg-
ment level (phone). However, all our subsequent analyses are
carried out at a lower level, which is realized by dividing each
phone into three states, corresponding to the begin, middle and

end states of a phoneme. Therefore, each frame is labeled as
one of these states and these initial labels for the data are ob-
tained using EHMM technique. We then tried to improve the
labels using the procedure outlined in [22]: We examine each
segment boundary and consider moving it forward or backward
( by one frame) and investigate whether this decreases the dis-
tance between original and predicted frame. This process is per-
formed over all the labels and then the models are rebuilt. The
distance is measured in terms of unnormalized MCD including
the energy coefficient but not the deltas. We have performed 10
iterations over the entire database as the improvement in MCD
stopped at that point. The results of this procedure have been
outlined in the table 1. We have observed that the passes did not
necessarily result in an improvement in the prosodic models.

2.5. Acoustic Feature Extraction

For each of the states obtained from segmentation, we extract
acoustic feature vectors over a 5ms frames obtained by apply-
ing a hamming window. Spectral representation that we use is
MCEPs and were extracted using the SPTK toolkit [23]. The
order of MCEP was chosen to be 24 with a frequency warping
factor of 0.42 and a small value ( 1.0E-08) was added to the
periodogram. For F0, we interpolate between unvoiced section
ensuring breaks during silences and then apply a post smooth-
ing using a 25 ms window.

2.6. Outlier Removal

In the context of audiobook synthesis, selection of appropriate
examples for building the data driven statistical models is nec-
essary as the statistics may be skewed due to the presence of
outliers. We perform this based on the state durations. For each
state, we remove the examples that have values farther than 1.5
times the standard deviation of the mean value for the state.

2.7. Acoustic Modeling

For our current submission we used Random Forest [10] as the
model for learning a mapping from the linguistic features to the
acoustic features. The central idea is based on feature bagging
- to replace the original MCEP prediction tree in the CLUS-
TERGEN framework with multiple prediction trees trained us-
ing random linguistic features. For this, we built 20 different
trees for each state, by varying the probability of each feature
being picked. Then, to form a forest, we average the predicted
values from the trees. Based on the observations from [10], we
pick the best 3 trees based on the MCD on a held out devel-
opment set. Predictions at test time are made by averaging the
predictions from the selected individual regression trees.

2.8. Pruning Frames

In addition to the outlier removal mentioned in section 2.6
which was performed using state duration, we also perform a
frame pruning based on the spectral features and remove the
frames that have the predicted values farther than a predeter-
mined threshold value. These frames correspond, in general to
the areas where the model consistently makes mistakes. After
this, we rebuild the final voice with the pruned frames.



3. Experiments
3.1. Identifying quoted speech type and characters from
stories

The data provided for building voices consists of abridged plays
such as ‘Androcles and the Lion’. In other words, the data is
a continuum of discourse that runs between characters in the
play. Subsequently, the original speaker attempts to imitate the
persona of characters while recording the content. This attempt
is manifested in the form of prosodic variations in the provided
recordings. Therefore, we hypothesize that it is beneficial to tag
the data with the speech type ( quoted vs narrated ), character
identity [24] and use this information during acoustic modeling
[25].

3.1.1. Quoted vs Non quoted speech

We define a portion of story as quoted if it is quote annotated.
In addition, we have also annotated if the portion of text was a
continuation from previous sentence or a new one. We have an-
notated these segments using SABLE and an example is shown
below:

<QUOTE TYPE="NEW"> It's my daughter, Hermia,
</QUOTE> he explained.

<QUOTE TYPE="CONT"> I want her to marry
this man, Demetrius. </QUOTE>

An informal inspection of the text has not revealed a signif-
icant number of nested quotes leading to ‘story within a story’.
This might be because the provided content is aimed at children.
Therefore, we have not specifically annotated nested quotes. In
scenarios where we did encounter them, we have split the sen-
tence into different utterances. During acoustic modeling, we
use this information as another label.

