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Abstract
This paper describes a text-to-speech (TTS) system developed
at the Nagoya Institute of Technology (NITech) for the Bliz-
zard Challenge 2018. In the challenge, about seven hours of
highly expressive speech data from English children’s audio-
books were provided as training data. For this challenge, we
introduced deep neural network (DNN)-based pause insertion
model and WaveNet-based neural vocoder. Large-scale sub-
jective evaluation results show that the NITech TTS system
achieved high score in various evaluation criteria.
Index Terms: text-to-speech system, deep neural network,
WaveNet neural vocoder, Blizzard Challenge, audiobook

1. Introduction
A number of studies on text-to-speech (TTS) systems have been
conducted. Consequently, the quality of synthetic speech has
improved, and such systems are now used in various applica-
tions, such as for smartphones and smart speakers. Accord-
ingly, the demand for TTS systems offering high-quality syn-
thetic speech, various speaking styles, and various languages is
increasing.

Although many TTS systems have been proposed, compar-
isons of such systems are difficult when the corpus, task, and
listening test is different. The Blizzard Challenge was started
in order to better understand and compare research techniques
in constructing corpus-based speech synthesizers with the same
data in 2005 [1]. This challenge has so far provided English,
Mandarin, some Indian languages, English audiobooks, etc. as
training data. The series of Blizzard Challenges has helped us
measure progress in TTS technology [2].

As computer processing power increased, approaches based
on big data have been successful in various research fields. In
corpus-based speech synthesis, a quality of synthesized speech
was improved by using a large amount of training data. There-
fore, a TTS system based on big data is important in speech
synthesis research. Speech data recorded with less noise and
under the same recording conditions are suitable for training
TTS systems. A large amount of training data is also necessary
to synthesize various speaking styles. For this reason, record-
ing a large amount of speech data for a TTS system requires
a huge cost. Therefore, TTS system construction method based
on audiobooks has received considerable attention. Audiobooks
can be relatively easily collected as a large amount of speech
data and text pairs. In the Blizzard Challenge 2013, around 300
hours of audiobooks were provided as training data [3]. In the
Blizzard Challenge 2016 [4] and 2017 [5], highly expressive
speech data from professionally produced English children’s
audiobooks were provided as training data. In the Blizzard
Challenge 2018, about seven hours of speech data from chil-
dren’s audiobooks, which is identical to the Blizzard Challenge

2017 and includes the five hours released in Blizzard Chal-
lenge 2016, were provided as training data [6]. All 56 books
were recorded by one native British English female professional
speaker. Speech data were sampled at a rate of 44.1 kHz and
coded in the MP3, M4A, and WMA formats. Texts correspond-
ing to speech data were also provided. The task was to construct
a speech from this data that is suitable for reading audiobooks
to children.

The Nagoya Institute of Technology (NITech) have been
submitting statistical parametric speech synthesis (SPSS) sys-
tem for the Blizzard Challenge. Typical SPSS systems have
three main components: linguistic features estimation, acous-
tic features estimation, and speech waveform generation. In
the linguistic features estimation component, linguistic features,
e.g., phonemes, syllables, accents, and parts-of-speech, of an
input text is estimated. In the acoustic features estimation com-
ponent, acoustic features, which express characteristics of a
speech waveform, is estimated with the linguistic features. In
the speech waveform generation component, a speech wave-
form is generated from the acoustic features by using a vocoder.

We focused on three approaches for Blizzard Challenge
2016 [7] and 2017 [8]: 1) automatic construction of a train-
ing corpus for SPSS systems from audiobooks; 2) design of
linguistic features for SPSS based on audiobooks; and 3) mix-
ture density network acoustic model [9, 10] incorporating tra-
jectory training [11]. The last year’s NITech system showed
good performance in terms of naturalness and intelligibility.
For this year’s challenge, we introduced deep neural network
(DNN)-based pause insertion model and WaveNet-based neural
vocoder.

