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Abstract 

In this paper, we present the techniques that were used in 

HITSZ-TTS1 entry in Blizzard Challenge 2020. The corpus 

released to the participants this year is about 10-hours speech 

recordings from a Chinese male speaker with mixed Mandarin 

and English speech. Based on the above situation, we build an 

end to end speech synthesis system for this task. It is divided 

into the following parts: (1) the front-end module to analyze 

the pronunciation and prosody of text; (2) The phoneme-

converted tool; (3) The forward-attention based sequence-to-

sequence acoustic model with jointly learning with prosody 

labels to predict 80-dimensional Mel-spectrogram; (4) The 

Parallel WaveGAN based neural vocoder to reconstruct 

waveforms. 

This is the first time for us to join the Blizzard Challenge, 

and the identifier for our system is G. The evaluation results of 

subjective listening tests show that the proposed system 

achieves unsatisfactory performance. The problems in the 

system are also discussed in this paper. 

Index Terms: speech synthesis, end-to-end, Evotron, Parallel 

WaveGAN 

1. Introduction 

To promote speech synthesis technology, Blizzard Challenge 

(BC) has been held every year to evaluate Text-to-Speech 

(TTS) systems since 2005. In Blizzard Challenge 2020, The 

MH1 task is to build a Chinese TTS system based on a 10-

hours speech dataset from a single speaker. A testing set of 

sentences is also provided to evaluate the model’s 

performance. There are four evaluation items for the task, 

namely; similarity, naturalness, error rate, and overall feeling 

of the paragraph; the overall feeling of the paragraph is 

divided into 6 sub-items: pleasure, pause rhythm, accent, tone, 

emotion, and hearing resistance. 

Recent work on neural text-to-speech (TTS) can be divided 

into two parts. In the first part, statistical parameter speech 

synthesis methods [1,2,3] with deep neural network 

architectures. Based on the DNN framework, more novel 

architectures or variants have been proposed to improve the 

performance of synthesized speech. Note that the traditional 

frameworks require an additional module to align linguistic 

and acoustic representations, and the wrong align errors may 

propagate to the latter synthesis model. In the other part, the 

attention-based sequence-to-sequence [4] e2e TTS model (like 

Tacotron) [5-8] that they can be trained on <text, audio> pairs 

have been proposed to eliminate the need for complex sub-

systems that need to be developed and trained separately and 

thus simplify the pipeline of traditional systems. It predicts the 

 
1HITSZ-TTS: The text-to-speech system of Harbin Institute of 

Technology, Shenzhen. 

spectrum directly from phonemes and combining with the 

neural vocoder [9,10,11] it achieves superior performance 

over the conventional structures. 

Besides audio generations, especially for Mandarin TTS,  

text analysis also plays an important role in the text to speech 

system. The G2P and prosody break boundary directly 

influences the intelligibility and naturalness of the synthesized 

audio [12]. To improve the performance of our system, we use 

a text analyzer to extract the linguistic feature and prosody 

information. Besides, we adopt a forward location sensitive 

attention mechanism [13] to stabilize the generating process 

for long sentences and decrease the synthesis wrong such as 

repeat, skip. 

This paper is structured as follows: section2 describes the 

data process and text analyzer, Section 3 proposed HITSZ 

TTS system. Section 4 describes the evaluation results and 

system performance. The conclusion is given in Section 5. 

 

2. The task in Blizzard 2020 

The BC 2020-MH1 is Mandarin synthesis. The data corpus 

provided by the organizer consists of Mandarin male news, 

which is 5566 audio files at a 48kHz sampling rate with a total 

duration of 10 hours and the corresponding texts. All files in 

this database are in “.wav” format. In this challenge, we have 

two aims, the first aim of our proposed system is to generate a 

new voice as similar as possible to the voice of the target 

speaker and the second aim is to ensure the synthesized audio 

more natural. More details of our system will be introduced in 

the following sections. 

3. System building 

As shown in Figure 1, our speech synthesis system takes an 

end to end architecture. At the training phase, we use an open-

source front-end tool pypinyin2 to predict phoneme, tone and 

other linguistic features. Different from the traditional TTS 

methods, our systems replace the duration model with the 

attention mechanism in the acoustic model. And then, 

syntactic features are generated by the Stanford parser tool[14].  

