
The Duke Entry for 2020 Blizzard Challenge

Zexin Cai, Ming Li

Electrial & Computer Engineering, Duke University, Durham, NC, United States
ming.li369@duke.edu

Abstract
This paper presents the speech synthesis system built for the
2020 Blizzard Challenge by team ‘H’. The goal of the challenge
is to build a synthesizer that is able to generate high-fidelity
speech with a voice that is similar to the one from the provided
data. Our system mainly draws on end-to-end neural networks.
Specifically, we have an encoder-decoder based prosody predic-
tion network to insert prosodic annotations for a given sentence.
We use the spectrogram predictor from Tacotron2 as the end-to-
end phoneme-to-spectrogram generator, followed by the neural
vocoder WaveRNN to convert predicted spectrograms to audio
signals. Additionally, we involve finetuning strategics to im-
prove the TTS performance in our work. Subjective evaluation
of the synthetic audios is taken regarding naturalness, similarity,
and intelligibility. Samples are available online for listening. 1

Index Terms: Text-to-speech, speech synthesis, prosody
model, end-to-end

1. Introduction
The blizzard challenge is held annually to better understand and
compare techniques in speech synthesis among individuals and
institutes around the world [1]. The sixteen challenge held in
2020 contains two independent tasks. One of the tasks is to
build a synthetic voice with 9.5 hours of Mandarin speech data
spoken by a male native speaker, while the other task is to build
a female voice to speak Shanghainese, a Chinese dialect, with
3 hours of speech data. The two tasks are identified as ‘2020-
MH1’ and ‘2020-SS1’, respectively. Subjective evaluation is
taken to measure the synthesis performance regarding several
aspects, including naturalness, speaker similarity, and intelligi-
bility.

Speech synthesis, also known as text-to-speech (TTS), typ-
ically refers to the technique that converts graphemes to audio
signals. By adopting deep neural networks, researchers are able
to develop TTS systems that can synthesize high-fidelity speech
in recent years. For traditional methods like concatenating syn-
thesis and statistic parametric speech synthesis (SPSS), incor-
porating deep neural network in part of the TTS pipeline can
significantly benefit the performance in terms of naturalness and
prosody [2, 3]. End-to-end TTS systems, compared to the tra-
ditional methods, was introduced with a less heavy pipeline and
less handcrafted features. Moreover, the speech produced by
end-to-end TTS systems can be very close to the natural speech
spoken by human [4, 5, 6, 7]. However, either traditional TTS
approaches or end-to-end based approach has been adopted and
investigated by participants from previous Blizzard challenges.

This paper describes the entry built for the ‘2020-MH1’
task. The system is extended from the system we built for 2019
Blizzard Challenge [8]. The input unit for spectrogram predic-
tion is changed to phoneme. We also incorporate a prosody
estimation module and use a neural vocoder for synthesizing

1https://caizexin.github.io/blizzard 2020/index.html

audio signals. In our entry, we rely on neural network models
to meet the goal of 2020 Blizzard Challenge. Specifically, there
are three individual models:

• The end-to-end prosody prediction model for generating
prosodic annotations. [9]

• The Tacotron-based text-to-spectrogram model that pre-
dicts Mel-spectrograms from phoneme sequences. [4]

• The neural vocoder WaveRNN that converts the pre-
dicted spectrograms into audio signals. [10]

In order to reduce the learning efforts caused by alphabet-
level input representations, we use the phoneme sequence as the
input. As for training strategies, we use a speech recognition
model for obtaining the alignment and segment the long utter-
ances into shorter pieces for pre-training. The model is fine-
tuned with long concatenated utterances for stable performance
in terms of long-form synthesis. External text data is used for
prosody model training, and about 82 hours of accompaniment
speech data are used for vocoder training.

This paper is organized as follows. Section 2 introduces
the TTS pipeline and neural network architectures we employed
for our entry. External Data, training strategies, and inference
details are described in section 3. Results are shown in section
4, and conclusions are drawn in section 5.