The rest of this paper is organized as follows. Section 2
describes the NITech TTS system for the Blizzard Challenge
2018. Subjective listening test results are given in Section 3 and
concluding remarks and an outline for future work are presented
in the final section.

2. NITech TTS system
2.1. NITech TTS system for Blizzard Challenge 2016, 2017

The Nagoya Institute of Technology (NITech) team submitted
a text-to-speech (TTS) system for the Blizzard Challenge 2016
and 2017. In these challenges, the provided audiobooks con-
tained mismatches between speech data and text. To overcome
this problem, we investigated the automatic construction of a
training corpus from audiobooks using a speech recognizer [7].
This method realized construction of high quality training cor-
pus from audiobooks. Moreover, we redesigned linguistic fea-
tures for statistical parametric speech synthesis (SPSS) based
on audiobooks [8]. Introduction of linguistic features which can
predict and reproduce speaking style from text, enabled expres-
sive speech synthesis. In addition, we introduced the parame-
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Figure 1: Overview of the NITech TTS system

ter trajectory generation process considering the global variance
(GV) into the training of mixture density network (MDN)-based
acoustic models [8]. The last year’s NITech system showed
good performance in terms of naturalness and intelligibility.

2.2. NITech TTS system for Blizzard Challenge 2018

Figure 1 shows an overview of the NITech TTS system for the
Blizzard Challenge 2018. In addition to the NITech 2016 and
2017 TTS systems, the NITech 2018 TTS system is introduced
pause insertion model and WaveNet-based neural vocoder.

2.2.1. Pause insertion model

Pause insertion to the proper position is necessary required to
natural synthesized speech. Especially in audiobooks, since
pause is used as one of emotional expressions, pause insertion
is an important subject. In the NITech 2018 TTS system, intro-
duce a pause insertion model to reproduce the pause insertion
style of the training corpus.

Pauses included in the training corpus are predicted by us-
ing automatic speech recognition (ASR), i.e., phoneme align-
ment estimation. Phoneme alignments are estimated with a
structure with a short pause at all word boundaries. A hidden
Markov model (HMM) with state skip transitions is used as the
short pause model. If the duration of an estimated short pause is
equal to or greater than a threshold value, we assumed that the
word boundary contains a pause.

Deep neural network (DNN) is used as pause insertion
model. The input of DNN is linguistic features also used for
the input of the MDN-based acoustic model. For linguistic fea-
tures of pause insertion model, linguistic features of word- and
sentence-level designed in the NITech 2017 TTS system [8] are
used. The output of DNN is whether or not a pause is inserted
after the word. Pause insertion style of the training corpus can
be reproduced by using the pause insertion model.

2.2.2. WaveNet-based neural vocoder

Although vocoders such as STRAIGHT [12] can easily produce
synthetic speech from acoustic features, they inevitably intro-

Figure 2: Block diagram of quantization noise shaping with pre-
filtering

duce degradation in speech quality. To solve this problem, the
WaveNet generative model [13] is used as the vocoder [14] of
the NITech 2018 TTS system. The relationship between the
acoustic features predicted by the MDN-based acoustic model
and the corresponding waveform samples is modeled by the
WaveNet. The two models are trained independently.

One of the key techniques of WaveNet is modeling speech
signals composed of a set of discrete values instead of continu-
ous ones. This enables flexible waveform modeling because a
categorical distribution has no assumptions about the shape. A
nonlinear quantization with µ-law companding is typically used
to obtain the discrete valued speech signals. However, the quan-
tization scheme introduces white noise into the original signals,
resulting in the degradation of speech quality. To overcome
this problem, the mel-cepstrum-based quantization noise shap-
ing [15] is used. The basic idea is to apply time-variant mask de-
rived from mel-cepstrum to the quantization noise. Since mel-
cepstrum can be based on the human auditory system, some of
the quantization noise should be difficult for a human listener
to perceive. Furthermore, the mel-cepstrum-based prefilter that
emphasizes formants is applied to speech signals. This is known
as the postfilter in speech coding [16].