3.1.2. Identifying character type in stories

Associating each utterance to a character provides a way to ren-
der the story mimicking the characters. This is essentially dealt
as a Named Entity Recognition task [24]. Additional linguis-
tic information was used to identify the proper names. In our
approach, we borrow this idea but confine ourselves to a max-
imum of three characters. Nominally, we associate the three
characters to (1) Narrator (2) Protagonist and (3) Antagonist.
Through an analysis of the text, we have come up with the fol-
lowing basic approach for assigning character labels to text:

• Text without ‘quote’ attribute is labeled by the tag ’Nar-
rator’.

• For every quoted utterance after the narrator, we alternate
between characters ’Protagonist’ and ’Antagonist’ if the
quote is labeled ’NEW’.

• If the quoted text is labeled as continuation ( ’CONT’),
we repeat the label of the character.

• If there is a sequence of more than three utterances
tagged as ‘Narrator’, we drop the speaker state and label
the next encountered character with the tag ‘Protagonist’.

We have annotated these segments using SABLE and an
example is shown below:

<CHAR TYPE="NARRATOR">
Just then, an angry man burst into
the Great Hall with
three other people.
</CHAR>

<CHAR TYPE="PRO">
I must see Duke Theseus now!,"
</CHAR>
<CHAR TYPE="NARRATOR">
he shouted. </CHAR>

<CHAR TYPE="ANT">
Is that you, Egeus?"
</CHAR>
<CHAR TYPE="NARRATOR">

asked Theseus.
</CHAR>

We have observed that the stories differ in the consistency
of speaker - speech relationships. However, in our current sub-
mission we have followed the rudimentary approach described
above and have not specifically handled this inconsistency.

3.2. Identifying inter sentential events and intra-sentential
relations

Stories are often characterized by flow of emotions. In addi-
tion to mimicking the characters, the original speaker has also
attempted to render the perceived emotions while recording the
content. Similar to characters, the manifestation of these emo-
tions too is in the form of prosodic variations. Therefore, we
hypothesize that we can model the flow of emotions in a story
by modeling the prosody of reader. In our current submission,
we investigate two approaches for realizing this:

• We identify semantic units (or) events that indiciate
change of state within the sentences.

• We employ Rhetorical Structure theory to identify con-
trastive relationship between different sentences within
the paragraph.

3.2.1. Event Detection within sentences

We define events as the semantic units that express a change of
state or an action in world. Events are comprised of the predi-
cate denoting the action (usually a verb or a noun) and a set of
arguments: entities that act on the predicate (agent) or that the
predicate acts on them (patient, theme). Conforming to this def-
inition, event detection is an information extraction task where,
given a sentence, we try to automatically detect the predicate
and the event arguments.

Because of their rich structure, events are good semantic
representations that provide useful information for the prosody
model. Most times, predicates contain the most important infor-
mation the speaker wants to convey in an utterance, something
crucial for the prosody model. Although predicates are the main
information carrier, event arguments also provide important in-
formation. Mostly prominent in dialogue or story-telling sce-
narios, event arguments might carry supplemental information
for a previous utterance. In such cases, the speaker wants to
focus on those entities more than the action, which shows the



importance of Event Detection and comparison of events across
utterances.

To identify events, we consider each sentence indepen-
dently. For each sentence we provide a list of actions and a
set of participating entities, which we use as features in our
prosody model. Given the lack of annotated data, our Event
Detection system is a primarily rule-based system. Our system
uses the Stanford CoreNLP parser [26] in order to generate a list
of candidate verbal and nominal events per sentence. Then we
map each of those candidates to a frame provided by FrameNet
[27], which represents the semantic type that a word belongs to.
Finally, we use a curated subset of FrameNet frames that repre-
sent events in order to determine whether or not the mention is
an event. In order to extract the event arguments, we use the De-
pendency Graph in combination with the NER model provided
by Stanford CoreNLP.