2. Methods
In our entry, the text-to-speech pipeline goes as (a) in figure 1.
For a target text, the prosody prediction module adds prosodic
annotations, which represent different pause durations, between
words and phrases. The sentence with prosody annotations is
then converted to the phoneme sequence by the grapheme-to-
phoneme module. The phoneme sequence is taken as the in-
put of the spectrogram prediction module, shown in (b) from
figure 1, to generate the corresponding Mel-spectrogram. At
last, the waveform generation module converts the frequency-
level spectrogram to time-level audio signals. Except for the
grapheme-to-phoneme module that is performed by using the
Pypinyin toolkit [11], the other three modules are built with
network-based models and trained separately.

2.1. Prosody prediction model

The prosody boundary, which normally refers to the pauses
within human speech, plays an important role in Mandarin
speech synthesis [12]. In general, various pauses that happen
between words and phrases can deliver a rich rhythm that cre-
ates natural emotions in speech. Therefore we incorporated
prosodic annotations into TTS training to further improve the
naturalness of the synthetic voice. To this end, we adopt an
end-to-end prosody prediction model to generate prosodic an-
notations for a given sentence at the inference phrase [9]. Three
kinds of annotations referring to different pause durations are
used in our system. One is the pause of the prosodic word

Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020

30 October 2020, Shanghai, China

33 10.21437/VCC_BC.2020-5

http://www.isca-speech.org/archive/VCC_BC_2020/abstracts/VCC2020_paper_16.html


text

Prosody	Prediction

Grapheme-to-phoneme

Spectrogram	Prediction

Waveform	Generation

Embedding	layer

Convolutional	layers

Bi-directional	LSTM
Encoder

Attention	Mechanism

PreNet

Decoder	RNN

Linear Linear

PostNet Decoder

Phoneme	sequence

(a)	Text-to-speech	framework (b)	phoneme-to-spectrogram

stop	tokens

Figure 1: The overall Text-to-speech pipeline and the Mel-
spectrogram prediction encoder-decoder framework.

word	embedding	table

prosody	network

prosody	network

prosody	network

PW

PPH

IPH

Bi-directional	LSTM

Unidirectional	LSTM

Linear	Projection

Output
Hidden	States	
&	Cell	states

(a)	Prosody	prediction (b)	Prosody	network

Binary	output

Figure 2: Prosodic annotation prediction network

(PW) that denotes the short pause that appears when the former
word is pronounced with stress. The second one is the prosodic
phrase (PPH) that represent a certain level of pause between
words or phrase where the tone before it is pronounced like the
end of the sentence but actually not. The last prosody boundary
is the intonational phrase (IPH) that indicates a long pause and
normally occurs between sentences.

The prosody model we applied in our TTS system is shown
in (a) from figure 2. The input text is converted to word em-
bedding sequence by a pre-trained word embedding lookup ta-
ble [13]. Three consecutive prosody networks are followed to
predict whether to add a specific prosody boundary annotations
at each time step. The prosody network is constructed by an
encoder-decoder architecture shown in (b) from figure 2, where
the encoder contains a bi-directional LSTM layer and the de-
coder has a unidirectional LSTM layer followed by a linear
projection layer that provides prosodic boundary predictions.
Whether to add the corresponding prosodic annotation after
each input word is dependent on the binary output. However,
only one prosody boundary needs to appear after each word. So
after the independent binary decisions are made for the three
annotations, we use the labeling priority following IPH > PPH

> PW to select one as the final prediction when more than one
annotation are predicted to be existed by the model.

2.2. Synthesizer

The synthesizer includes the spectrogram prediction module
and the waveform generation module. We use Mel-spectrogram
as the acoustic feature to bridge two modules. The spectrogram
prediction network is presented in (b) from figure 1. This is the
attention-based encoder-decoder network from Tacotron2 [4].
We use phoneme set from CMU dictionary [14] as the input
unit instead of alphabet characters to free the model from learn-
ing complex pronunciation rules. The encoder contains several
layers of convolutional neural networks (CNN) that collect the
local context information. Then a bi-directional LSTM is ap-
plied to obtain long-term context information.