Figure 2 shows the block diagram of the mel-cepstrum-
based quantization noise shaping with prefiltering. In the fig-
ure, D(z) is a minimum phase transfer function derived from
the following spectral envelope model using M th order mel-



cepstral coefficients {c̃(m)}:

H(z) = exp

M∑
m=0

c̃(m) z̃−m

= K ·D(z), (1)
where

z̃−1 =
z−1 − α

1− αz−1
, (2)

and K is the gain factor. The phase characteristic of the all-
pass function z̃−1 can approximate the mel-frequency scale by
tuning α. In the figure, Dγ(z) and D̄β(z) are the filters for
noise shaping and prefiltering, respectively. A time-variant vari-
able k normalizes the power of the prefilter output signal. The
z-transform of the reconstructed speech sample x̂[n] is repre-
sented as

X̂(z) = {kX(z) +Dγ(z)E(z)}D̄β(z), (3)
where X(z) and E(z) are the z-transforms of x[n] and e[n] =
x̂[n] − x[n], respectively. It can be seen from Eq. (3) that
the noise spectrum E(z) is shaped by the noise shaping filter
Dγ(z). Tunable parameters γ and β (0 ≤ γ, β ≤ 1) control
the effects of noise shaping and prefiltering. The case in which
γ = 0 and β = 0 corresponds to conventional quantization.

By following one of the ways in proposed in [17], we can
derive

K = exp b(0), (4)

D(z) = exp

M∑
m=1

b(m)Φm(z), (5)

where

b(m) =

{
c̃(M), (m = M)

c̃(m)− αb(m+ 1), (m < M)
(6)

Φm(z) =


(1− α2)z−1

1− αz−1
z̃−(m−1), (m > 0)

1. (m = 0)
(7)

The prefiltering filter D̄(z) is represented as

D̄(z) = exp
M∑

m=1

b̄(m)Φm(z), (8)

where

b̄(m) =

{
b(m), (m > 1)

−αb(2). (m = 1)
(9)

The reason why c̃(1) is set to zero in Eq. (9) is to avoid the
change of overall slope of spectral envelope, i.e., voice charac-
teristics. It should be note that the mel-cepstrum-based quan-
tization noise shaping with prefiltering can be viewed as the
preprocessing of WaveNet, i.e., there is no additional computa-
tional cost in the synthesis stage.

3. Blizzard Challenge 2018 evaluation
3.1. Training corpus construction conditions

The collection of provided children’s audiobooks consisted of
56 books with a total 1258 pages. An ASR was trained to con-
struct a training corpus for SPSS [7]. The CMU Pronouncing
Dictionary [18] and the WSJ0, WSJ1 [19], and TIMIT [20]
databases were used to train the ASR. Speech signals were
sampled at a rate of 16 kHz and windowed by a 25-ms ham-
ming window with a 10-ms shift. The acoustic-feature vector
consisted of 39 components composed of 12-dimensional mel-

frequency cepstral coefficients (MFCCs) including the energy
with the first- and second-order derivatives. A three-state left-
to-right GMM-HMM without skip transitions was used. The
trained GMMs had 32 mixtures for pause and 16 mixtures for
the other phonemes. A tri-gram LM was created based on
the text of the provided children’s audiobooks. The HTK [21]
and SRILM [22] were used to construct the ASR. The train-
ing recipe was the same as that of the HTK Wall Street Journal
Training Recipe [23]. Thresholds of word-match accuracy for
adaptation and training corpora were set to 90% [7]. After prun-
ing, the training corpus for SPSS consisted of 924 pages.