3.2.2. Identifying intrasentential relations using Rhetorical
Structure Theory

Discourse theory describes the high level organization of speech
and text. Specifically, hierarchical discourse representations
such as Rhetorical Structure theory (RST) provide tree shaped
parsing of a story that can be used for prosody modeling. In
simple words, given spans of text, RST describes the relation-
ship between them. We hypothesize that identifying contrastive
rhetoric and emphasizing the contrast leads to soulful synthe-
sis. For this, we use an approach inspired by [28]: We first
learn projection function that learns a mapping from surface
level representation to the discourse label on a gold set of dis-
course labels [29]. We then apply the projection function on
current data to obtain discourse labels for each utterance in the
story. However, our implementation differs from [28] in a cou-
ple of ways: (1) We use the latent representation obtained using
a Recurrent Neural net based language model instead of lexi-
cal features. This allows us to also bypass the shift reduce parse
based implementation[30]. (2) The projection function we learn
is non linear instead of a linear function. The steps we followed
are outlined below:

• We segment the story into different Elementary Dis-
course Units (EDUs). Instead of using sequential data
labeling [31], we mark each utterance as a different EDU
while parsing stories.

• We build an LSTM based language model on WSJ cor-
pus. We then pass the entire story corpus through trained
LM, reinitializing the hidden state after every story. For
each utterance, we obtain the hidden representation. In
our implementation, the RNNLM had a single hidden
layer with 512 units and achieved a test perplexity of
5.32 on WSJ corpus. Thus for each utterance in the story,
we end up with 512 dimensional representation.

• We then learn a projection function that maps the latent
representation of the utterance to its discourse label.

Informal listening evaluation of original recordings re-
vealed a stark variation in prosody of contrastive sentences.
Therefore, for the current implementation our projection func-
tion is a binary classifier that learns to distinguish two relations:
Antithesis (contrast) and Not contrast.

3.3. Segmental Wavenet

Autoregressive models such as WaveNet and WaveRNN [32]
have proven that neural models can be used as vocoders at the

raw waveform level. Consequently, there has been a rise in the
interest of research community towards such approaches [33,
34, 35, 36]. However, these models still need long time spans to
train and are computationally expensive. Since we would like
to experiment rapidly, we have formulated a neural vocoder at
the segmental level for this challenge.

3.3.1. Formulation of Regular WaveNet

Wavenet [17] is an autoregressive neural model with a stack
of 1D convolutional layers that is capable of directly generat-
ing the audio signal. It has been shown to generate speech that
rivals natural speech when conditioned on predicted mel spec-
trum [37]. The input to Wavenet is subjected to corresponding
gated activations while passing through each dilated convolu-
tional layer and is classified by the final softmax layer into a µ
law encoding. The concrete form of the gated activation func-
tion is given by following equation:

z = tanh(Wf ∗ x)� σ(Wf ∗ x) (2)

where x and z is the input and output to the activation, re-
spectively. W represents a convolution weight. The subscripts f
and g represent a filter and a gate, respectively. The joint prob-
ability of a waveform X can be written as

P (X/λ) =

t∏
t=1

P (xt‖x1, x2..xt−1, λ) (3)

given model parameters λ.

3.3.2. Formulation of Segmental WaveNet

An implementation hack we have used to be able to save GPU
memory while training regular WaveNet was to limit the num-
ber of timesteps being learnt by the model at each update step.
An evaluation on Arctic AWB voice revealed that the model
was able to generate speech even if it was exposed randomly to
2000 time steps. Therefore, we have investigated the approach
of formulating the model at the level of individual phonemes.
To strengthen the learning, we have used full context linguistic
features as global conditioning to the model.

P (X/λ) =

t∏
t=1

P (xt‖x1, x2..xt−1, L, λ) (4)

where L is the full context label serving as global condi-
tioning. The steps followed for this are outlined below:

• Extract WORLD representation [38] for each waveform
at 5 msec.

• Quantize the waveform using mu law quantization.

• Using the aligned labels, obtain the quantized waveforms
and WORLD coefficients for each phoneme.

• During training build an autoregressive model for the
quantized waveforms with WORLD coefficients as the
local conditioning and full context linguistic features as
the global conditioning. This can be seen as similar to
‘target cost’ in unit selection based systems.

• During inference, generate the waveforms for each
phoneme using global conditioning and then join them
using WSOLA [39].



