
Building Synthetic Voices

Alan W Black

Kevin A. Lenzo

Building Synthetic Voices
by Alan W Black and Kevin A. Lenzo

For FestVox 2.7 Edition
Copyright © 1999-2014 Alan W Black & Kevin A. Lenzo

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in

perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Table of Contents
I. Speech Synthesis...1

1. Overview of Speech Synthesis ...1
History..1
Uses of Speech Synthesis ...3
General Anatomy of a Synthesizer ..3

2. Speech Science ..7
3. A Practical Speech Synthesis System ..9

Basic Use ..10
Utterance structure ...12
Modules..13
Utterance access ..15
Utterance building..18
Extracting features from utterances ...20

II. Building Synthetic Voices..23

4. Basic Requirements ..23
Hardware/software requirements...23
Voice in a new language ..23
Voice in an existing language..24
Selecting a speaker ...24
Who owns a voice...25
Recording under Unix..26
Extracting pitchmarks from waveforms..28

5. Limited domain synthesis...35
designing the prompts ...35
customizing the synthesizer front end ..36
autolabeling issues ...37
unit size and type ...37
using limited domain synthesizers ..38
Telling the time..39
Making it better...44

6. Text analysis ..47
Non-standard words analysis...47
Token to word rules..47
Number pronunciation ..51
Homograph disambiguation...52
TTS modes ...52
Mark-up modes...52

7. Lexicons ...55
Word pronunciations..55
Lexicons and addenda ...55
Out of vocabulary words...56
Building letter-to-sound rules by hand ...57
Building letter-to-sound rules automatically ...58
Post-lexical rules ...62
Building lexicons for new languages...63

8. Building prosodic models ...65
Phrasing ...65
Accent/Boundary Assignment...69
F0 Generation ..71
Duration ...75
Prosody Research..79
Prosody Walkthrough ..80

9. Corpus development ...89
Non-Latin-script languages ..91

10. Waveform Synthesis...93
11. Diphone databases ...95

Diphone introduction...95

iii

Defining a diphone list...96
Recording the diphones...101
Labeling the diphones..102
Extracting the pitchmarks ...105
Building LPC parameters ..106
Defining a diphone voice...108
Checking and correcting diphones ..108
Diphone check list ..109

12. Unit selection databases ..111
Cluster unit selection..111
Building a Unit Selection Cluster Voice...122
Diphones from general databases ..124

13. Statistical Parametric Synthesis..127
Building a CLUSTERGEN Statistical Parametric Synthesizer127
Making it better:Mixed excitation and Random Forests...........................129

14. Labeling Speech..131
Labeling with Dynamic Time Warping ...131
Labeling with Full Acoustic Models ..132
Prosodic Labeling ...135

15. Evaluation and Improvements...137
Evaluation..137
Does it work at all? ...137
Formal Evaluation Tests ..138
Debugging voices ...139

III. Interfacing and Integration ..141

16. Markup ..141
17. Concept-to-speech..143
18. Deployment...145

IV. Recipes ...147

19. Grapheme-based Synthesizer...147
General Grapheme-based Voices..147
Building Indic voices..149
Creating support for new Indic languages ...150

20. A Japanese Diphone Voice ..153
21. US/UK English Diphone Synthesizer...159
22. ldom full example ..165
23. Non-english ldom example ..167

V. Concluding Remarks ..169

24. Concluding remarks and future...169

25. Festival Details..171

26. Festival’s Scheme Programming Language ...173

Overview ...173
Data Types...174
Functions ...176

Core functions ...176
List functions ...177
Arithmetic functions ..179
I/O functions...179
String functions...181
System functions...183
Utterance Functions ...184
Synthesis Functions ..184

Debugging and Help ...184
Adding new C++ functions to Scheme ...184
Regular Expressions...184
Some Examples...186

iv

27. Edinburgh Speech Tools..187

28. Machine Learning...189

29. Resources..191

Festival resources ...191
General speech resources ..192

30. Tools Installation ..195

31. English phone lists ...197

US phoneset ..197
UK phoneset..200

v

vi

Chapter 1. Overview of Speech Synthesis

History

* AWB: probably way too biased as a history
The idea that a machine could generate speech has been with us for some time, but
the realization of suchmachines has only really been practicalwithin the last 50 years.
Even more recently, it’s in the last 20 years or so that we’ve seen practical examples
of text-to-speech systems that can say any text they’re given -- though it might be
"wrong."

The creation of synthetic speech covers a whole range of processes, and though of-
ten they are all lumped under the general term text-to-speech, a good deal of work
has gone into generating speech from sequences of speech sounds; this would be a
speech-sound (phoneme) to audio waveform synthesis, rather than going all the way
from text to phonemes (speech sounds), and then to sound.

One of the first practical application of speech synthesis was in 1936 when the U.K.
Telephone Company introduced a speaking clock. It used optical storage for the
phrases, words, and part-words ("noun," "verb," and so on) which were appropri-
ately concatenated to form complete sentences.

Also around that time, Homer Dudley developed a mechanical device at Bell Lab-
oratories that operated through the movement of pedals, and mechanical keys, like
an organ. With a trained operator, it could be made to create sounds that, if given
a good set-up, almost sounded like speech. Called the Voder, it was demonstrated
at the 1939 World’s Fair in New York and San Francisco. A recording of this device
exists, and can be heard as part of a collection of historical synthesis examples that
were distributed on a record as part of [klatt87].

The realization that the speech signal could be decomposed as a source-and-filter
model, with the glottis acting as a sound source and the oral tract being a filter, was
used to build analog electronic devices that could be used to mimic human speech.
The vocoder, also developed by Homer Dudley, is one such example. Much of the
work in synthesis in the 40s and 50swas primarily concernedwith constructing repli-
cas of the signal itself rather than generating the phones from an abstract form like
text.

Further decomposition of the speech signal allowed the development of formant syn-
thesis, where collections of signals were composed to form recognization speech. The
prediction of parameters that compactly represent the signal, without the loss of any
information critical for reconstruction, has always been, and still is, difficult. Early
versions of formant synthesis allowed these to be specified by hand, with automatic
modeling as a goal. Today, formant synthesizers can produce high quality, recogniz-
able speech if the parameters are properly adjusted, and these systems canwork very
well for some applications. It’s still hard to get fully natural sounding speech from
these when the process is fully automatic -- as it is from all synthesis methods.

With the rise of digital representations of speech, digital signal processing, and the
proliferation of cheap, general-purpose computer hardware, more work was done
in concatenation of natural recorded speech.Diphones appeared; that is, two adjacent
half-phones (context-dependent phoneme realizations), cut in the middle, joined into
one unit. The justification was that phone boundaries are much more dynamic than
stable, interior parts of phones, and therefore mid-phone is a better place to concate-
nate units, as the stable points have, by definition, little rapid change, whereas there
are rapid changes at the boundaries that depend upon the previous or next unit.

The rise of concatenative synthesis began in the 70s, and has largely become practi-
cal as large-scale electronic storage has become cheap and robust. When a megabyte
of memory was a significant part of researchers salary, less resource-intensive tech-
niques were worth their... weight in saved cycles in gold, to use an odd metaphor. Of
course formant, synthesis can still require significant computational power, even if it

1

Chapter 1. Overview of Speech Synthesis

requires less storage; the 80s speech synthesis relied on specialized hardware to deal
with the constraints of the time.

In 1972, the standard Unix manual (3rd edition) included commands to process text
to speech, form text analysis, prosodic prediction, phoneme generation, and wave-
form synthesis through a specialized piece of hardware. Of course Unix had only
about 16 installations at the time and most, perhaps even all, were located in Bell
Labs at Murray Hill.

Techniques were developed to compress (code) speech in a way that it could be more
easily used in applications. The Texas Instruments Speak ’n Spell toy, released in the
late 70s, was one of the early examples of mass production of speech synthesis. The
quality was poor, by modern standards, but for the time it was very impressive.
Speech was basically encoded using LPC (linear Predictive Coding) and mostly used
isolatedwords and letters though therewere also a few phrases formed by concatena-
tion. Simple text-to-speech (TTS) engines based on specialised chips became popular
on home computers such as the BBC Micro in the UK and the Apple][.

Dennis Klatt’s MITalk synthesizer [allen87] in many senses defined the perception
of automatic speech synthesis to the world at large. Later developed into the prod-
uct DECTalk, it produces somewhat robotic, but very understandable, speech. It is a
formant synthesizer, reflecting the state of the art at the time.

Before 1980, research in speech synthesis was limited to the large laboratories that
could afford to invest the time and money for hardware. By the mid-80s, more labs
and universities started to join in as the cost of the hardware dropped. By the late
eighties, purely software synthesizers became feasible; the speech quality was still
decidedly inhuman (and largely still is), but it could be generated in near real-time.

Of course, with fastermachines and large disk space, people began to look to improv-
ing synthesis by using larger, and more varied inventories for concatenative speech.
Yoshinori Sagisaka at Advanced Telecommunications Research (ATR) in Japan de-
veloped nuu-talk [nuutalk92] in the late 80s and early 90s. It introduced a much
larger inventory of concatenative units; thus, instead of one example of each diphone
unit, there could be many, and an automatic, acoustically based distance function
was used to find the best selection of sub-word units from a fairly broad database of
general speech. This work was done in Japanese, which has a much simpler phonetic
structure than English, making it possible to get high quality with a relatively small
databases. Even up through 1994, the time needed to generate of the parameter files
for a new voice in nuu-talk (503 senetences) was on the order of several days of CPU
time, and synthesis was not generally possible in real time.

With the demonstration of general unit selection synthesis in English in Rob Donovan’s
PhD work [donovan95], and ATR’s CHATR system ([campbell96] and [hunt96]), by
the end of the 90’s, unit selection had become a hot topic in speech synthesis research.
However, despite examples of it working excellently, generalized unit selection is
known for producing very bad quality synthesis from time to time. As the optimial
search and selection agorithms used are not 100% reliable, both high and low quality
synthesis is produced -- and many diffilculties still exists in turning general corpora
into high-quality synthesizers as of this writing.