3.2. TTS system construction conditions

Linguistic features [8] were extracted using Festival [24], Stan-
ford Parser [25], SyntaxNet [26], and gensim [27]. The speech
signals were sampled at a rate of 32 kHz and windowed with a
fundamental frequency (F0)-adaptive Gaussian window with a
5-ms shift. Acoustic features were composed of 64-dimension
STRAIGHT [28] mel-cepstral coefficients including the 0th co-
efficient, F0, and 32-dimension mel-cepstral analysis aperiodic-
ity measures. Voting results concerning F0 (estimated by using
RAPT [29], SWIPE’ [30], and REAPER [31] tools) were taken
as F0 of acoustic features.

In the pause insertion model, the input feature was a 251-
dimensional linguistic feature vector extracted from text which
were normalized to be within 0.0–1.0 based on their minimum
and maximum values in the training data. The architecture of
the DNN was bi-directional gated recurrent unit (GRU) with
three hidden layers which had 128 units per layer. For training
the bi-directional GRU, a adaptive moment estimation (Adam)
algorithm and dropout with a probability of 0.2 were used.

The HMM-based phoneme duration model was constructed
to estimate phoneme-level alignments for training and phoneme
duration for synthesis. In addition to static features, first-
and second-order derivatives of static features were used for
acoustic features. A five-state left-to-right context-dependent
multi-stream multi-space probability distribution hidden semi-
Markov model (MSD-HSMM) [32, 33, 34, 35] without skip
transitions was used as the acoustic model. Each state output
probability distribution was composed of a spectrum, F0, and
aperiodicity streams. The spectrum and aperiodicity streams
were modeled using single multi-variate Gaussian distributions
with diagonal covariance matrices. The F0 stream was modeled
using an MSD consisting of a Gaussian distribution for voiced
frames and a discrete distribution for unvoiced frames. State
durations were modeled using a Gaussian distribution. The
HTS [36] and SPTK [37] were used for constructing the HMM-
based phoneme duration model.

In the MDN-based acoustic model, the input feature was
a 1685-dimensional feature vector consisting of 925 linguis-
tic features including binary features and numerical features for
contexts, 10 duration features, 150-dimensional word code, and
600-dimensional phrase code. Fix-dimensional normally dis-
tributed random vector was used as word and phrase codes, and
pre-trained word2vec and doc2vec were used to measure word
and phrase similarity. The output feature was a 98-dimensional
feature vector consisting of STRAIGHT mel-cepstral coeffi-
cients, F0 acquired by linearly interpolating values in unvoiced
parts, voiced/unvoiced binary value, and mel-cepstral analysis
aperiodicity measures. The input features were normalized to
be within 0.0–1.0 based on their minimum and maximum val-
ues in the training data, and the output features were normal-
ized to have zero-mean unit-variance. The input and output



Table 1: Evaluation results

Page domain Sentence domain SUS
System OI PL SP ST IN EM LE NAT SIM WER

A 48 ± 7∗ 48 ± 7∗ 48 ± 7∗ 48 ± 8∗ 48 ± 8∗ 48 ± 8∗ 49 ± 7∗ 4.8 ± 0.5∗ 4.5 ± 0.9∗ –
K 38 ± 10∗ 37 ± 10∗ 36 ± 11∗ 36 ± 12∗ 37 ± 10∗ 38 ± 11∗ 37 ± 10∗ 4.0 ± 0.9∗ 3.9 ± 1.0 16
J 34 ± 10 33 ± 11 36 ± 11∗ 35 ± 11∗ 35 ± 11 35 ± 11 34 ± 10 3.7 ± 0.9 3.6 ± 0.9 18
I 34 ± 10 33 ± 10 32 ± 11 33 ± 11 33 ± 11 35 ± 11 33 ± 10 3.5 ± 1.0 3.5 ± 1.1 11
L 28 ± 11∗ 28 ± 11∗ 25 ± 12∗ 26 ± 12∗ 26 ± 12∗ 29 ± 11∗ 25 ± 11∗ 3.0 ± 1.2∗ 3.4 ± 1.1 24∗