The attention module calculates the most related context at
each step with respect to the previous decoding output and the
encoder output states. Thus the decoder knows which specific
phoneme needs to be pronounced at every decoding time step.
In addition, the attention module can perform soft alignment be-
tween the phoneme sequence and the output Mel-spectrogram.
The PreNet in the decoder contains several fully connected lin-
ear layers, while the PostNet is constructed by several convolu-
tional layers to reduce the information loss caused by the uni-
directional decoding characteristic of the decoder. The stop to-
kens are to predict the end of the decoding process. The hy-
perparameter settings of the spectrogram prediction module are
shown in table 1.

We adopt the neural vocoder WaveRNN [10] for backend
waveform reconstruction in our entry. As for a neural vocoder,
WaveRNN can achieve the same performance as the state-of-
the-art model WaveNet, while WaveRNN has a faster waveform
generation speed.

Table 1: Hyperparameters of the phoneme-to-spectrogram
model, including those start with ‘Feature/’ for Mel-
spectrogram extraction.

Hyperparameter
Feature/number of Mel bands 80
Feature/FFT window length 800
Feature/hop length 200
Feature/frame window size 800
Feature/preemphasis 0.97
Feature/lowest frequency 55
Feature/highest frequency 7600
Encoder/embedding dimension 512
Encoder/number of Conv layers 3
Encoder/Conv kernel size (5, )
Encoder/Conv channel size 512
Encoder/LSTM units per direction 256
Output frames per decoding step 1
Decoder/Attention dimension 128
Decoder/Attention filters 32
Decoder/Attention kernel (31, )
Decoder/PreNet linear layers [256, 256]
Decoder/number of LSTM layers 2
Decoder/LSTM units 1024
Decoder/PostNet Conv layers 3
Decoder/PostNet Conv kernel size (5, )
Decoder/PostNet Conv channel size 512

34



3. System training and inference
3.1. Data

The Mandarin dataset provided by 2020 Blizzard Challenge
contains 4365 audio-text pairs recorded by a male voice. Pro-
vided audios are formatted in 48 kHz sampling rate. The to-
tal duration of the dataset is about 9.5 hours. The provided
dataset from Blizzard Challenge is notated as ‘BC’ in this pa-
per. Other than the provided data, we also use external datasets
for training. We have three commercial datasets bought from
Data Baker 2. One is the DB-1 dataset that contains 12 hours of
speech data with a female voice. The second one is the DB-4
bilingual dataset that contains 18 hours of data recorded by a
native Chinese female. There are 15000 audio-text pairs in this
dataset, where 5000 of them are in English, and 10000 of them
are in Mandarin. The third dataset is recorded by a native Chi-
nese male, and there are about 10 hours in total. These three
datasets are notated as ‘DB1’, ‘DB4’ and ‘DBM’ in the follow-
ing paper. In addition, we also use a private dataset containing
18 hours of audio-text pairs for training. We notated this dataset
with ‘BLM’ here. We also use a publicly available dataset LJ-
Speech [15], which contains 24 hours of English data recorded
by a female and is notated as ‘LJS’ in our paper. All audios are
downsampled to 16 kHz in our training setup.

The transcripts from datasets ‘DB1’, ‘DB4’ and ‘DBM’
have prosodic boundary labels. So we use the transcripts from
those three datasets to train the prosody prediction model. For
this united set, 80% of the transcripts are used as the training
set, while the remaining are used for validation. The spectro-
gram prediction model is trained only with dataset ‘BC’. The
neural vocoder WaveRNN is pre-trained with all datasets we
mentioned above and then is finetuned with the ground-truth
alignment Mel-spectrograms of dataset ‘BC’ obtained from the
trained spectrogram prediction model.

PW PPH IPH

True label

PW

PPH

IPH

Pr
ed

ict
ed

 la
be

l

91.2%

7.9%

0.9%

12.5%

80.9%

6.6%

0.9%

4.4%

94.7%

10000

20000

30000

40000

Figure 3: The confusion matrix of prosody prediction result

3.2. Training

We use a speech recognition model to perform force alignment
of text-audio pairs from the provided data ‘BC’. According to
the alignments, we further segment the pairs into short utter-
ances that have a duration ranging from 2 seconds to 9 sec-
onds. After the segmentation, we have 7768 text-audio pairs

2https://www.data-baker.com

740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740n

A O I L D M E B C P K F N J H G Q

1
2

3
4

5

Mean Opinion Scores (naturalness) − All listeners

System

S
co

re

Figure 4: The naturalness mean opinion scores (MOS)

for training. Prosody annotations are added to the transcript
by the prosody prediction model. After converting the tran-
scripts into phoneme sequences, then we asked a native speaker
to check and revise the sequence regarding the tone annotations
and prosody annotations. This processed data is used for train-
ing the phoneme-to-spectrogram model.