Into the 2000s a new statistical method of speech synthesis has come to the forefront.
Again pioneered by work on Japan. Prof Keiichi Tokuda’s HTS System (fromNagoya
Institute of Technology) showed that building generative models of speech, rather
than selecting unit instances can generate reliable high quality speech. Its promi-
nance came to the fore front at the first Blizzard Challange in 2005which showed that
HTS output was reliably understoof by listeners. HTS, and so-called HMM synthesis
seems to do well on smaller amounts of data, and when then the data is less reli-
ably recordedwhich offers a significant advantage over the requirement of very large
carefully labelled corpora that seem to be required for unit selectionwork.We include
detailedwalkthroughs formCMU’s CLUSTERGEN statistical parametric synthesizer
which is tightly coupled with this Festvox voice building toolkit, though HTS contin-
ues to benefit from the Festival systems (and much of what is in this document).

2

Chapter 1. Overview of Speech Synthesis

Of course, the development of speech synthesis is not isolated from other develop-
ments in speech technology. Speech recognition, which has also benefited from the
reduction in cost of computational power and increased availability of general com-
puting into the populace, informs a the work on speech synthesis, and vice versa.
There are now many more people who have the computational resouces and interest
in running speech applications, and this ability to run such applications puts the de-
mand on the technology to deliver both working recognition and acceptable quality
speech synthesis.

The availability of free and semi-free synthesis systems, such as the Festival Speech
Synthesis System and the MBROLA project, makes the cost of entering the field of
speech synthesis much lower, and many more groups have now joined in the devel-
opment.

However, although we are now at the stage were talking computers are with us, there
is still a great deal of work to be done. We can now build synthesizers of (probably)
any language that can produce reconizable speech, with a sufficient amount of work;
but if we are to use speech to receive information as easily when we’re talking with
computers as we do in everyday conversation, synthesized speech must be natural,
controllable and efficient (both in rendering and in the building of new voices).

Uses of Speech Synthesis
While speech and language were already important parts of daily life before the in-
vention of the computer, the equipment and technology that has developed over the
last several years has made it possible to have machines that speak, read, or even
carry out dialogs. A number of vendors provide both recognition and speech tech-
nology, and there are several telephone-based systems that do interesting things.

...

General Anatomy of a Synthesizer

[diagram: text going in and moving around, coming out audio]

Within Festival we can identify three basic parts of the TTS process

Text analysis:

From raw text to identified words and basic utterances.

Linguistic analysis:

Finding pronunciations of the words and assigning prosodic structure to them:
phrasing, intonation and durations.

Waveform generation:

From a fully specified form (pronunciation and prosody) generate a waveform.

These partitions are not absolute, but they are a good way of chunking the problem.
Of course, different waveform generation techniques may need different types of
information. Pronunciationmay not always use standard phones, and intonation need
not necessarily mean an F0 contour. For the main part, at along least the path which is
likely to generate a working voice, rather than the more research oriented techniques
described, the above three sections will be fairly cleanly adhered to.

There is another part to TTS which is normally not mentioned, we will mention it
here as it is the most important aspect of Festival that makes building of new voices

3

Chapter 1. Overview of Speech Synthesis

possible -- the system architecture. Festival provides a basic utterance structure, a lan-
guage to manipulate it, and methods for construction and deletion; it also interacts
with your audio system in an efficient way, spooling audio files while the rest of the
synthesis process can continue. With the Edinburgh Speech Tools, it offers basic anal-
ysis tools (pitch trackers, classification and regression tree builders, waveform I/O
etc) and a simple but powerful scripting language. All of these functions make it so
that you may get on with the task of building a voice, rather than worrying about the
underlying software too much.

Text
We try to model the voice independently of the meaning, with machine learning
techniques and statistical methods. This is an important abstraction, as it moves us
from the realm of "all human thought" to "all possible sequences." Rather than ask-
ing "when and why should this be said," we ask "how is this performed, as a series
of speech sounds?" In general, we’ll discuss this under the heading of text analysis
-- going from written text, possibly with some mark-up, to a set of words and their
relationships in an internal representation, called an utterance structure.

Text analysis is the task of identifying the words in the text. By words, we mean tokens
for which there is a well defined method of finding their pronunciation, i.e. from a
lexicon, or using letter-to-sound rules. The first task in text analysis is to make chunks
out of the input text -- tokenizing it. In Festival, at this stage, we also chunk the text
into more reasonably sized utterances. An utterance structure is used to hold the
information for what might most simply be described as a sentence. We use the term
loosely, as it need not be anything syntactic in the traditional linguistic sense, though
it most often has prosodic boundaries or edge effects. Separating a text into utterances
is important, as it allows synthesis to work bit by bit, allowing the waveform of the
first utterance to be available more quickly than if the whole files was processed as
one. Otherwise, one would simply play an entire recorded utterance -- which is not
nearly as flexible, and in some domains is even impossible.

Utterance chunking is an externally specifiable part of Festival, as it may vary from
language to language. For many languages, tokens are white-space separated and ut-
terances can, to a first approximation, be separated after full stops (periods), question
marks, or exclamation points. Further complications, such as abbreviations, other-
end punctuation (as the upside-down question mark in Spanish), blank lines and so
on, make the definition harder. For languages such as Japanese and Chinese, where
white space is not normally used to separate what we would term words, a different
strategy must be used, though both these languages still use punctuation that can
be used to identify utterance boundaries, and word segmentation can be a second
process.

Apart from chunking, text analysis also does text normalization. There are many to-
kens which appear in text that do not have a direct relationship to their pronuncia-
tion. Numbers are perhaps the most obvious example. Consider the following sen-
tence

OnMay 5 1996, the university bought 1996 computers.

In English, tokens consisting of solely digits have a number of different forms of
pronunciation. The “5” above is pronounced “fifth”, an ordinal, because it is the day
in a month, The first “1996” is pronounced as “nineteen ninety six” because it is a year,
and the second “1996” is pronounced as “one thousand nine hundred and ninety size”
(British English) as it is a quantity.

Two problems that turn up here: non-trivial relationship of tokens to words, and ho-
mographs, where the same token may have alternate pronunciations in different con-
texts. In Festival, homograph disambiguation is considered as part of text analysis.
In addition to numbers, there are many other symbols which have internal structure
that require special processing -- such as money, times, addresses, etc. All of these

4

Chapter 1. Overview of Speech Synthesis

can be dealt with in Festival by what is termed token-to-word rules. These are lan-
guage specific (and sometimes text mode specific). Detailed examples will be given
in the text analysis chapter below.

Lexicons
After we have a set of words to be spoken, we have to decidewhat the sounds should
be -- what phonemes, or basic speech sounds, are spoken. Each language and dialect
has a phoneme set associated with it, and the choice of this inventory is still not
agreed upon; different theories posit different feature geometries. Given a set of units,
we can, once again, train models from them, but it is up to linguistics (and practice)
to help us find good levels of structure and the units at each.

Prosody
Prosody, or the way things are spoken, is an extremely important part of the speech
message. Changing the placement of emphasis in a sentence can change the meaning
of a word, and this emphasis might be revealed as a change in pitch, volume, voice
quality, or timing.

We’ll present two approaches to taming the prosodic beast: limiting the domain to
be spoken, and intonation modeling. By limiting the domain, we can collect enough
data to cover the whole output. For some things, like weather or stock quotes, very
high quality can be produced, since these are rather contained. For general synthesis,
however, we need to be able to turn any text, or perhaps concept, into a spoken form,
and we can never collect all the sentences anyone could ever say. To handle this, we
break the prosody into a set of features, which we predict using statistically trained
models.

- phrasing - duration - intonation - energy - voice quality

Waveform generation
For the case of concatenative synthesis, we actually collect recordings of voice tal-
ent, and this captures the voice quality to some degree. This way, we avoid detailed
physical simulation of the oral tract, and perform synthesis by integrating pieces that
we have in our inventory; as we don’t have to produce the precisely controlled ar-
ticulatory motion, we can model the speech using the units available in the sound
alone -- though these are the surface realization of an underlying, physically gener-
ated signal, and knowledge of that system informs what we do. During waveform
generation, the system assembles the units into an audio file or stream, and that can
be finally "spoken." There can be some distortion as these units are joined together,
but the results can also be quite good.

We systematically collect the units, in all variations, so as to be able to reproduce
them later as needed. To do this, we design a set of utterances that contain all of the
variation that produces meaningful or apparent contrast in the language, and record
it. Of course, this requires a theory of how to break speech into relevant parts and
their associated features; various linguistic theories predict these for us, though none
are undisputed. There are several different possible unit inventories, and each has
tradeoffs, in terms of size, speed, and quality; we will discuss these in some detail.

5

Chapter 1. Overview of Speech Synthesis

6

Chapter 2. Speech Science

speech, articulators, formats, phones, syllables, utterances, intonation etc.

generating speech, formant, concatenative,

7

Chapter 2. Speech Science

8

Chapter 3. A Practical Speech Synthesis System

The Festival Speech Synthesis Systems1 was developed at the Centre for Speech Tech-
nology Reseach2 at the University of Edinburgh3 in the late 90’s. It offers a free,
portable, language independent, run-time speech synthesis engine for verious plat-
forms under various APIs. This book is not about the Festival system itself, Festival
is just the engine that we will use in the process of building voices, both as a run-time
engine for the voices we build and as a tool in the building process itself. This chapter
gives a background on the philosophy of the system, its basic use, and some lower
level details on its internals that will make the understanding of the whole synthesis
task easier.

The Festival Speech Synthesis System was designed to target three particular classes
of speech synthesis user.

1. Speech synthesis researchers: where they may use Festival as a vehicle for de-
velopmeent and testing of new research in synthesis technology.