M 27 ± 11∗ 26 ± 11∗ 25 ± 13∗ 25 ± 12∗ 25 ± 12∗ 30 ± 11∗ 23 ± 11∗ 3.0 ± 1.2∗ 3.0 ± 1.2∗ 22∗

B 29 ± 11∗ 28 ± 12∗ 27 ± 13∗ 27 ± 13∗ 27 ± 13∗ 31 ± 12∗ 25 ± 12∗ 2.9 ± 1.1∗ 3.2 ± 1.1 29∗

D 27 ± 10∗ 25 ± 10∗ 31 ± 11 30 ± 12∗ 28 ± 11∗ 27 ± 12∗ 28 ± 10∗ 2.8 ± 1.0∗ 2.5 ± 1.0∗ 15
E 25 ± 9∗ 23 ± 9∗ 30 ± 11∗ 28 ± 11∗ 26 ± 11∗ 27 ± 11∗ 25 ± 9∗ 2.6 ± 1.0∗ 2.5 ± 1.0∗ 14
G 24 ± 10∗ 23 ± 10∗ 31 ± 11 30 ± 11∗ 27 ± 11∗ 25 ± 12∗ 27 ± 10∗ 2.6 ± 1.0∗ 2.2 ± 1.0∗ 15
F 19 ± 10∗ 20 ± 10∗ 25 ± 11∗ 24 ± 12∗ 21 ± 11∗ 19 ± 11∗ 21 ± 9∗ 2.4 ± 0.9∗ 1.9 ± 0.9∗ 20∗

O 22 ± 10∗ 21 ± 9∗ 28 ± 12∗ 27 ± 12∗ 25 ± 11∗ 23 ± 12∗ 24 ± 10∗ 2.3 ± 1.0∗ 1.7 ± 0.8∗ 14
C 20 ± 9∗ 19 ± 9∗ 27 ± 12∗ 24 ± 11∗ 22 ± 10∗ 22 ± 11∗ 21 ± 9∗ 2.2 ± 0.9∗ 2.1 ± 1.0∗ 15
N 17 ± 9∗ 16 ± 8∗ 29 ± 11∗ 26 ± 12∗ 23 ± 11∗ 21 ± 11∗ 20 ± 9∗ 1.8 ± 0.9∗ 1.5 ± 0.7∗ 17
H 13 ± 7∗ 13 ± 7∗ 23 ± 12∗ 20 ± 11∗ 17 ± 11∗ 18 ± 11∗ 14 ± 8∗ 1.6 ± 0.8∗ 1.5 ± 0.8∗ 37∗

features were time-aligned frame-by-frame by using the trained
MSD-HSMM. A single MDN, which models spectral, excita-
tion, and aperiodicity parameters, was trained. The architec-
ture of the MDNs was three hidden layers with 8000 units per
layer. The sigmoid activation function was used in the hidden
layers and the linear activation function was used in the output
layer. For training the MDNs, a mini-batch stochastic gradient
descent (SGD)-based back-propagation algorithm and dropout
with a probability of 0.6 were used. The GV weight w was set
to 0.001 [11].

Speech signals at 32 kHz were quantized 8-bit using µ-law
compression for WaveNet neural vocoder training. The tunable
parameters of the mel-cepstrum-based quantization noise shap-
ing were set to γ = 0.1 and β = 0.1. The dilations of the
WaveNet model were set to 1, 2, 4, . . . , 512. The 10 dilation
layers were stacked three times, resulting in a receptive field
with a size of 3072. The channel size for dilation, residual
block, and skip connection were 256, respectively [13]. The
auxiliary features were used 98-dimensional acoustic features
generated the MDN-based acoustic model. In order to satisfy
the rule of Blizzard Challenge 2018, synthesized speech wave-
forms at 32 kHz were upsampled to 48 kHz.

3.3. Experimental conditions of listening test

Large-scale subjective listening tests were conducted by the
Blizzard Challenge 2018 organization. The listeners included
paid participants, speech experts, and volunteers. The paid par-
ticipants (native speakers of English) took the test in soundproof
listening booths using high-quality headphones. The speech ex-
perts and volunteers included non-native speakers of English.