To improve our system’s performance on the long-formed
synthesis, we randomly concatenate short utterances to obtain
long utterances for training. Specifically, 2000 utterances are
obtained by concatenating two short utterances, 1500 utterances
are obtained by concatenating three short utterances, 1000 ut-
terances from four-concatenation, and 500 utterances from five-
concatenation. The phoneme-to-spectrogram model is first pre-
trained with all short utterances. Then the pre-trained model is
finetuned with all utterances, including the concatenated utter-
ances.

The neural vocoder WaveRNN is trained with all avail-
able audio data mentioned in section 3.1. To improve the
vocoder’s performance on reconstructing waveform from syn-
thetic Mel-spectrogram, we use ground-truth alignment (GTA)
Mel-spectrograms to finetune the neural vocoder. GTA Mel-
spectrograms are obtained by feeding the training set ‘BC’ into
the trained phoneme-to-spectrogram network.

3.3. Inference

Three kinds of synthetic sentences are required for completing
the ‘2020-MH1’ task. The first task ‘INT’ is to synthesize se-
mantically unpredictable sentences for testing the intelligibil-
ity. The second task ‘NEWs’ is to synthesize in-domain sen-
tences for evaluating the performance concerning naturalness
and speaker similarity. The task ‘PSC’ is also designed for
evaluating naturalness and similarity but related to out-domain
cases. For ‘NEWs’ and ‘PSC’, participants are required to syn-
thesize both sentences and paragraphs.

For the ‘INT’ task, we used Jieba package 3 to tokenize sen-
tences. Then add the prosodic phrase (PPH) annotation between
the words and phrases for generating pauses. As for the other
two tasks, the prosodic annotations are predicted by the prosody
model. Then the character sequence with prosody label is then

3http://pypi.python.org/pypi/jieba/

35



740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740n

A O I L D M E B C P K F N J H G Q

1
2

3
4

5
Mean Opinion Scores (similarity to original speaker) − All listeners

System

S
co

re

Figure 5: The speaker similarity mean opinion scores (MOS)

A O I L D M E B C P K F N J H G Q

0
5

10
15

20
25

370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370n

Pinyin Error Rate with Tones − All listeners (INT data)

System

P
T

E
R

 (
%

)

Figure 6: The intelligibility mean opinion scores (MOS)

converted to pinyin sequence by the Pypinyin package 4. We
use the phoneme set from CMU dictionary [14] in our entry.
The pinyin sequences are converted to phoneme sequences by
the pinyin-to-cmu mapping table. The synthesis pipeline is the
same as the pipeline shown in (a) from figure 1. For paragraph
synthesis, we simply concatenate the synthetic sentences and
add silence between them.

4. Results
The performance of our prosody model is shown in figure 3.
The accuracy of predicting prosodic annotations PW, PPH, IPH
are 91.2%, 80.9%, and 94.7%, respectively. 12.5% of PPH
annotations are predicted as PW annotations, as shown in the
confusion matrix. However, the pause duration difference be-
tween PPH and PW is small since both of them are word-level
pauses. Therefore minor mispredictions would not affect the

4https://pypi.org/project/pypinyin/

370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370n

A O I L D M E B C P K F N J H G Q

0
10

20
30

40
50

60

Mean Opinion Scores (news paragraphs − overall impression) − All listeners

System

Sc
or
e

Figure 7: Overall impression on synthetic voice

overall performance in the TTS system.
Subjective evaluations are conducted regarding intelligibil-

ity, similarity and naturalness. Paid listeners, speech experts
and volunteers are asked to listen and score the synthetic audios
online. There are 16 participated teams in total this year. Our
team is notated as system ‘H’. System ‘A’ is the natural human
voice for reference.