2. Speech application developers: where synthesis is not the primary interest, but
Festival will be a substantial sub-component which may require significant in-
tegration and hence the system must be open and easily configurable.

3. End user: where the system simple takes text and generates speech, requiring
no or very little configuration from the user.

In the design of Festival it was important that all three classes of user were served as
there needs to be a clear route from research work to practial usable systems as this
not only encourages research to be focussed but also, as has been shown by the large
uptake of the system, ensures there is a large user community interested in seeing
improvements to the system.

The Festival Speech Synthesis System was built based on the experience of previous
synthesis engines. Design of a key architecture is important as what may seem gen-
eral to begin with can quickly become a limiting factor, as new and more ambitious
techniques are attemptedwithin it. The basic architecture of Festival benefitedmainly
from previous synthesis engines developed at Edinburgh University, specifically Os-
prey [taylor91]. ATR’s CHATR system, [black94] was also a major influence on Festi-
val, CHATR’s original core architecture was also developed by the same authors as
Festival. In designing Festival, the intention was to avoid the previous limitations in
the utterance representation and module specification, specifically in avoiding con-
straints on the types of modules and dependencies between them. However even
with this intent, Festival went through a number of core changes before it settled.

The Festival system consists of a set of C++ objects and core methods suitable for do-
ing synthesis tasks. These objects include synthesis specific objects like, waveforms,
tracks and utterances as well as more general objects like feature sets, n-grams, and
decision trees.

In order to give parameters and specify flow of control Festival offers a scripting lan-
guage based on the Scheme programming language [Scheme96]. Having a scripting
language is one of the key factors that makes Festival a useful system. Most of the
techniques in this book for building new voices within Festival can be done without
any changes to the core C++ objects. This makes development of new voices not only
more accessible to a larger population or users, as C++ knowledge nor a C++ com-
piler is necessary, it also makes the distribution of voices built by these techniques
easy as users do not require any recompilation to use newly created voices.

Scheme offers a very simple syntax but powerful language for specifying parameters
and simple functions. Scheme was chosen as its implementation is small and would
not increase the size of the Festival system unnecessarily. Also, using an embedded
Scheme component does not increase the requirements for installation as would the
use of say Java, Perl or Python as the scripting language. Scheme frightens some

9

Chapter 3. A Practical Speech Synthesis System

people as Lisp based languages have an unfair reputation for being slow. Festival’s
use of Scheme is (in general) limited to simple functions and very little time is spent
in the Scheme interpreter itself. Automatic garbage collection also has a reputation
for slowing systems down. In Festival, garbage collection happens after each utter-
ance is synthesized and again takes up only a small amount of time but allows the
programmer nor to have to worry about explicitly freeing memory.

For the most part the third type of user, defined above, will never need to change any
part of the systems (though they usually find something they want to change, like
adding new entries to the lexicon). The second level of user typically does most of
their customizing in Scheme, though this is usually just modifying existing pieces of
Scheme in the way that people may add simple lines of Lisp to their .emacs file. It is
primarily only the synthesis research community that has to deal with the C++ end
of the system, though C/C++ interfaces to the systems as a library are also provided
(see Chapter 25 for more discussions on APIs).

This chapter covers the basic use of the system and is followed by more details of
the internal structures, particularly the utterance sturcture, accessing methods and
modules. These later sections are probably more detail than one needs for building
standard voices described in the book, but the is information is necessary when more
ambituous voice building tasks are attempted.

Basic Use
The examples here are given based on a standard installation on a Unix system as
described in Chapter 30, however the examples are likely towork under any platform
Festival supports.

The most simple way to use Festival to speak a file from the command line, is by the
command

festival --tts example.txt

This will speak the text in example.txt using the default voice.

Festival can also read text from stdin using a command like

echo "Hello world" | festival --tts

Festival actually offers two modes, a text mode and a command mode. In text mode
everything given to Festival is treated as text to be spoken. In comamnd mode every-
thing is treated as Scheme commands and interpreted.

When festival is started with no arguments if goes into interactive command mode.
There youmay type Scheme command and have Festival interpret them. For example

$ festival
....
festival>

One simple command is SayText takes a single string argument and says its con-
tents.

festival> (SayText "Hello world.")
#<Utterance 0x402a9ce8>
festival>

You may select other voices for synthesis by calling the appropriate function. For
example

10

Chapter 3. A Practical Speech Synthesis System

festival> (voice_cmu_sls_diphone)
cmu_us_sls_diphone
festival> (SayText "Hello world.")
#<Utterance 0x402f0648>
festival>

Will use a female US English voice (if installed).

The command line interface offers comand line history though the up and down
arrows (ctrl-P and ctrl-N) and editing through standard emacs-like commands. Im-
portantly the interface does function and filename completion too, using the TAB
key.

Any Scheme command may be typed at the command line for example

festival> (Parameter.set ’Duration_Stretch 1.5)
1.5
festival>

Will make all durations longer for the current voice (making the voice speak slower.

festival> (SayText "a very slow example.")
#<Utterance 0x402f564376>
festival>

Calling any specific voice will reset this value (or you may do it by hand).

festival> (voice_cmu_us_kal_diphone)
cmu_us_kal_diphone
festival> (SayText "a normal example.")
#<Utterance 0x402e3348>
festival>

The SayText is just a simple function that takes the given string, constructs an ut-
terance object from is, synthesizes it and sends the resulting waveform to the audio
device. This isn’t really suitable for synthesizing anythign but very short utterances.
The TTS process involves the more complex task of splitting text streams into ut-
terance synthesizing them and sendthem to the audio device to they may play as
the same time working on the next utterance to that the audio output is continuous.
Festival does this through the tts function (which is what is actually called when
Festival is given the --tts argument on the command line. In Scheme the tts funci-
ton takes two arguments, a filename and a mode. Modes are described in more detail
in the Section called TTS modes in Chapter 6, and can be used to allow special pro-
cessing of text, such as respecting markup or particular styles of text like email etc. In
simple case the mode will be nilwhich denotes the basic raw or fundamental mode.

festival> (tts "WarandPeace.txt" nil)
t
festival>

Commands can also be stored in files, which is normal when a number of function
definitions and parameter settings are required. These scheme files can be loaded by
the function SayText as in

festival> (load "commands.scm")
t
festival>

11

Chapter 3. A Practical Speech Synthesis System

Arguments to Festival at startup time will normally be treated as command files and
loaded.

$ festival commands.scm
...
festival>

However if the argument starts with a left parenthesis (the argument is interpreted
directly as a Scheme command.

$ festival ’(SayText "a short example.")’
...
festival>

If the -b (batch) option is specified Festival does not go into interactive mode and
exits after processing all of the given arguments.

$ festival -b mynewvoicedefs.scm ’(SayText "a short example.")’

Thus we can use Festival interactively or simple as a batch scripting language. The
batch format will be used often in the voice building process though the intereactive
mode is useful for testing new voices.

Utterance structure
The basic building block for Festival is the utterance. The structure consists of a set
of relations over a set of items. Each item represents a object such as a word, seg-
ment, syllable, etc. while relations relate these items together. An item may appear
in multiple relations, such as a segment will be in a Segment relation and also in the
SylStructure relation. Relations define an ordered structure over the items within
them, in general these may be arbitrary graphs but in practice so far we have only
used lists and trees Items may contain a number of features.

There are no built-in relations in Festival and the names and use of them is controlled
by the particular modules used to do synthesis. Language, voice and module specific
relations can easy be created and manipulated. However within our basic voices we
have followed a number of conventions that should be followed if you wish to use
some of the existing modules.

The relation names used will depend on the particular structure chosen for your
voice. So far most of our released voices have the same basic structure though some
of our research voices contain quite a different set of relations. For our basic English
voices the relations used are as follows

Text

Contains a single item which contains a feature with the input character string
that is being synthesized

Token

A list of trees where each root of each tree is the white space separated tok-
enized object from the input character string. Punctuation and whitespace has
been stripped and placed on features on these token items. The daughters of
each of these roots are the list of words that the token is associated with. In many
cases this is a one to one relationship, but in general it is one to zero or more. For
example tokens comprising of digits will typically be associated with a number
of words.

12

Chapter 3. A Practical Speech Synthesis System

Word

The words in the utterance. By word we typically mean something that can be
given a pronunciation from a lexicon (or letter-to-sound rules). However in most
of our voices we distinguish pronunciation by the words and a part of speech
feature. Words with also be leaves of the Token relation, leaves of the Phrase
relation and roots of the SylStructure relation.

Phrase

A simple list of trees representing the prosodic phrasing on the utterance. In our
voices we only have one level of prosodic phrase below the utterance (though
you can easily add a deeper hierarchy if your models require it). The tree roots
are labeled with the phrase type and the leaves of these trees are in the Word
relation.

Syllable

A simple list of syllable items. These syllable items are intermediate nodes in
the SylStructure relation allowing access to the words these syllables are in
and the segments that are in these syllables. In this format no further onset/coda
distinction is made explicit but can be derived from this information.

Segment

A simple list of segment (phone) items. These form the leaves of the
SylStructure relation through which we can find where each segment is
placed within its syllable and word. By convention silence phones do not
appear in any syllable (or word) but will exist in the segment relation.

SylStructure

A list of tree structures over the items in the Word, Syllable and Segment items.

IntEvent

A simple list of intonation events (accents and boundaries). These are related to
syllables through the Intonation relation.

Intonation

A list of trees whose roots are items in the Syllable relation, and daughters
are in the IntEvent relation. It is assumed that a syllable may have a number
of intonation events associated with it (at least accents and boundaries), but an
intonation event may only by associated with one syllable.

Wave

A relation consisting of a single item that has a feature with the synthesized
waveform.

Target

A list of trees whose roots are segments and daughters are F0 target points. This
is only used by some intonation modules.

Unit, SourceSegments, Frames, SourceCoef TargetCoef

A number of relations used the the UniSynmodule.