To evaluate the page domain of a children’s book, 7-
page-domain-criteria 60-point mean opinion score (MOS) tests
were conducted. The terms in the parentheses were used to la-
bel the points 10 for “bad” and 50 for “excellent” on the scale.
Listeners listened to one whole page from a children’s book
and chose a scored from 1 to 60 based on the following 7-
page-domain-criteria.

• overall impression (OI): “bad” to “excellent”
• pleasantness (PL): “very unpleasant” to “very pleasant”

• speech pauses (SP): “speech pauses confusing/unpleas-
ant” to “speech pauses appropriate/pleasant”

• stress (ST): “stress unnatural/confusing” to “stress natu-
ral”

• intonation (IN): “melody did not fit the sentence type” to
“melody fitted the sentence type”

• emotion (EM): “no expression of emotions” to “authen-
tic expression of emotions”

• listening effort (LE): “very exhausting” to “very easy”
To evaluate the sentence domain of children’s book, 2-

sentence-domain-criteria 5-point MOS tests were conducted.
Listeners listened to one sample and chose a scored from 1 to 5
based on the following 2-sentence-domain-criteria.

• naturalness (NAT): “completely unnatural” to “com-
pletely natural”

• similarity (SIM): “sounds like a totally different person”
to “sounds like exactly the same person”

To evaluate intelligibility, the participants were asked to
transcribe semantically unpredictable sentences (SUS) by typ-
ing in the sentence they heard. The average word error rate
(WER) was calculated from these transcripts.

3.4. Experimental results

Table 1 lists the MOSs (means and standard deviations) of the
listening test results from the all listeners and WER of the lis-
tening test from paid listeners. Systems A, B, C, D, E and I
represent the following systems.

• A: natural speech
• B: unit-selection benchmark system
• C: HMM benchmark system
• D: DNN benchmark system
• E: DNN benchmark system 2
• I: NITech system

The ordering of systems is in descending order of NAT.
Wilcoxon’s signed rank tests were used to determine signifi-
cance difference [38]. In Table 1, asterisk ∗ means a statistically
significant difference between system I and other systems.



From Table 1, our system I achieved good performance
for page-domain-criteria and sentence-domain-criteria. More-
over, our system I achieved the lowest WER. These results sug-
gest that, the NITech 2018 TTS system was able to synthesize
speech waveform with high naturalness, speaker similarity, and
intelligibility.

We consider the difference in synthesized speech between
the NITech 20171 and 20182 TTS systems. The introduction of
WaveNet neural vocoder was able to improve naturalness and
speaker similarity by avoiding degradation of speech quality
accompanying use of a frame-level processing vocoder. How-
ever, the prediction accuracy of the WaveNet neural vocoder
was not sufficient, and the pronunciation of synthesized speech
was sometimes ambiguous. Speech data provided as the train-
ing corpus was compressed by multiple codecs, and this com-
plicated the training WaveNet which models speech waveform
directly. Additionally, although the training corpus contains
various expressive speech, it was not enough for the amount
of training data to model various speaking styles. In ac-
tuality, when inputting acoustic features generated from the
MDN acoustic model capable of synthesizing expressive speech
into the WaveNet neural vocoder, pronunciation of synthesized
speech became ambiguous in many cases. Therefore, the fu-
ture work is to synthesize expressive speech by WaveNet neural
vocoder.

4. Conclusion
We described the Nagoya Institute of Technology (NITech)
text-to-speech (TTS) system for the Blizzard Challenge 2018.
Deep neural network (DNN)-based pause insertion model and
WaveNet-based neural vocoder were introduced the NITech
2018 TTS system. Large-scale subjective evaluation results
show that the NITech 2018 TTS system was able to synthe-
size speech waveform with high naturalness, speaker similarity,
and intelligibility. Future work includes generating expressive
synthesized speech in WaveNet neural vocoder and introducing
end-to-end approach to simplify the structure of complex TTS
system.
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