
The IOA-ThinkIT system for Blizzard Challenge 2019

Ruimin Wang1,2, Chunhui Lu1,2, Xiaoyang Hao1,2, Bolin Zhou1,2, Zengqiang Shang1,2, Pengyuan
Zhang∗1,2

1Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese
Academy of Sciences, Beijing, P.R.China

2University of Chinese Academy of Sciences, Beijing, P.R.China
zhangpengyuan@hccl.ioa.ac.cn

Abstract

This paper presents the IOA-ThinkIT team’s text-to-speech sys-
tem for blizzard challenge 2019. A statistical parametric speech
synthesis based system was built with improvements in both
front-end text analysis and back-end acoustic modeling. In the
front-end, a bidirectional encoder representation from Trans-
former (BERT) based model was proposed for prosodic bound-
ary prediction. In the back-end, a BLSTM duration model and
a multi-speaker acoustic model with speaker code as additional
input and variational autoencoder (VAE) residual encoder ex-
tension was trained. In acoustic model, speaker code was used
to distinguish different speakers while hidden vectors learned
from VAE encoder were used to model differences in speech
other than speakers and content. Besides, a quantized frame-
work was introduced to model fundamental frequency (F0).
Evaluation results showed that though our proposed model (sys-
tem N) performed not well in MOS and speaker similarity, we
got best results on both pingyin (without tone) error rate and
pingyin (with tone) error rate among 24 teams.
Index Terms: Blizzard Challenge 2019, statistical parametric
speech synthesis, VAE, BERT, quantized F0

1. Introduction
Blizzard Challenge has been held annually since 2005 in order
to better understand and compare research techniques in build-
ing corpus-based text-to-speech (TTS) systems on the same
data. All the participants are asked to take the released speech
data, build a synthetic voice and synthesize a prescribed set of
test sentences. Then the synthetic sentences from each synthe-
siser are evaluated through listening tests.

In last fourteen years, there were mainly two mainstream
methods used in this challenge, unit selection based waveform
concatenation [1, 2, 3] and statistical parametric speech syn-
thesis (SPSS) [4, 5]. Waveform concatenation systems directly
use real speech segments from the corpus to concatenate and
generate final speech. For SPSS systems, they try to parame-
terize speech waveform into acoustic features and predict these
features by building an acoustic model. Vocoder is used to ex-
tract features and reconstruct speech in this process. Compar-
ing these two methods, the advantage of unit selection based
systems lies in the speech quality and similarity, which are
constrained by the vocoder in SPSS systems, but it demands
high quality speech corpus. Recently, some neural vocoders,
like WaveNet [6, 7], WaveGlow [8], have been proposed and
made up the gap between synthetic speech and natural speech.
Meanwhile end-to-end speech synthesis models have also been
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introduced and generated more natural speech than traditional
method.

There was only one task this year. Build a voice from an
8-hour speech data, which was collected from an internet talk
show, that was suitable for expressive TTS. All data were from
a well-known Chinese male speaker. As these data were not
recorded in quiet environments by professional speaker, data
quality was not as high as those usually used in TTS sys-
tems. Specifically, background noise, speech noise, environ-
mental and channel differences influenced the quality. Con-
sidering these factors, we constructed our system based on
SPSS and made improvements in both front-end text analysis
and back-end acoustic modelling. For front-end, we proposed
a BERT [9] based prosodic boundary prediction model. For
back-end, except training a phone level duration model and us-
ing WORLD [10] as vocoder, a VAE [11] based multi-speaker
BLSTM acoustic model was proposed. Besides, a quantized F0
model was adopted.

The rest of the paper is organised as follows. Section 2
introduces our data processing procedure on given data. Section
3 describes the details of our submitted system, followed by the
evaluation results in section 4. Finally, the conclusion is given
in section 5.