13

Chapter 3. A Practical Speech Synthesis System

Modules
The basic synthesis process in Festival is viewed as applying a set of modules to an
utterance. Eachmodule will access various relations and items and potentially gener-
ate new features, items and relations. Thus as the modules are applied the utterance
structure is filled in with more and more relations until ultimately the waveform is
generated.

Modules may be written in C++ or Scheme. Which modules are executed are defined
in terms of the utterance type, a simple feature on the utterance itself. For most text-
to-speech cases this is defined to be of type Tokens. The function utt.synth simply
looks up an utterance’s type and then looks up the definition of the defined synthesis
process for that type and applies the namedmodules. Synthesis types maybe defined
using the function defUttType. For example definition for utterances of type Tokens
is

(defUttType Tokens
(Token_POS utt)
(Token utt)
(POS utt)
(Phrasify utt)
(Word utt)
(Pauses utt)
(Intonation utt)
(PostLex utt)
(Duration utt)
(Int_Targets utt)
(Wave_Synth utt)
)

While a simpler case is when the input is phone names and we don’t wish to do
all that text analysis and prosody prediction. Then we use the type Phones which
simply loads the phones, applies fixed prosody and the synthesizes the waveform

(defUttType Phones
(Initialize utt)
(Fixed_Prosody utt)
(Wave_Synth utt)
)

In general the modules named in the type definitions are general and actually allow
further selection of more specific modules within them. For example the Duration
module respects the global parameter Duration_Method and will call then desired
duration module depending on this value.

When building a new voice you will probably not need to change any of these defini-
tions, though you may wish to add a new module and we will show how to do that
without requiring any change to the synthesis definitions in a later chapter.

There aremanymodules in the system, some simply wraparounds to choose between
other modules. However the basic modules used for text-to-speech have the basic
following function

Token_POS

basic token identification, used for homograph disambiguation

Token

Apply the token to word rules building the Word relation.

POS

A standard part of speech tagger (if desired)

14

Chapter 3. A Practical Speech Synthesis System

Phrasify

Build the Phrase relation using the specified method. Various are offered, from
statistically trained models to simple CART trees.

Word

Lexical look up building the Syllable and Segment relations and the
SylStructure related these together.

Pauses

Prediction of pauses, inserting silence into the Segment relation, again through
a choice of different prediction mechanisms.

Intonation

Prediction of accents and boundaries, building the IntEvent relation and the
Intonation relation that links IntEvents to syllables. This can easily be parame-
terized for most practical intonation theories.

PostLex

Post lexicon rules that can modify segments based on their context. This is used
for things like vowel reduction, contractions, etc.

Duration

Prediction of durations of segments.

Int_Targets

The second part of intonation. This creates the Target relation representing the
desired F0 contour.

Wave_Synth

A rather general function that in turn calls the appropriate method to actually
generate the waveform.

Utterance access
A set of simple access methods exist for utterances, relations, items and features,
both in Scheme and C++. As much as possible these access methods are as similar as
possible.

As the users of this document will primarily be accessing utterance via Scheme we
will describe the basic Scheme functions available for access and give some examples
of idioms to achieve various standard functions.

In general the required arguments to a lisp function are reflected in the first parts of
the name of the function. Thus item.relation.next requires an item, and relation
name and will return the next item in that named relation from the given one.

A listing a short description of themajor utterance access andmanipulation functions
is given in the Festival manual.

An important notion to be aware of is that an item is always viewed through so
particular relation. For example, assuming a typically utterance called utt1.

(set! seg1 (utt.relation.first utt1 ’Segment))

seg1 is an item viewed from the Segment relation. Calling item.next on this will
return the next item in the Segment relation. A Segment item may also be in the

15

Chapter 3. A Practical Speech Synthesis System

SylStructure item. If we traverse it using next in that relation we will hit the end
when we come to the end of the segments in that syllable.

You may view a given item from a specified relation by requesting a view from
that. In Scheme nil will be returned if the item is not in the relation. The function
item.relation takes an item and relation name and returns the item as view from
that relation.

Here is a short example to help illustrate the basic structure.

(set! utt1 (utt.synth (Utterance Text "A short example.")))

The first segment in utt!will be silence.

(set! seg1 (utt.relation.first utt1 ’Segment))

This item will be a silence as can shown by

(item.name seg1)

If we find the next item we will get the schwa representing the indefinite article.

(set! seg2 (item.next seg1))
(item.name seg2)

Let us move onto the "sh" to illustrate the different between traversing the Segment
relation as opposed to the SylStructure

(set! seg3 (item.next seg2))

Let use define a function which will take an item, print its name name call next on
it in the same relation and continue until it reaches the end.

(define (toend item)
(if item

(begin
(print (item.name item))
(toend (item.next item)))))

If we call this function on seg3 which is in the Segment relation we will get a list of
all segments until the end of the utterance

festival> (toend seg3)
"sh"
"oo"
"t"
"i"
"g"
"z"
"aa"
"m"
"p"
"@"
"l"
"#"
nil
festival>

However if we first changed the view of seg3 to the SylStructure relation we will
be traversing the leaf nodes of the syllable structure tree which will terminate at the
end of that syllable.

16

Chapter 3. A Practical Speech Synthesis System

festival> (toend (item.relation seg3 ’SylStructure)
"sh"
"oo"
"t"
nil
festival>

Note that item.next returns the item immediately to the next in that relation. Thus
it return nil when the end of a sub-tree is found. item.next is most often used for
traversing simple lists through it is defined for any of the structure supported by
relations. The function item.next_item allows traversal of any relation returning a
next item until it has visiting them all. In the simple list case this this equivalent to
item.next but in the tree case it will traverse the tree in pre-order that is it will visit
roots before their daughters, and before their next siblings.

Scheme is particularly adept at using functions as first class objects. A typical traver-
sal idiom is to apply so function to each item in a a relation. For example support we
have a function PredictDurationwhich takes a single item and assigns a duration. We
can apply this to each item in the Segment relation

(mapcar
PredictDuration
(utt.relation.items utt1 ’Segment))

The function utt.relation.items returns all items in the relation as a simple lisp
list.

Another method to traverse the items in a relation is use the while looping paradigm
which many people are more familiar with.

(let ((f (utt.relation.first utt1 ’Segment)))
(while f
(PredictDuration f)
(set! f (item.next_item f))))

If you wish to traverse only the leaves of a tree you may call utt.relation.leafs
instead of utt.relation.items. A leaf is defined to be an item with no daughters.
Or in the while case, there isn’t standardly defined a item.next_leafbut code easily
be defined as

(define (item.next_leaf i)
(let ((n (item.next_item i)))
(cond
((null n) nil)
((item.daughters n) (item.next_leaf n))
(t n))))

Features as pathnames
Rather than explicitly calling a set of functions to find your way round an utterance
we also allow access through a linear flat pathname mechanism. This mechanism is
read-only but can succinctly access not just features on a given item but features on
related items too.

For example rather than calling an explicit next function to find the name of the fol-
lowing item thus

(item.name (item.next i))

17

Chapter 3. A Practical Speech Synthesis System

You can access it via the pathname

(item.feat i "n.name")

Festival will interpret the feature name as a pathname. In addition to traversing the
current relation you can switch between relations via the element R:relationname.
Thus to find the stress value of an segment item seg we need to switch to the
SylStructure relation, find its parent and check the stress feature value.

(item.feat seg "R:SylStructure.parent.stress")

Feature pathnames make the definition of various prediction models much easier.
CART trees for example simply specify a pathname as a feature, dumping features for
training is also a simple task. Full function access is still useful when manipulation
of the data is required but as most access is simply to find values pathnames are the
most efficient way to access information in an utterance.

Access idioms
For example suppose you wish to traverse each segment in an utterance replace all
vowels in unstressed syllables with a schwa (a rather over-aggressive reduction strat-
egy but it servers for this illustrative example.

(define (reduce_vowels utt)
(mapcar
(lambda (segment)
(if (and (string-equal "+" (item.feat segment "ph_vc"))

(string-equal
"1" (item.feat segment "R:SylStructure.parent.stress")))

(item.set_name segment "@")))
(utt.relation.items ’Segment)))

Utterance building
Aswell as using Utterance structures in the actual runtime process of converting text-
to-speech we also use them in database representation. Basically we wish to build
utterance structures for each utterance in a speech database. Once they are in that
structure, as if they had been (correctly) synthesized, we can use these structures for
training various models. For example given the actually durations for the segments
in a speech database and utterance structures for these we can dump the actual du-
rations and features (phonetic, prosodic context etc.) which we feel influence the du-
rations and train models on that data.

Obviously real speech isn’t as clean as synthesized speech so its not always easy to
build (reasonably) accurate utterances for the real utterances. However here we will
itemize a number of functions that will make the building of utterance from real
speech easier. Building utterance structures is probably worth the effort considering
how easy it is to build various models from them. Thus we recommend this even
though at first the work may not immediately seem worthwhile.

In order to build an utterance of the type used for our English voices (and which is
suitable for most of the other languages we have done), you will need label files for
the following relations. Below we will discuss how to get these labels, automatically,
by hand or derived from other label files in this list and the relative merits of such
derivations.

18

Chapter 3. A Practical Speech Synthesis System

The basic label types required are

Segment

segment labels with (near) correct boundaries, in the phone set of your language.

Syllable

Syllables, with stress marking (if appropriate) whose boundaries are closely
aligned with the segment boundaries.

Word

Words with boundaries aligned (close) to the syllables and segments. By words
we mean the things which can be looked up in a lexicon thus “1986” would not
be considered a word and should be rendered as three words “nineteen eighty
six”.

IntEvent

Intonation labels aligned to a syllable (either within the syllable boundary or ex-
plicitly naming the syllable they should align to. If using ToBI (or some deriva-
tive) these would be standard ToBI labels, while in something like Tilt these
would be “a” and “b” marking accents and labels.

Phrase

A name and marking for the end of each prosodic phrase.

Target

The mean F0 value in Hertz at the mid-point of each segment in the utterance.