Meanwhile, we use the variant transformer block structure as 

an encoder in the seq2seq model with some useful training 

tricks. Furthermore, to reduce the unnatural breaking times in 

the synthesized audio, we introduced the break prosody 

embedding as additional inputs here [15]. Finally, To improve 

the inference speed while ensuring the synthesized audio 

quality, a GAN-based neural vocoder [11] which was 

conditioned on the Mel-spectrograms was trained on the target 

male dataset.  

At the synthesis phase, the phoneme inputs and linguistic 

features are predicted by the open-source tools and the 
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prosodic break label is predicted by the prosodic break 

predictor. Then we feed those features into the acoustic model 

to predict the Mel-spectrogram. Finally, the Parallel 

WaveGAN is used to generate waveform samples 

conditioning on the predicted Mel-spectrograms. 

 

 

Figure 1: The architecture of our system. 

 

3.1. Data Preparation 

3.1.1. Linguistic features 

To improve the model performance of language 

representations, we extract several linguistic features as an 

additional input of the model. Firstly, we adopted a Jieba text-

analyzer tool to get the linguistic feature, such as segment 

token (Seg), part-of-speech (POS). we also extract the 

syntactic feature (lowest common ancestor, syntactic distance)  

[16] by Stanford parser tool. The above features are taken as 

part of inputs to the acoustic model. 

3.1.2. Acoustic features 

All audios used in the training phase were firstly down-

sampled to 24 kHz, The leading and trailing silence are 

trimmed to a fixed length. We use the Mel-frequency 

spectrogram as the acoustic representation of audio signals. 

It’s suitable for the acoustic model and neural vocoder to 

generate high-quality speech. The targets Mel-spectrograms 

features are computed through a short-time Fourier transform 

(STFT) using a 50 ms frame size, 12.5 ms frame hop size, and 

a Hann window function, passed through 80-channel Mel-

scale filterbanks spanning 0 Hz to 12 kHz followed by log 

dynamic range compression. 

 

3.2. Phrase break prediction model 

To get more natural speech, we design a phrase break 

prediction model to predict the phrase break label. In our 

system, the typical three-layer prosody is employed as the 

label which consists of prosody word (PW), prosodic phrase 

(PPH), and intonational phrase (IPH) [17]. The Bert-BiLSTM-

CRF is adopted to predict the phrase break label. In this model, 

each word in an input sentence is mapped to a sequence of 

word embeddings by a trained BERT model[18], which is 

passed through BiLSTM. Finally, we use a CRF layer[19][20] 

as the decoder layer to produce a prosodic break label. Then 

the CRF layer can learn the decoder process by maximum 

likelihood estimation. It is shown in Figure 2. 

 

 
Figure 2: The architecture of our Phase predictor. 

 

3.3. Seq2seq acoustic model 

For achieving expressive speech synthesis, generating natural 

prosody is meaningful which is much hard for SPSS.  In our 

system, we adopt the attention-based seq2seq framework as an 

acoustic model to predict Mel-spectrogram from the text 

representation. Similar to common seq2seq TTS models, such 

as Tacotron, our system contains a text encoder, a forward 

location sensitive attention[13] module, and an auto-regressive 

decoder. Figure 1 shows the building blocks of our system. 

For the encoder part, we adopt the transformer network as 

described in Transformer TTS [7], which is also proved to 

improve the performance of prosodic phrasing. This is 

inspired by Transformer network [21], where self-attention 

plays a vital role in modeling global dependency. And we also 

use the Local-RNN [22] module to enhance the local relations 

of Transformer based TTS model. Considering the attention 

module is the key factor that directly affects the stability of the 

end-to-end systems, so we choose the forward attention in our 

system as it shows robustness in generating long sentences 

than location-sensitive attention. 

As for the decoder part, we followed the architecture of 

Tacotron2 to predict Mel spectrogram. The decoder is an 

autoregressive recurrent neural network that contains 2 dense 

layers of 256 hidden ReLU units as pre-net, which is essential 

for learning attention. And the sub-network of 2 uni-

directional GRU layers with residual connections is adopted to 

produce the attention query as each decoder step. Then the 

GRU output is concatenated with the attention context to 

predict Mel spectrogram. At last, a CNN based PostNet is 

adopted to improve the quality of the generated Mel- 

spectrogram.   