2. Data Preparation
The released data had 480 speech files, each about one minute,
and its corresponding transcripts. We first used our grapheme to
phoneme (G2P) toolkit generating pinyin according to the orig-
inal transcripts. As these transcripts were not entirely consistent
with the speech, we then manually checked and revised the tran-
scripts and pinyin by listening to the speech. After doing this,
all audio files were converted to 16 bits wave files at sampling
rate of 16k Hertz and Wiener filtering was used to denoise these
speech. Finally, these files were segmented into about 6000 sen-
tences according to the punctuations in the transcripts.

Phone level forced alignments of these sentences were ob-
tained using an automatic speech recognition (ASR) model by
Kaldi toolkit[12]. We followed Merlin toolkit[13] to design
our system. Each phone was represented by a HTS format
full-context label containing features on phone identity, part
of speech (POS), prosodic structure and positional information
etc. Then these labels were converted to binary and numeri-
cal features by a question set. All the features were used as
input and normalised by min-max normalisation to the range
of [0.01,0.99]. For duration model, the input vectors were 624
dimensions, where 591 dimensions were binary features for cat-
egorical linguistic features and 33 dimensions were numerical
ones. For acoustic model, 4-dimension features encoding the
position of the frame in a phoneme were appended to the input



that used in duration prediction.
The speech data was analysed by WORLD with 5 ms frame

hop, each of which was represented by a 187-dimension acous-
tic feature that consists of mel-generalized cepstral (MGC),
band aperiodicities (BAP), log F0 (LF0) and their correspond-
ing delta and delta-delta features, besides a binary voiced flag.
All the features were normalised by mean and variance normal-
isation.

3. System Overview
The overview of our system is illustrated in Figure 1. It con-
tains two stages, training and synthesis. In both stages, text
analysis including text normalization, word segmentation, POS
tagging, prosodic boundary prediction and G2P was firstly con-
ducted to get linguistic features. In training stage, acoustic fea-
tures were extracted from waveform speech by vocoder, and
phone durations were acquired by doing force alignment. Then
the extracted linguistic features and acoustic features were used
as input and target respectively to train the frame level acoustic
model. Similarly, a phone level duration model was also trained
in this stage. When it came to synthesis stage, text analysis
results of test text were feed into trained duration model and
acoustic model sequentially to get acoustic feature sequence.
Final speech was then reconstructed by vocoder. The detailed
descriptions of each model are as follows.
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Figure 1: The overview of our system

3.1. Prosodic boundary prediction model

In Chinese TTS systems, a hierarchical prosodic structure, in-
cluding prosodic word (PW), prosodic phrase (PPH), intona-
tional phrase (IPH), is widely employed to distinguish different
levels of pauses in sentences. The accuracy of predicting these
boundaries largely determines the naturalness and even the in-
telligibility of synthesized speech.

Inspired by the successful use of BERT in many natural
language processing (NLP) tasks, we proposed a BERT based
prosodic boundary prediction model to improve prediction ac-
curacy.

As shown in Figure 2, following our previous work[14],
we treated hierarchical prosodic boundary prediction as re-
lated tasks and predicted them simultaneously by using multi-
task learning. In the meantime, word segmentation was set
as an auxiliary task to introduce word level information in the
model as prosodic boundaries are highly correlated with lexicon

words.
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E[SEP]
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Figure 2: The architecture of proposed prosodic boundary pre-
diction model

Specifically, for each task, we added an task-specific out-
put layer to a pre-trained Chinese model1, then used 8000
sentences with prosodic boundary labels to fine-tune the pre-
trained model. The fine-tuned model was used to predict
prosodic structure from text on both original transcripts and test
sentences after text normalization.

3.2. Duration model

Duration model used phone-level linguistic features to predict
frame numbers of each phone. We used phoneme boundary
information got by force alignment as target. The model was
composed of a 512 units full connected (FC) layer following
by two bidirectional long short-term memory (BLSTM) layers
with 512 units in each direction. Mean square error (MSE) cri-
terion with Adam[15] optimizer was used in the training pro-
cess.