Segment labels are probably the hardest to generate. Knowing what phones are there
can only really be done by actually listening to the examples and labeling them. Any
automatic method will have to make low level phonetic classifications which ma-
chines are not particularly good at (nor are humans for that matter). Some discussion
of autoaligning phones is given in the diphone chapter where an aligner distributed
with this document is described. This may help but as much depends on the segmen-
tal accuracy getting it right ultimately hand correction at least is required. We have
used that aligner on a speech database though we already knew from another (not
so accurate) aligner what the phone sequences probably were. Our aligner improved
the quality of exist labels and the synthesizer (phonebox) that used it, but there are
external conditions that made this a reasonably thing to do.

Word labeling can most easily be done by hand, it is much easier than to do than
segment labeling. In the continuing process of trying to build automatic labelers for
databases we currently reckon that word labeling could be the last to be done au-
tomatically. Basically because with word labeling, segment, syllable and intonation
labeling becomes a much more constrained task. However it is important that word
labels properly align with segment labels even when spectrally there may not be any
real boundary between words in continuous speech.

Syllable labeling can probably best be done automatically given segment (and word)
labeling. The actual algorithm for syllabification may change but whatever is chosen
(or defined from a lexicon) it is important that that syllabification is consistently used
throughout the rest of the system (e.g. in duration modeling). Note that automatic
techniques in aligning lexical specifications of syllabification are in their nature inex-
act. There are multiple acceptable ways to say words and it is relatively important to
ensure that the labeling reflects what is actually there. That is simply looking up a
word in a lexicon and aligning those phones to the signal is not necessarily correct.
Ultimately this is what we would like to do but so far we have discovered our unit
selection algorithms are nowhere near robust enough to do this.

19

Chapter 3. A Practical Speech Synthesis System

The Target labeling required here is a single average F0 value for each segment. This
currently is done fully automatically from the signal. This is naive and a better rep-
resentation of F0 could be more appropriate, it is used only in some of the model
building described below. Ultimately it would be good if the F0 need not be explic-
itly used at all but just use the factors that determine the F0 value, but this is still a
research topic.

Phrases could potentially be determined by a combination of F0 power and silence
detection but the relationship is not obvious. In general we hand label phrases as
part of the intonation labeling process. Realistically only two levels of phrasing can
reliably be labeled, even though there are probably more. That is, roughly, sentence
internal and sentence final, what ToBI would label as (2 or 3) and 4. More exact label-
ings would be useful.

For intonation events we have more recently been using Tilt accent labeling. This is
simpler than ToBI and we feel more reliable. The hand labeling part marks a (for ac-
cent) and b for boundary. We have also split boundaries into rb (rising boundary)
and fb (falling boundary). We have been experimenting with autolabeling these and
have had some success but that’s still a research issue. Because there is a well defined
and fully automatic method of going from a/b labeled waveforms to a parameteri-
zation of the F0 contour we’ve found Tilt the most useful Intonation labeling. Tilt is
described in [taylor00a].

ToBI accent/tone labeling [silverman92] is useful too but time consuming to label. If
it exists for the database then its usually worth using.

In the standard Festival distribution there is a festival script
festival/examples/make_utts which will build utterance structures from the
labels for the six basic relations.

This function can most easily be used given the following directory/file structure in
the database directory. festival/relations/ should contain a directory for each set
of labels named for the utterance relation it is to be part of (e.g. Segment/, Word/, etc.

The constructed utterances will be saved in festival/utts/.

Extracting features from utterances
Many of the training techniques that are described in the following chapters ex-
tract basic features (via pathnames) from a set of utterances. This can most easily
be done by the festival/examples/dumpfeats Festival script. It takes a list of fea-
ture/pathnames, as a list or from a file and saves the values for a given set of items in
a single feature file (or one for each utterance). Call festival/examples/dumpfeats
with the argument -h for more details.

For example suppose for all utterances we want the segment duration, its name, the
name of the segment preceding it and the segment following it.

dumpfeats -feats ’(segment_duration name p.name n.name)’ \
-relation Segment -output dur.feats festival/utts/*.utt

If you wish to save the features in separate files one for each utterance, if the output
filename contains a “%s” it will be filled in with the utterance fileid. Thus to dump
all features named in the file duration.featnameswe would call

dumpfeats -feats duration.featnames -relation Segment \
-output feats/%s.dur festival/utts/*.utt

The file duration.featnames should contain the features/pathnames one per line
(without the opening and closing parenthesis.

20

Chapter 3. A Practical Speech Synthesis System

Other features and other specific code (e.g. selecting a voice that uses an appropriate
phone set), can be included in this process by naming a scheme file with the -eval
option.

The dumped feature files consist of a line for each item in the named relation con-
taining the requested feature values white space separated. For example

0.399028 pau 0 sh
0.08243 sh pau iy
0.07458 iy sh hh
0.048084 hh iy ae
0.062803 ae hh d
0.020608 d ae y
0.082979 y d ax
0.08208 ax y r
0.036936 r ax d
0.036935 d r aa
0.081057 aa d r
...

Notes
1. http://www.cstr.ed.ac.uk/projects/festival/

2. http://www.cstr.ed.ac.uk

3. http://www.ed.ac.uk/

21

Chapter 3. A Practical Speech Synthesis System

22

Chapter 4. Basic Requirements

This section identifies the basic requirements for building a voice in a new language,
and adding a new voice in a language already supported by Festival.

Hardware/software requirements
Because we are most familiar with a Unix environment the scripts, tools etc. assume
such a basic environment. This is not to say you couldn’t run these scripts on other
platforms as many of these tools are supported on platforms like WIN32, its just
that in our normal work environment, Unix is ubiquitous and we like working in it.
Festival also runs on Win32 platforms.

Much of the testing was done under Linux; wherever possible, we are using freely
available tools. We are happy to say that no non-free tools are required to build voices,
and we have included citations and/or links to everything needed in this document.

We assume Festival 2.4 and the Edinburgh Speech Tools 2.4.

Note that we make an extensive use of the Speech Tools programs, and you will need
the full distribution of them as well as Festival, rather than the run-time (binary)
only versions which are available for some Linux platforms. If you find the task of
compiling Festival and the speech tools daunting, you will probably find the rest of
the tasks specified in this document more so. However, it is not necessary for you to
have any knowledge of C++ to make voices, though familiarity with text processing
techniques (e.g. awk, sed, perl) will make understanding the examples given much
easier.

We also assume a basic knowledge of Festival, and of speech processing in general.
We expect the reader to be familiar with basic terms such as F0, phoneme, and cep-
strum, but not in any real detail. References to general texts are given (when we know
them to exist). A basic knowledge of programming in Scheme (and/or Lisp) will also
make things easier. A basic capability in programming in general will make defining
rules, etc., much easier.

If you are going to record your own database, you will need recording equipment:
the higher quality, the better. A proper recording studio is ideal, though may not be
available for everyone. A cheap microphone stuck on the back of standard PC is not
ideal, though we know most of you will end up doing that. A high quality sound
board, close-talking, high quality microphone and a nearly soundproof recording
environment will often be the compromise between these two extremes.

Many of the techniques described in here require a fair amount of processing time
to achieve, though machines are indeed getting faster and this is becoming less of an
issue (though we always find ways to use up the more CPU time that is available).
If you use the provided aligner for labeling diphones you will need a processor of
reasonable speed, likewise for the various training techniques for intonation, dura-
tion modeling and letter-to-sound rules. Nothing presented here takes weeks though
a number of processes may be over-night jobs, depending on the speed of your ma-
chine, and size of your database.

Also we think that you will need a little patience. The process of building a voice is
not necessarily going to work first time. It may even fail completely, so if you don’t
expect anything special, you wont be disappointed.

Voice in a new language
The following list is a basic check list of the core areas you will need to provide pieces
for. You may, in some cases, get away with very simple solutions (e.g. fixed phone
durations), or be able to borrow from other voices/languages, but whatever you end
up doing, you will need to provide something for each part.

23

Chapter 4. Basic Requirements

You will need to define

• Phone set

• Token processing rules (numbers etc)

• Prosodic phrasing method

• Word pronunciation (lexicon and/or letter-to-sound rules)

• Intonation (accents and F0 contour)

• Durations

• Waveform synthesizer

Voice in an existing language
The most common case is when someone wants to make their own voice into a syn-
thesizer. Note that the issues in voice modeling of a particular speaker are still open
research problems. Much of the quality of a particular voice comes mostly from the
waveform generation method, but other aspects of a speaker such as intonation and
duration, and pronunciation are all part of what makes that person’s voice sound
like them. All of the general-purpose voices we have heard in Festival sound like
the speaker they were record from (at least as far as we know all the speakers), but
they also don’t have all the qualities of that person’s voice, though they can be quite
convincing for limited-domain synthesizers.

As a practical recommendation to make a new speaker in an existing supported lan-
guage, you will need to consider

• Waveform synthesis

• Speaker specific intonation

• Speaker specific duration

Chapter 21 deals with specifically building a new US or UK English voice. This is
a relatively easy place to start, though of course we encourage reading this entire
document.

Another possible solution to getting a new or particular voice is to do voice conver-
sion, as is done at the Oregon Graduate Institute (OGI) [kain98] and elsewhere. OGI
have already released new voices based on this conversion and may release the con-
version code itself, though the license terms are not the same as those of Festival or
this document.

Another aspect of a new voice in an existing language is a voice in a new dialect. The
requirements are similar to those of creating a voice in a new language. The lexicon
and intonation probably need to change as well as the waveform generation method
(a new diphone database). Although much of the text analysis came probably be
borrowed, be aware that simple things like number pronunciation can often change
between dialects (cf. US and UK English).

We also dowork on limited domain synthesis in the same framework. For limited do-
main synthesis, a reasonably small corpus is collected, and used to synthesize amuch
larger range of utterances in the same basic style. We give an example of recording a
talking clock, which, although built from only 24 recordings, generates over a thou-
sand unique utterances; these capture a lot of the latent speaker characteristics from
the data.