3.3.1. Modeling local structures with Local-RNN 

As proposed in [22], We replace the positional encoder 

embedding with the Local-RNN to improve the ability in local 

dependency modeling. Like a sliding window, the Local-RNN 

is reorganizing the original long sequence into many short 

sequences that only contain local information and are 

processed by a shared RNN independently and identically. For 

example, we define the window size is L, give a short sentence 
(𝑋𝑡−𝐿−1 ,···, 𝑋𝑡) as the input of Local-RNN,  and then the last 
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hidden state is used as the latent representation for the local 

short sequence: 

 

  ℎ𝑡 =  𝐿𝑜𝑐𝑎𝑙𝑅𝑁𝑁(𝑋𝑡−𝐿−1 ,···, 𝑋𝑡) (1) 

Finally, we can calculate all corresponding local latent 

representations for all positions in the input sequence by 

Local-RNN.  

 

3.3.2. The loss for acoustic modeling 

In addition to base Tacotron loss, we use guided attention loss 

for faster attention convergence. we also use the Structural 

Similarity Index (SSIM) loss [23] to increase the stability of 

the training and make Mel-spectrograms less blurry. High-

quality vocoder can make the audio quality difference caused 

by spectral blurring more obvious. To make the Mel-

spectrograms texture more clear and more coherent, we 

introduce the first-order difference loss between the true Mel-

spectrogram and predict Mel-spectrogram. We define the true 

el-spectrogram is 𝑔, and the predict Mel-spectrogram is 𝑝，
we define 𝑔𝑑𝑖𝑓𝑓  is  the difference between t time step and t-1 

time step on 𝑔, and 𝑝𝑑𝑖𝑓𝑓 is also calculated in the same way. 

And then the formula of first-order difference loss is shown as 

follows: 

𝐿𝑑𝑖𝑓𝑓 = 𝑀𝑆𝐸(𝑔𝑑𝑖𝑓𝑓 − 𝑝𝑑𝑖𝑓𝑓) (2) 

The above losses are very useful for our system in this 

challenge. 

 

 
 

Figure 3: The architecture of Parallel WaveGAN. 

 

3.4. Parallel WaveGAN Vocoder 

In consideration of the real-time ratio, we choose Parallel 

WaveGAN [11] as the vocoder model. As shown in Figure 3. 

a WaveNet-based model with non-causal convolutions is used 

as a generator, which is a non-autoregressive model that is 

conditioned on Mel-spectrogram to generate a waveform in 

parallel. The generator can generate a 24kHz speech 

waveform faster than in realtime. The multi-resolution short-

time Fourier transform (STFT) auxiliary loss ( 𝐿𝑎𝑢𝑥 ) is 

represented as follows: 

  𝐿𝑎𝑢𝑥(𝐺) =  
1

𝑀
∑ 𝐿𝑠

(𝑚)

𝑀

𝑚=1

(𝐺) (3) 

M denotes the number of STFT losses. The final loss function 

for the generator is defined as follows: 

  𝐿𝐺(𝐺, 𝐷) =  𝐿𝑎𝑢𝑥(𝐺)+ 𝐿𝑎𝑑𝑣 𝜆𝑎𝑑𝑣(𝐺, 𝐷) (4) 

Where 𝐿𝑎𝑑𝑣 denotes the adversarial loss and 𝜆𝑎𝑑𝑣 denotes the 

balancing factor of the two-loss terms. The use of STFT losses 

improved the stability and efficiency in the training process so 

that the entire model can be easily trained. In addition, with 

the training method of the generative adversarial network 

(GAN), the generator can effectively capture the time-

frequency distribution of natural speech waveform.  

 

4. Evaluation results 

A total of 17 systems were evaluated, at last, 16 from 

participating teams. In this section, we will discuss the 

evaluation results in detail. System A is natural speech. Our 

designated system identification letter is “G”. Audio samples 

are available at https://whitefu.github.io/blizarrd_2020/. 

 

Table 1: Task 2020-MH1 

Sections Details Description 

Section 1  MOS  

Section 2 Similarity 

Section 3 Paragraph Test 

Section 4 Pinyin (with tone) Error rate 

 

The evaluation criteria include four sections as shown in 

Tabel 1. The synthesized and natural audios were carefully 

scored in every section by paid listeners, volunteers, and 

speech experts. Our system achieves unsatisfactory 

performance in the criteria for the Challenge. Below in each 

subsection, we will report the detailed results and analyze the 

reason for the bad performance. We hope it can help the other 

participant to avoid some mistakes.  

4.1. Naturalness evaluation 

The boxplot evaluation results of all systems on naturalness 

are shown in Figure 4. Our system has an average score of 3. 