3.3. Acoustic model

Traditional acoustic model directly predicts acoustic parame-
ters using linguistic features as the input. However, the data
provided this year was collected from an Internet talk show,
the content was repetitive and phoneme coverage was limited.
As extra data from other speakers was allowed according to
the challenge rules, we adopted a multi-speaker based acous-
tic model in our system. A 7-hour corpus from another male
speaker was additionally used.

At first, we mainly focused on adaption training [16, 17,
18]. Following [18], we built a linear networks based speaker
adaptation model. However, experiments showed that this
method learned more speech channel differences than that of
speakers due to the poor speech quality.

The second system based on speaker labels was then at-
tempted. A simple idea was to encode the speaker information
to one-hot vectors, and concatenate these vectors to original lin-
guistic features to distinguish different speakers. In preliminary
experiments, we built our acoustic model using the same struc-
ture as the duration model. But there was severe over-smoothing
effect in synthetic speech. We believed that part of the reason
was due to the large channel differences in training data. To ad-
dress this issue, we introduced VAE residual encoder extension
to the acoustic model, inspired by its success in speech style
control and transfer in end-to-end structure[19].

1https://github.com/google-research/bert
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Figure 3: Acoustic model based on variational autoencoder

The structure of the whole acoustic model was given in Fig-
ure 3. To synthesize speech in a clean channel, we chose a high
quality voice to compute the hidden vector by VAE encoder.
However, it made the synthetic speech all the same rhythm. To
enrich the tone and rhythm of synthetic speech, we built an in-
dependent model to predict F0.

3.3.1. Acoustic model based on VAE

As shown in Fig 3, our proposed VAE based acoustic model
was composed of two components, including an encoder and a
decoder. The encoder aimed to convert the real acoustic features
into sampled hidden vectors z. Meanwhile, the decoder used
hidden vectors to restore acoustic features under the condition
of linguistic features.

Specifically, real acoustic features x are fed into the encoder
to predict the posterior q(z|x) during training. Given the true
posterior p(z|x), we can estimate the data distribution p(x) as:

log p(x) = L(x, z) +D(q(z|x)‖p(z|x)) ≈ L(x, z) (1)

where L(x, z) is Evidence Lower Bound (ELOB).

L(x, z) = Eq(z|x)(log p(x|z))−D(q(z|x)‖p(z)) (2)

In eq.2, p(x|z) is conditional distribution modeled by decoder.
The first term is the reconstruction loss from decoder, and the
second term is regularization term from encoder. Generally,
we regard the prior p(z) and q(z|x) as Gaussian distributions.
Given p(z) ∼ N (0, I), then the loss of encoder is calculated
by:

Lenc =

J∑
j=1

{Σ2
j (x) + µ2

j (x)− log Σ2
j (x)− 1} (3)

where J means the dimensions of Gaussian distribution,
q(z|x) ∼ N (µ(x),Σ2(x)I), µj(x) and Σj(x) the j-th value
of µ(x) and Σ(x) respectively. Therefore, the encoder predicts
µ(x) and Σ(x), totally 2J dimensions. To ensure the gradi-
ent can be computed, the reparameterization trick is applied to
sample z:

z = u(x) + Σ(x)� ξ ξ ∼ N (0, I) (4)

The structure of decoder is similar to traditional acoustic model
except adding hidden vectors z as extra inputs. Therefore, the
loss of decoder is simply MSE loss. Because a quantized F0
model is built independently, the binary voiced flag and the F0

value are not predicted in the decoder. Finally, the decoder loss
and total loss are written as:

Ldec =

D∑
j=1

(x̃j − xj)2 (5)

Ltotal = αLenc + Ldec (6)

whereα gradually increases from 0 along with the training steps
to prevent Lenc from decaying to 0.