24

Chapter 4. Basic Requirements

Selecting a speaker
We have found that choosing the right speaker to record, is actually as important
as all the the other processes we describe. Some people just have better voices that
are better for synthesis than others. In general people with, clearer, more consistent
voices are better than others but unfortunately its not as clear as that. Professional
speakers are in general better for synthesis that non-professional. Though not all pro-
fessional voices work, and many non-professional speakers give good results.

In general you are looking for clear speakers, who don’t mumble and don’t have
any speech impediments. It helps if they are aware of speech technology, i.e. have
some vague idea of what a phoneme is. A consistent deliver is important. As dif-
ferent parts of speech from different parts of the recorded database are going to be
extracted and put together you what the speech to be as consistent as possible. This is
usually the quality that professional speakers have (or any one used to public speak-
ing). Also note most people can’t actually talk for long periods without practice. Lec-
tures/Teachers are actually muchmore used to this than students, though this ability
can be learned quite easily.

Note choosing the right speaker, if its important to you, can be a big project. For
example, an experiment done at AT&T to select good speakers for synthesis involved
recording fair sized databases for a number of professional speakers (20 or so) and
building simple synthesis example from their voice and submitting these to a large
number of human listeners to get them to evaluate quality [syrdal??]. Of course most
of us don’t have the resources to do searches like that but it is worth taking a little
time to think of the best speaker before investing the considerable time in takes in
building a speaker.

Note that trying to capture a particular voice is still somewhat difficult. You will
always capture some of that persons voice but its unlikely a synthesizer built from
recordings of a person will always sound just like that person. However you should
note that voice you think are distinctive may be so because of lots variation. For
example Homer Simpson’s voice is distinctive but it would be difficult to built a
synthesizer from. The Comic Book Guy (also from the Simpsons) also has a very
distinctive voice but is much less varied prosodically than Homer’s and hence it is
likely to be easier to build a synthesizer from his voice. Likewise, Patrick Stewart’s
voice should be easier than Jim Carey’s.

However as it is usually the case that you just have to take any speaker you have
willing to do it (often yourself), there are still things you should do that will help the
quality. It is best is recording is done in the same session, as it is difficult to set up
the same recording environment (even when you are very careful). We recommend
recording some time in the morning (not immediately you get up), and if you must
re-record do so at the same time of day. Avoid recording when the speaker has a
cold, or a hangover as it can be difficult to recreate that state if multiple sessions are
required.

Who owns a voice
It is very important that your speaker and you understand the legal status of the
recorded database. It is very wise that the speaker signs a statement before you start
recording or at least talk to them ensuring they understandwhat you want to dowith
the data and what restrictions if any they require. Remember in recording their voice
you are potentially allowing anyone (who gets access to the database) to fake that
person’s voice. The whole issue of building a synthetic voice from recordings is still
actually an uninvestigated part of copyright but there are clear ways to ensure you
wont be caught out by a law suit, or a disgruntled subject later.

Explain what you going to do with the database. Get the speaker to agree to the level
use you may make of the recordings (and any use of them). This will roughly be:

25

Chapter 4. Basic Requirements

• free for any use

• free to distribute to anyone but cannot be used for commercial purposes without
further contract.

• research use only (does this allow public demos?)

• fully proprietary

You must find out what the speaker agrees to before you start spending your time
recording. There is nothing worse than spending weeks on building a good voice
only to discover that you don’t have rights to do anything with it.

Also, don’t lie to the speakermake it clear, what it means if their voice is to be released
for free. If you release the voice on the net (as we do with our voices), anyone may
use it. It could be used anywhere, from reading porn stories to emergency broadcast
systems. Also note that effectively building a voice from a synthesizer means that
the person will no longer be able to use voice id systems as a password protection
(actually that depends on the type of voice id system). However also reassure them
that these extremes are very unlikely and actually they will be contributing to world
of speech science and people will use their voice because they like it.

We (KAL and AWB) have already given up the idea that our voices are in anyway
ours and have recorded databases and made them public (even though AWB has a
funny accent). When recording others we ensure they understand the consequences
and get them to explicitly sign a license that gives us (and/or our institution) the
rights to do anything they wish, but the intention is the voice will be released for
free without restriction. From our point of view, having no restrictions is by far the
easiest. We also give (non-exclusive) commercial rights to the voice to the speaker
themselves. This actually costs us nothing, and given most of our recorded voices are
for free the speaker could re-release the free version and use it commercially (as can
anyone else) but its nice that the original license allows the speaker direct commercial
rights (none that I know of have actually done anything with those rights).

There may be other factors though. Someone else may be paying for the database
so they need to be accommodated on any such license. Also a database may already
be recorded under some license and you wish to use it to build a synthetic voice,
make sure you have the rights to do this. Its amazing how mainly people record
speech databases and don’t take into account the fact that someone else may build a
general TTS systems from their voice. Its better that you check that have to deal with
problems later.

An example of the license we use at CMU is given in the festvox distribution
festvox/src/vox_files/speaker.licence.

Also note that there are legal aspects to other parts of a synthetic voice the builder
must also ensure they have rights to. Lexicons may have various restrictions. The
Oxford Advanced Learners’ Dictionary that we currently use for UK English voices
is free for non-commercial use only, thus effectively imposing the same restriction on
the complete voice even though the prosodic models and diphone databases are free.
Also be careful you check the rights when building models from existing data. Some
databases are free for research only and even data derived from them (e.g. duration
models) may not be further distributed. Check at the start, question all pieces of the
system to make sure you know who owns what and what restrictions they impose.
This process is worth doing at the start of a project so things are always clear.

Recording under Unix
Although the best recording conditions can’t probably be achieved recording directly
to a computer (under Unix or some other operating systems). We accept that in many
cases recording directly to a computer has many conveniences outweighing its dis-
advantages.

26

Chapter 4. Basic Requirements

The disadvantages are primarily in quality, the electromagnetic noise generated by a
machine is large and most computers have particularly poor shielding of there audio
hardware such that noise always gets added to the recorded signal. But there are
ways to try tominimize this. Getting better quality sound cards helps, but they can be
very expensive. "Professional" sound cards can go for as much as a thousand dollars.

The advantage of using a computer directly is that you have much more control over
the recording session and first line processing can down at record-time. In recent
years we found the task of transferring the recorded data from DAT tapes to a com-
puter, and splitting them into individual files, even before phonetic, labeled a signif-
icantly laborious task, often larger and resource intensive than the rest of the voice
building process. So recently we’ve accept that direct recording to disk using a ma-
chine worthwhile, except for voices that require the highest quality (and when we
have the money to take more time). This section describes the issues in recording
under Unix, though they mostly apply under Windows too if you go that route.

The first thing you’ll find out about recording on a computer is that no one knows
how to do it, and probably no-one has actually used the microphone on the machine
at all before (or even knows if there is a microphone). Although we believe we are
living in a multi-media computer age, setting up audio is still a tricky thing and even
when it works its often still flakey.

First you want to ensure that audio works on the machine at all. Find out if anyone
has actually heard any audio coming from it. Even though there may be an audio
board in there, it may not have any drivers installed or the kernel doesn’t know about
it. In general, audio rarely, "just works" under Linux in spite of people claiming Linux
is ready for the desktop. But before you start claimingWindows is better, we’ve found
that audio rarely "just works" there too. Under Windows when it works its often
fine, but when it doesn’t the general Windows user is much less likely to have any
knowledge about how to fix it, while at least in the Linux world, users have more
experience in getting recalcitrant devices to come to life.

Its difficult to name products here as the turn over in PC hardware is frantic. Gener-
ally newer audio cards wont work and older card do. For audio recording, we only
require 16bit PCM, and none of the fancy, FM synthesizers and wavetable devices,
those are irrelevant and often make card difficult or very hard to use. Laptops are
particular good for recording, as they generally add less noise to the signal (espe-
cially if run on the battery) and they are portable enough to take into a quite place
that doesn’t have desktop cooling fan running in the background. However sound
on Laptops under Unix (Linux, FreeBSD, Solaris etc) is unfortunately even less likely
to work, due to leading edge technology and proprietary audio chips. Linux is im-
proving in this area but although we are becoming relatively good at getting audio
to work on new machines, its still quite a skill.

In general search the net for answers here. Linux offers both ALSA1 and the Open
Sound drivers2 drivers which go a long way to help. Note though even when these
work there may be other problems (e.g. on one laptop you can have either sound
working or suspend working but not both at once).

To test audio you’ll need something to modify the basic gain on the audio drivers
(e.g. xmixer under Linux/FreeBSD, or gaintool under Solaris). And you can test
audio out with the command (assuming you’ve set ESTDIR}

$ESTDIR/bin/na_play $ESTDIR/lib/example_data/kdt_001.wav

which should play a US male voice saying "She had your dark suit in greasy wash-
water all year."

To test audio in you can use the command

$ESTDIR/bin/na_record -o file.wav -time 3

27

Chapter 4. Basic Requirements

where the time given is the number of seconds to record. Note you may need to
change the microphone levels and/or input gain to make this work.

You should look at the audio signal as well as listen to it. Its often quite easy to see
noise in a signal than hear it. The human ear has developed so that it can mask out
noise, but unfortunately not developed enough to mask all noise in synthesis. But in
synthesis when we are going to concatenated different parts of the signal the human
ear isn’t as forgiving.

The following is a recording made with background noise, (probably a computer).

Example waveform recorded with lots of background noise

The same piece of speech (re-iterated) in a quiet environment looks like

Example waveform recorded in clean environment

As you can see the quiet parts of the speech are much quieter in the clean case than
the noise case.