We have used a batch size of 16 and an upsample convolu-
tion block with 4 layers that upsample at {2,2,4 and 5} times re-
spectively. To avoid disproportionate zero padding which might
occur (for example, if a fricative and a vowel are in the same
batch), we restrict each batch to have only identical phonemes.
Alternatively, it might be possible to sort the waveforms by
length of segments before batching. However, we have not
explored this approach. Although a model trained this way
without global conditioning might be able to generate the en-
tire wavefile during inference, we found global conditioning to
be helpful in the model training better. In addition, not having
to generate whole file at once also led to faster generation dur-
ing inference. We have also trained a pretrained variant of this
model: We first train regular WaveNet without global condi-
tioning for 200K updates and then switch to Segmental version.
However, we have not found any particular improvements with
the pretrained model. Hence we have not used this model in our
submission.

4. Evaluation

Figure 1: MOS Scores for all listeners - Overall Impression

The subjective evaluation was conducted based on vari-
ous categories: pleasantness, speech pauses, stress, intonation,
emotion, listening effort. The identifier of our system is F. Mean
opinion score of our system as provided by all listeners is de-
picted in figure 1.

4.1. Discussion of Results

We are ranked in the last quartile in current evaluation. Informal
evaluations of our submission revealed that our prosody model
still lacks the necessary rendering required for an interesting
automatic story teller. Even though we have used RST based
labels for training prosody, our current implementation tracks
just simple relation between the utterances: contrast. We be-
lieve that incorporating other relations appropriately would re-
sult in a much better system. Another possible reason for pretty
ordinary performance of our prosody model might be the mod-
ular fashion of training. It might be more beneficial to train the
models in an end to end fashion instead of a two step approach
that we currently employ. An interesting observation was made
about our vocoder. While the segmental variant of autoregres-
sive formulation seems to function, and seem to be having an
analogue with unit selection based approaches in terms of target
cost, we seem to be ending up with power differences for dif-
ferent segments within same utterance during inference. Thus

we seem to be ending up with the worst of both autoregressive
and unit selection worlds. We plan to investigate this approach
in more detail to circumvent this limitation going forward.

4.2. Evolution of our System

We have been consistently in the last quartile in each of the eval-
uations over the past decade. A postmortem of our performance
last year led to the following observations: (1) Our vocoder has
not been evolving: We have been using basic mel log filter with
mixed excitation as our speech representation. (2) We were us-
ing a non neural acoustic model: one based on Random Forests.
While decision trees and Random Forests are very robust with
respect to acoustic modeling in general, neural approaches have
shown to be more flexibility and expressive. (3) Our prosody
models were restricted to a single sentence whereas prosody is
a suprasegmental feature. In addition, we had a very basic ar-
chitecture of voice building without modules such as postfilter,
etc. This simplicity was a requirement since our voices have
been in deployment in real time scenarios. However, we have
realized that the price we have been paying for such real time
speed was in terms of quality. Therefore, we have started an ex-
clusive research pipeline last year. We have made the following
modifications since:

• We have switched our speech representation from basic
log mel based representation to WORLD.

• While not deployed for current submission, we have
evolved our acoustic models into fully neural based im-
plementations.

• We now have neural prosody models that span across
sentences and use richer low dimensional dense repre-
sentations.

• We are actively experimenting with variants of autore-
gressive models to strengthen our vocoding.

• We are aggressively investigating end to end based ap-
proaches for realizing interesting speech synthesis appli-
cations.

5. Conclusion
In this paper we have presented the entry from CMU to Blizzard
speech synthesis challenge 2018. We have made these modifi-
cations to our previous submission: (1) Since the data is chosen
from children’s stories, we have employed Rhetorical Structure
Theory to obtain relationships between sentences. We have
specifically modeled the contrastive relationship between the
sentences within a paragraph. (2) The original speaker attempts
to use different ways of speaking for different characters in the
story. To model this, we have conditioned our acoustic model
on the character and quote type information. (3) For improv-
ing the voice quality we have presented ‘segmental wavenet’
- a variant of the popular autoregressive framework Wavenet.
The evaluation results highlight that we have a lot of scope to
improve our models. We are actively pursuing approaches to
strengthen our voice building framework. We believe we will
have a much stronger framework and hence a more competitive
submission in the coming evaluations.
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