In the synthesis stage, hidden vectors were extracted from
a certain speech file in training data which has less noise and
clearer channel. Since the VAE learned the speech style at
the same time, the F0 counters of all the synthesized speech
were similar. In order to ensure the diversity of the synthesized
speech style, we additionally used a quantized F0 model to pre-
dict F0. In the training stage, we used the true F0 value as extra
input of the acoustic model. In the synthesis stage, the predicted
F0 value was used as input.

The detailed model structure was as follows. Encoder used
5 1D convolution layers with stride of 2 to shorten the speech
sequence. Then an LSTM layer was used to get temporal infor-
mation, the total sentence was represented by the final state.
Following that, the mean and variance of hidden vector was
computed by an FC layer. The hidden vector was sampled by
reparameterization trick, and was fed into an FC layer. After
that we got a sentence level hidden vector and repeated it to
frame level to feed into the decoder. The decoder structure was
the same as the duration model.

3.3.2. Quantized F0 model

F0 is an important feature to depict the tone and prosody of
speech. Traditional acoustic model predicts F0 together with
the other acoustic features. However, using MSE loss as the op-
timization function may not suitable in F0 prediction because
it’s an one-to-many prediction problem. For instance, we may
speak a same sentence twice with different rhythm. For the
acoustic model, the inputs are the same but the targets are dif-
ferent. Once MSE loss is adopted, we will learn an averaged F0
value. Simply, providing ’wo’, which means ’I’ in English, ap-
pears twice with different F0 values, F1 and F2, then F1+F2

2
is

the best value to minimum the MSE loss. Obviously, this value
never appears among the data, and will cause over-smoothing
phenomenon.

Motivated by [20], we built a quantized F0 model. The
minimum value Fmin and maximum valueFmax of raw F0 data
were counted firstly. Then the F0 value was encoded as a one-
hot vector ot = [ot,0, ot,1, ..., ot,N ]. If the frame was unvoiced,
ot,0 = 1; otherwise, ot,0 = 0, the other dimensions were all
zeros except one dimension is 1 according to F0 value. We
adopted the similar hierarchical softmax layer in [20], where
the probability of each quantization channel can be calculated
as:

P (ot,j |ht) =


eht,0

eht,0 + 1
if j = 0

1

eht,0 + 1

eht,j∑N
i=1 e

ht,i
if j 6= 0

(7)

where ht,j is the j-th output of F0 model. KLD is used as the
loss funtion, which is written as:

LF0
KLD =

N∑
j=0

ot,j logP (ot,j |ht) (8)



Because the unvoiced frames were far more than the frames
with a certain F0, a threshold was set to determine whether the
frame was an unvoiced frame. We used the same threshold as
[20]. Only if e

ht,0

e
ht,0+1

> 0.5, ot,0 = 1, otherwise, the other
channels with the maximum probability was set to 1.

In our final system, we used multi-task learning to predict
quantized F0 and the other acoustic features. In fact, experi-
ments showed predicting F0 separately will lead to mismatch
with the mel-generalized cepstral. The structure of F0 predic-
tion model was the same as duration model too.

4. Results
4.1. Internal evaluation

Three acoustic models were compared in our experiment:

1. Baseline: BLSTM based acoustic model.

2. BLSTM-V: Multi-speaker acoustic model based on
VAE.

3. BLSTM-QV: Multi-speaker quantized acoustic model
based on VAE.

The structure of BLSTM-V had been shown in section 3.3.
The filter numbers of 1-dimensional convolution layers were
all 128. The dimension of Gaussian distribution was 8. Then
a vector sampled from the predicted Gaussian distribution was
fed into a fully connected network. Finally, the dimension of
hidden vector was 128. For BLSTM-QV, frame level acoustic
features were analyzed to compute the range of F0 value. The
minimum value dmin and the maximum value dmax of raw du-
ration data were 58 Hz and 571Hz. The result was shown in
Table 1.