Under Linux there is a Audio-Quality-HOWTO document that helps get audio up and
running. AT time of writting it can be found http://audio.netpedia.net/aqht.html

28

Chapter 4. Basic Requirements

Extracting pitchmarks from waveforms
Although never as good as extracting pitchmarks from an EGG signal, we have had a
fair amount of success in extracting pitchmarks from the raw waveform. This area is
somewhat a research area but in this section we’ll give some general pointers about
how to get pitchmarks form waveforms, or if not at least be able to tell if you are
getting reasonable pitchmarks from waveforms or not.

The basic program which we use for the extraction is pitchmarkwhich is part of the
Speech Tools distribution. We include the script bin/make_pm_wave (which is copied
by ldom and diphone setup process). The key line in the script is

$ESTDIR/bin/pitchmark tmp$$.wav -o pm/$fname.pm -otype est \
-min 0.005 -max 0.012 -fill -def 0.01 -wave_end \
-lx_lf 200 -lx_lo 51 -lx_hf 80 -lx_ho 51 -med_o 0

This program filters in incoming waveform (with a low and a high band filter, then
uses autocorellation to find the pitch mark peaks with the min and max specified.
Finally it fills in the unvoiced section with the default pitchmarks.

For debugging purposes you should remove the -fill option so you can see where
it is finding pitchmarks. Next you should modify the min and max values to fit the
range of your speaker. The defaults here (0.005 and 0.012) are for a male speaker in
about the range 200 to 80 Hz. For a female you probably want values about 0.0033
and 0.7 (300Mhz to 140Hz).

Modify the script to your approximate needs, and run it on a single file, then run the
script that translates the pitchmark file into a labeled file suitable for emulabel

bin/make_pm_wave wav/awb_0001.wav
bin/make_pm_pmlab pm/awb_0001.pm

You can the display the pitchmark with

emulabel etc/emu_pm awb_0001

This should should a number of pitchmarks over the voiced sections of speech. If
there are none, or very few it definitely means the parameters arewrong. For example
the above parameters on this file taataataa properly find pitchmarks in the three
vowel sections

29

Chapter 4. Basic Requirements

Pitchmarks in waveform signal

It the high and low pass filter values -lx_lf 200 -lx_hf 80 are in appropriate for
the speakers pitch range you may get either too many, or two few pitch marks. For
example if we change the 200 to 60, we find only two pitch marks in the third vowel.

Bad pitchmarks in waveform signal

If we zoom in our first example we get the following

30

Chapter 4. Basic Requirements

Close-up of pitchmarks in waveform signal

The pitch marks should be aligned to the largest (above zero) peak in each pitch
period. Here we can see there are too many pitchmarks (effectively twice as many).
The pitchmarks at 0.617, 0.628, 0.639 and 0.650 are extraneous. This means our pitch
range is too wide. If we rerun changing the min size, and the low frequency filter

$ESTDIR/bin/pitchmark tmp$$.wav -o pm/$fname.pm -otype est \
-min 0.007 -max 0.012 -fill -def 0.01 -wave_end \
-lx_lf 150 -lx_lo 51 -lx_hf 80 -lx_ho 51 -med_o 0

We get the following

Close-up of pitchmarks in waveform signal (2)

31

Chapter 4. Basic Requirements

Which is better but its nowmissing pitchmarks towards the end of the vowel, at 0.634,
0.644 and 0.656. Giving more range for the min (0.005) gives slight better results, but
still we get bad pitchmarks. The double pitch mark problem can be lessened by not
only changing the range but also the amount order of the high and low pass filters
(effectively allowing more smoothing). Thus when secondary pitchmarks appear in-
creasing the -lx_lo parameter often helps

$ESTDIR/bin/pitchmark tmp$$.wav -o pm/$fname.pm -otype est \
-min 0.005 -max 0.012 -fill -def 0.01 -wave_end \
-lx_lf 150 -lx_lo 91 -lx_hf 80 -lx_ho 51 -med_o 0

We get the following

Close-up of pitchmarks in waveform signal (3)

This is satisfactory this file and probably for the whole databases of that speaker.
Though it is worth checking a few other files to get he best results. Note the by in-
creasing the order of the filer the pitchmark creep forward (which is bad).

If you feel brave (or are desperate) you can actually edit the pitchmarks yourself
with emulabel. We have done this occasionally especially when we find persistent
synthesis errors (spikes etc). You can convert a pm_lab file back into its pitchmark
format with

bin/make_pm_pmlab pm_lab/*.lab

An post-processing step is provided that moves the predicted pitchmarks to the near-
est waveformpeak.We find this useful for both EGG extracted pitchmarks andwave-
form extracted ones. A simple script is provided for this

bin/make_pm_fix pm/*.pm

32

Chapter 4. Basic Requirements

If you pitchmarks are aligning to the largest troughs rather than peaks your signal is
upside down (or you are erroneously using -inv. If you are using -inv, don’t, if you
are not, then invert the signal itself with

for i in wav/*.wav
do
ch_wave -scale -1.0 $i -o $i

done

Note the above are quick heuristic hacks we have used when trying to get pitchmarks
out of wave signals. These require more work to offer a more reliable solution, which
we know exists. Extracting (fixed frame) LPC coefficients and extracting a residual,
then extracting pitchmarks could give a more reliable solution but although all these
tools are available we have not experimented with that yet.

Notes
1. http://www.alsa-project.org/

2. http://www.opensound.com/

3. http://audio.netpedia.net/aqht.html

33

Chapter 4. Basic Requirements

34

Chapter 5. Limited domain synthesis

This chapter discusses and gives examples of building synthesis systems for limited
domains. By limited domain, we mean applications where the speech output is con-
strained. Such domains may still be infinite but they may be target to specific vocab-
ulary and phrases. In fact with today’s current speech system such limited domain
applications are in fact the most common. Some typical examples are telling the time,
reading telephone numbers. However from experience we can see that this technique
can be extended to include more general information giving systems and dialog sys-
tems, such as reading the weather, or even the DARPA Communicator domain (flight
information dialog system).

Limited domains are discussed here as it is felt that it should be easier to build unit se-
lection type synthesizers for domains where there are a much smaller and controlled
number of units. The second reason is that general TTS systems (e.g. diphone sys-
tems) still sound synthetic. General unit selection when its good, offers near human
quality, but when its bad it is usually muchworse than a diphone synthesizer. Hybrid
systems look interesting but as we cannot yet automatically detect when general unit
selection systems go bad, its not clear when a diphone system should be swapped in.
But as unit selection offers so much promise, it is hoped that in a limited domain we
can get the unit selection good quality, and avoid the bad quality. Finally, although
full TTS systems may be our ultimate goal actually for many existing systems a lim-
ited domain synthesizer is adequate.

There is a stage beyond limited domain, but falling short of general one synthesis,
where the most common phrases are the best synthesized and the quality gracefully
degrades as the phrases become less common. Some hybrid recorded prompts/unit
selection/diphone systems have been proposed and should be able to deliver and
answer but we will not deal directly with those here.

However one point you quickly find is that although most speech dialog systems are
very constrained in their vocabulary many require the hardest class of words: proper
names.

In continuing in mode of tutorial this chapter first gives a complete walkthrough of a
talking clock. This is a small example which will probably work. Following through
this example will give you a good idea of what is involved in building a limited
domain synthesizer. Also in the following section problems and modifications can be
better discussed with respect to this complete example.

designing the prompts
To get a good limited domain synthesizer, it is important to understandwhat is going
on so you can properly tailor your application to take proper advantage of what can
be good, and to avoid the limitations these methods impose.

Note that you may wish to change your application to take better advantage of this
by making its output forms more regular, or at least use a smaller vocabulary. As
a first basic approximation the techniques here require that the training contain all
words which are to be actually synthesized. Therefore if a word does not appear in
the training data it cannot be synthesized. We do provide fall back positions, using
a diphone voice, but that will always be worse than the more natural unit selection
synthesis. Often this isn’t much of a restriction, or you can tailor your application
to avoid having a large vocabulary. For example if you are going to build a system
for reading weather reports you can make the weather reports not actually name the
city/town they refer to and just use phrases like "This city ..." and depend of context
for the user to know which actually city is being talked about.

Of course many speech applications have limited vocabularies in all but a very few
places. Proper names such as places, people, movie names, etc are in general com-
plete open classes. Building a speech application around those aspects isn’t easy and
may make a limit domain synthesizer just impractical. But it should be noted that

35

Chapter 5. Limited domain synthesis

those open classes are also the classes that more general synthesizers will often fail
on too. Some hybrid system may better solve that, which we will not really deal with
here.

For almost closed class, recording and modify the data may be a solution but we
have not yet got enough experience to comment on this yet but we feel that may be a
reasonable compromise.

The most difficult part of building a limited domain synthesizer is designed the
database to record that best covers what you wish the synthesizer to say. Sometimes
this is fairly easy in that you wish the synthesizer to simple read utterances in a very
standard form where slot will be filled with varying values (such as, dates numbers
etc.) Such as

The area code you require is NUMBER NUMBER NUMBER.

The prompts can be devised to fill in values for each of the NUMBER variables.

More complex utterance can still be viewed in this way

The weather at TIME on DATE: outlook OUTLOOK, NUMBER degrees.

But once we move into more general dialog its appears initially harder to properly
find the utterances that cover the domain.

The first important observation to make is that in such systems where limited do-
main synthesis is practical the phrases to be spoken are almost certainly generated
by a computer. That is there exists an explicit function which the language generated
by the applications. In some case this will take the form of an explicit grammar. In
this case we can use that grammar to generate phrase language and then select from
them utterance that adequately cover the domain. However even when there is an
explicit grammar it usually will not allow explicitly encode the frequency of each
generated utterance. As we wish to ensure that the most common phrases are syn-
thesized best we ideally need to know which utterances are to be synthesized most
often to properly select which utterance to record.

Where a system is already running with a standard synthesizer it is possible to record
what is currently being said and how often. We can then use such logs of current
system usage to select which utterance should be in our set of prompts to record.

In practice you will be design the system’s output at the same time as the limited
domain synthesizer so some combination, and guessing of the frequency and cover
will be necessary.