Analyzing the results, we guess that the main influence factors 

are the performance of the vocoder and the prosody of 

generated speech. For improving the real-time ratio, we 

choose Parallel WaveGAN as our final vocoder and reduce 

some parameters by reducing some layers. The performance of 

this model is superior to the Griffin-Lin algorithm. We also 

considered using WaveNet as the vocoder part of the system, 

but without special processing, but the synthesis speed of 

WaveNet is too slow. And we listen to some unnatural pauses 

in the synthesized audio. This is because the number of pause 

corpus is very small (less than 10,000 pieces), which leads to 

the poor performance of the prosodic prediction model, and 

the f1 value of the PPH label is less than 40%.  In the future, 

we will deal with the problem by augmenting the pause corpus 
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or introduce other new methods, such as adding a learnable 

gaussian bias.  

 

Figure 4: Boxplot of naturalness scores of each submitted 

system for all listeners. 

4.2. Similarity evaluation 

Figure 5 presents the mean opinion of similarity evaluations 

for all systems. In this test, the listeners are asked to judge 

whether the generated speech is similar to the target speaker. 

Our system has an average score of 3.0, one point below the 

first place system. Analyzing the results, we believe that the 

vocoder performance directly affects the speaker similarity, 

Meanwhile, the generated prosody from the acoustic model 

may also have a clear influence on the perceived speaker 

similarity by the listeners. We have noticed there have been 

many recent papers about high-quality and real-time vocoder, 

such as multi-band MelGAN [24] and multi-band LPCNet 

[25], etc. In the future, we will try to use the new vocoder 

methods and design Frequency band extension to increase the 

audio sample rate from 24 kHz to 48 kHz to achieve a higher 

similarity score. 

4.3. Paragraph evaluation 

Figure 6 shows that the MOS results of the new paragraph’s 

overall impression given by all listeners for all the systems. In 

this test, as expected, the original natural speech achieves the 

highest score of 50. System G achieves a score of 30. We find 

some skip and repeated errors and pronunciation mistakes in 

the synthesized speech. The main reason is that forward 

attention is not robust enough to generate super-long sentences. 

We prepare two types of paragraph synthesized speech before 

submit, the one method is synthesized of the whole sentence 

and the other one method is segmented text line from 

paragraph level to shorter sentences, synthesized each shorter 

sentence independently, and concatenated synthesized speech 

to compose longer speech wave restored at the paragraph level.  

And the speech synthesized by the second method is better 

than the first method. But we want to test the long sentence 

generalization of our system, So we choose the speech 

synthesized by the first method as our final submit.  

 

4.4. Pinyin and tone error 

As we know, the pronunciation of Chinese character is also 

affected by the tones, so the Pinyin with tone error rate (PTER) 

are usually used to evaluate the intelligibility of each system. 

The results are shown in Figure 7. The PTER of system L is 

8.6% performs much better than other participants. And the 

PTER of our system is 16.2% on the intelligibility test. We 

find that tone error often occurs in long sentences, multiple 

repeated words, and polyphone words. This is mainly due to 

the fact the attention mechanism module is not robust enough 

to generate the correct mapping relation between text and Mel- 

spectrogram. And we only use the open-source tool, pypinyin, 

to convert Chinese characters to pinyin (with tone) sequence, 

it’s not good enough to deal with the polyphonic problem. We 

have noticed that there have many great attention modules that 

are suitable to generate long-form sentences, such as Step-

wise Monotonic Attention [26], Dynamic Convolution 

attention [27], etc. In the future, we will try these attention 

methods and design some polyphone disambiguation methods 

to improve the intelligibility of our system.  

 

Figure 5: Boxplot of similarity scores of each submitted 

system for all listeners 

 

 

Figure 6: Boxplot of paragraphs MOS scores of each 

submitted system for all listeners 
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Figure 7: Pinyin error rate (with tone) of each submitted 

system. 

5. Conclusions 

This paper presents the details of our submitted system and the 

result in the Blizzard Challenge 2020. We built a forward 

attention based end to end speech synthesis system followed 

by a Parallel WaveGAN vocoder at 24 kHz sampling rate. The 

results of the listening test for our system are not good. 

According to the subjective evaluation results, we found many 

problems in our TTS system, and there is still much space for 

improvement in our method. 

In the future, we will introduce more robust attention 

mechanisms, such as stepwise attention [26] and dynamic 

convolutions attention [27], to solve the long-form sentence 

synthesis and alleviate the times of synthesis errors, like 

skipping and repeat. At the same time, we will study a real-

time vocoder which can generate high-fidelity speech and try 

to achieve good performance in all criteria for further speech 

synthesis challenge.  
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