Table 1: RMSE of different duration models

model MCD(dB) RMSE(Hz) CORR UV(%)

Baseline 7.553 42.117 0.603 17.229
BLSTM-V 6.779 41.108 0.611 17.036

BLSTM-QV 6.788 39.978 0.647 15.710

The result showed that using multi-speaker training and
VAE extension decreased mel-cesptral distortion (MCD). A rea-
sonable explanation was that different people had similar pro-
nunciation characteristics and extra data expanded the quantity
of different phones. Although VAE extension used true acous-
tic features as input, it showed the upper bound of the acoustic
model, and made the channel and rhythm of synthesized speech
closer to real speech. Quantized F0 model decreased F0 RMSE
and U/V error percentage, which was associated with speech
tone and prosody. We used BLSTM-QV acoustic model for
our submitted system.

4.2. Evaluation results

The listening test results in Blizzard Challenge 2019 were pre-
sented below. Including Merlin baseline, 24 submitted sys-
tems and natural speech were evaluated. The identifiers for the
benchmark and our system are:

• A: natural speech

• B: merlin baseline

• N: our system

Each audio was evaluated over Mean Opinion Score
(MOS), similarity, Pinyin Error Rate (PER) and Pinyin Tone
Error Rate (PTER). The MOS and similarity results were based
on all the listeners’ responses, including paid listeners at Edin-
burgh, volunteers and experts. The PER and PTER were mainly
based on paid listeners’ responses.

4.2.1. MOS test
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Figure 4: Boxplot of MOS comparing to original speaker

Fig 4 illustrated the boxplot of evaluation results of all sys-
tems on MOS. Apart from the nature speech, our proposed sys-
tem ranks 14th over participants with the other two teams. Our
system used the pipeline SPSS structure, couldn’t synthesize
voice as natural as end-to-end model. And we only used a little
extra speech data, which constrained our system’s performance.

4.2.2. similarity test

The similarity results of all systems were presented in the Fig 5.
Our system performed not well on similarity overall. Because
our system and Merlin baseline shared the same vocoder which
constrained the synthesis quality and speech detail. And our
VAE based acoustic model used a hidden vector computed from
a clean speech, which had a different channel from most of the
other speech. We think the listeners would consider channel
information when they did similarity test.

4.2.3. PER and PTER test

The boxplot of PER and PTER results were presented in Fig
6 and Fig 7. Our system achieved the lowest PER and PTER
among all the submitted system which meant that our synthetic
speech was most intelligent. We believed it was benefit from ac-
curate front-end processing including text normalization, G2P
conversion, prosodic boundary prediction. Another reason was
that the pipeline SPSS acoustic model had higher robustness
than the end-to-end model and concatenate-based model. The
VAE extension decreased the noise of synthetic speech and
made the synthetic speech sound more clearly. Besides, quan-
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Figure 5: Boxplot of similarity scores comparing to original
speaker
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Figure 6: pinyin (without tone) error rate
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Figure 7: pinyin (with tone) error rate

tized F0 model fits the F0 contour better which conveys the tone
in an utterance more accurately.

5. Conclusions
In this paper, we introduced our system which was used in Bliz-
zard Challenge 2019, including a prosodic boundary predic-
tion model, a quantized F0 model and a multi-speaker acoustic
model based on VAE. Evaluation results showed that our pro-
posed model performed best on both PER and PTER among
24 teams, which showed the accuracy of our front-end analy-
sis module and the robustness of our acoustic model. Because
we could obtain only a little extra male speech, and the pipeline
SPSS structure constrained the quality of synthetic speech, our
system performed ordinarily on naturalness. Besides, the World
vocoder we used may not produce the same speech quality as
neural vocoder like WaveNet, and the VAE extension made the
channel of synthetic speech different from most ground-truth
speech, our system didn’t perform well on similarity. In future
work, we will mainly focus on putting prosody and F0 informa-
tion into End-to-End model.
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