Naturalness reports the quality of synthetic speech. Scores
are rated by the listeners from scale 1 to 5, where scale 1 refers
to unbearable synthetic voice, and 5 means high-fidelity voice.
The mean opinion scores (MOS) of naturalness is shown in fig-
ure 4. Our system achieves an average score of 3. The similarity
evaluation measures how close between the synthetic voice and
the natural one. As shown in figure 5, the voice we build is
moderately close to the natural voice.

Figure 6 presents the result evaluated concerning intelligi-
bility, which is to test how accurate listeners can catch the con-
tents from synthetic speech. Listeners are asked to type in what
they heard from synthetic audios during evaluation. The pinyin
error rate is 17.8% for our entry. In addition, listeners are also
required to evaluate the synthetic results of all participants in
various aspects, including pleasantness, stress, intonation and
emotion. The overall impression is shown in figure 7, where the
synthetic voice we delivered achieves a score of around 30.

5. Conclusions
In this paper, we present our TTS system designed for 2020
Blizzard Challenge. Prosodic annotations are incorporated into
the system to improve the naturalness. We adopt the Tacotron-
based phoneme-to-spectrogram system to predict the acoustic
feature, and the waveform reconstruction is performed by the
neural vocoder WaveRNN.

To further improve our system in the future, we need to
address issues related to character-to-pinyin conversion: espe-
cially the polyphone disambiguation problem and the sandhi
problem. Concerning the naturalness, the prosody model we
adopted in our entry is able to benefit the performance. How-
ever, we can investigate more acoustic variances, e.g., the fun-
damental frequency (F0), to make the synthetic voice closer to
the natural human voice.

36



6. References
[1] A. W. Black and K. Tokuda, “The blizzard challenge-2005: Eval-

uating corpus-based speech synthesis on common datasets,” in
Ninth European Conference on Speech Communication and Tech-
nology, 2005.

[2] H. Shi, X. Zhou, J. Li, L. Xiao, and W. Zengfu, “The IIM System
for Blizzard Challenge 2019,” in Blizzard Challenge Workshop,
2019.

[3] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech
synthesis using deep neural networks,” in 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
2013, pp. 7962–7966.

[4] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural
TTS Synthesis by Conditioning Wavenet on Mel Spectrogram
Predictions,” in 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2018, pp. 4779–4783.

[5] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave genera-
tion in end-to-end text-to-speech,” in International Conference on
Learning Representations, 2019.

[6] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan,
S. Narang, J. Raiman, and J. Miller, “Deep voice 3: 2000-speaker
neural text-to-speech,” in International Conference on Learning
Representations, 2018.

[7] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“FastSpeech: Fast, Robust and Controllable Text to Speech,” in
Advances in Neural Information Processing Systems, 2019, pp.
3171–3180.

[8] Z. Cai, C. Zhang, Y. Yang, and M. Li, “The DKU Speech Synthe-
sis System for 2019 Blizzard Challenge,” in Blizzard Challenge
Workshop, 2019.

[9] C. Zhang, S. Zhang, and H. Zhong, “A prosodic mandarin text-to-
speech system based on tacotron,” in 2019 Asia-Pacific Signal and
Information Processing Association Annual Summit and Confer-
ence, 2019, pp. 165–169.

[10] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio
synthesis,” in Proceedings of the 35th International Conference
on Machine Learning, 2018, pp. 2410–2419.

[11] https://github.com/mozillazg/python-pinyin.

[12] C. Lu, P. Zhang, and Y. Yan, “Self-attention based prosodic
boundary prediction for chinese speech synthesis,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
2019, pp. 7035–7039.

[13] Y. Song, S. Shi, J. Li, and H. Zhang, “Directional skip-gram:
Explicitly distinguishing left and right context for word embed-
dings,” in Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), 2018,
pp. 175–180.

[14] “The Carnegie Mellon Pronouncing Dictionary,”
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[15] K. Ito, “The LJ Speech Dataset,” https://keithito.com/LJ-Speech-
Dataset/, 2017.

37