In general you should design your databases to have at least 2 (and probably 5) ex-
amples of each word in you vocabulary. Secondly you should select utterances that
maximise bi-gram coverage. That is try to ensure as many different word-word pair-
ings over your corpus. We have used techniques based on these recommendations to
greedily select utterances from larger corpora to record.

customizing the synthesizer front end
Once you decided on a set of utterances that appropriately cover the domain you also
need to consider how those particular text strings are synthesized. For example if the
data contains flight numbers, dates, times etc, you must ensure that festival properly
renders those. As we are discussing a limited domain the distribution of token types
will be different from standard text but also more constrained so simple changes to
the lexicon, token to word rules, etc. will allow properly synthesis of these utterances.

One particular area of customization we have noted is worthwhile is that of phras-
ing. It seems important to explicitly mark phrasing in the prompts, and have the
speaker follow such phrasing as it allows for much better joins in unit selection, as

36

Chapter 5. Limited domain synthesis

well as consist prosody from the speaker. Thus in the default code provided below
the normal phrasing module in festival is replaced with one that treat punctuation as
phrasal markers.

autolabeling issues
We currently use autolabel the recorded prompts using the alignment technique
based on [malfrere97] that we discussed above for diphone labeling. Although
this technique works its is not as robust for general speech as it is for carefully
articulated nonsense words. Specifically this technique does not allow for alternative
pronunciations which are common.

Ideally we should use a more generally speech recognition systems. In fact for label-
ing of unit selection database the bets results would be to train a recognition using
Baum-Welch on the database until convergence. This would give the most consis-
tent labeling. We have started initial experiments with using the open source CMU
Sphinx recognition system are are likely to provide scripts to do this in later releases.

In the mean time the greatest problem in predict phone list must be the same (or
very similar) to what was actually spoken. This can be achieved by a knowledge
speaker, and by customizing the front end of the synthesizer so it produces more
natural segments.

Two observations areworth mentioning here. First if the synthesizer makes a mistake
in pronunciation and the human speaker does not we have found the things may
work out anyway. For example we found the word "hwy" appeared in the prompts,
which the synthesizer pronounced as "HWY" while the speaker said "highway". The
forced alignment however cause the phones in the pronunciation of the letters "H W
Y" to be aligned with the phones in "highway" thus on selection appropriate, though
misnamed, phones were selected. However you should depend on such compound
errors.

The second observation is that festival includes prediction of vowel reduction. We
are beginning to feel that such prediction is unnecessary in limited domain synthe-
sizer or in unit selection in general. This vowel variation can itself be achieve but
the clustering technique themselves and hence allows a reasonable back-off selection
strategy than making firm type decisions.

unit size and type
The basic cluster unit selection code available in festival uses segments as the size of
unit. However the acoustic distance measure used in cluster uses significant portions
of the previous segment. Thus the cluster unit selection effectively selects diphones
from the database.

The type of units the cluster selection code uses is based on the segment name, by
default. In the case of limited domain synthesis we have found that constraining this
further gives both better, and faster synthesis. Thus we allow for the unit type to be
defined by an arbitrary feature. In the default limited domain set up we use

SEGMENT_WORD

That is, the segment plus the word the segment comes from. Note this doesn’t mean
we are doing word concatenation in our synthesizer. We are still selecting phone units
but that the these phone are differentiated depending on the word they come from
thus a /t/ from the word "unit" cannot be used to synthesis a /t/ in "table". The pri-
mary reason for us doing this was to cut down the search, though it notable improves
synthesis quality to. As we have constructed the database to have good coverage this
is a practical thing to do.

37

Chapter 5. Limited domain synthesis

The feature function clunit_name constructs the unit type for a particular segment
item. We have provided the above default (segment name plus (downcased) word
name), but it is easy to extend this.

In one domain we have worked in we wish to differentiate between words in differ-
ent prosody contexts. Particularly we wished to mark words us "questionable" so we
can ask users for confirmation. To do this we marked the "questionable" words in the
prompts with a question mark prefix. We then recorded them with appropriate into-
nation and then defined our clunit_name function in include "C_" is the word was
prefixed by a question mark. For example the following two prompts will be read in
a different manner

theater is Squirrel Hill Theater
theater is ?Squirrel ?Hill ?Theater

Likewise in unit selection the units in the word "Squirrel" will not be used to syn-
thesize the word "?Squirrel" and vice versa. Although crude, this does give simple
control over prosody variation though this technique can require the vocabulary of
the units to increase to where this technique ceases to be practical.

It would be good if this technique had a back-off strategy where if no unit can be
found for a particularword it would allow other words to contribute candidates. This
is ultimately what general unit selection is. We do consider this our goal in unit type
but in the interest of building quick and reliable limited domain synthesizers we do
not yet do this but consider it an area we will experiment with. One specific area that
only partially cross this line is in the synthesis of numbers. It seem very reasonable
to allow selection of units from simple numbers (e.g. "seven" and "seventy") but we
have not experimented on that yet.

One further important point should be highlights about this method for defining unit
types. Although including the word name in the unit name does greatly encourage
whole words to be selected it does not mean that joins in the synthesize utterances
only occur at word boundaries. It is common that contiguous units are selection from
different occurrences of the same word. Mid-word (e.g. within vowels, or at stops)
joins at stable places are common. The optimal coupling technique selects the best
place within a word for the cross over between two different parts of the database.

using limited domain synthesizers
The goal of building such limited domain synthesizer is not just to show off good
synthesis. We followed this route as we see this as a very practical method for build-
ing speech output systems.

For practical reasons, the default configures includes the possibility of a back-up
voice that will be called to do synthesis if the limited domain synthesizer fails,
which for this default setup means the phrase includes a out of vocabulary word. It
would perhaps be more useful if the fall position just required synthesis of the
out of vocabulary word itself rather than the whole phrase, but that isn’t as trivial
as it might be. The limit domain synthesis does not prosody modification of the
selections, except for pitch smooth at joins, thus slotting in a diphone one word
would sound very bad. At present each limited domain synthesizer has an explicitly
defined closest_voice. This voice is used when the limited domain synthesis
fails and also when generating the prompts, which can be looked upon as absolute
minimal case when the synthesizer has no data to synthesize from.

There are also issues in speed here, which we are still trying to improve. This tech-
nique should in fact be fast but it is still slower than our diphone synthesizer. One
significant reason is the cost if finding the optimal join put in selected units. Also this
synthesizer technique require more memory that diphones as the cepstrum parame-
ters for the whole database are required at run time, in addition to the full waveforms.
These issues we feel can and should be addressed as these techniques are not funda-

38

Chapter 5. Limited domain synthesis

mentally computationally expensive so we intend to work on these aspect in later
releases.

Telling the time
Festival includes a very simple little script that speaks the current time
(festival/examples/saytime). This section explains how to replace the
synthesizer used from this script with one that talks with your own voice. This is an
extreme example of a limited domain synthesizer but it is a good example as it
allows us to give a walkthrough of the stages involved in building a limited domain
synthesizer. This example is also small enough that it can be done in well under an
hour.

Following through this example will give a reasonable understanding of the relative
importance of many important steps in the voice building process.

The following tasks are required:

• Designing the prompts

• Customized the synthesizer front end

• Recording the prompts

• Autolabeling the prompts

• Building utterance structures for recorded utterances

• Extracting pitchmark and building LPC coefficients

• Building a clunit based synthesizer from the utterances

• Testing and tuning

Before starting set the environment variables FESTVOXDIR and ESTDIR to the directo-
ries which contain the festvox distribution and the Edinburgh Speech Tools respec-
tively. Under bash and other good shells this may be done by commands like

export FESTVOXDIR=/home/awb/projects/festvox
export ESTDIR=/home/awb/projects/speech_tools

In earlier releases we only offered a command line basedmethod for building voices
and limited domain synthesizers. In order to make the process easier and less prone
to error we have introduced and graphical front end to these scripts. This front end
is called pointyclicky (as it offers a pointy-clicky interface). It is particularly useful
in the actual prompting and recording. Although pointyclicky is the recommend
route in the section we go through the process step by step to give a better under-
standing of what is required and where problems may lie that require attention.

A simple script is provided setting up the basic directory structure and copying
in some default parameter files. The festvox distribution includes all the setup for
the time domain. When building for your domain, you will need to provide the file
etc/DOMAIN.data contains your prompts (as described below).

mkdir ~/data/time
cd ~/data/time
$FESTVOXDIR/src/ldom/setup_ldom cmu time awb

As in the definition of diphone databases we require three identifiers for the voice.
These are (loosely) institution, domain and speaker. Use net if you feel there isn’t
an appropriate institution for you, though we have also use the project name that
the voice is being build for here. The domain name seems well defined. For speaker
name we have also used style as opposed to speaker name. The primary reason for

39

Chapter 5. Limited domain synthesis

these to so that people do not all build limited domain synthesizer with the same
thus making it not possible to load them into the same instance of festival.

This setup script makes the directories and copies basic scheme files into the
festvox/ directory. You may need to edit these files later.

Designing the prompts
In this saytime example the basic format of the utterance is

The time is now, EXACTNESS MINUTE INFO, in the DAYPART.

For example

The time is now, a little after five to ten, in the morning.

In all there are 1152 (4x12x12x2) utterances (although there are three possible day
info parts (morning, afternoon and evening) they only get 12 hours, 6 hours and 6
hours respectively). Although it would technically be possible to record all of these
we wish to reduce the amount of recording to a minimum. Thus what we actually do
is ensure there is at least one example of each value in each slot.

Here is a list of 24 utterances that should cover the main variations.

The time is now, exactly five past one, in the morning
The time is now, just after ten past two, in the morning
The time is now, a little after quarter past three, in the morning
The time is now, almost twenty past four, in the morning
The time is now, exactly twenty-five past five, in the morning
The time is now, just after half past six, in the morning
The time is now, a little after twenty-five to seven, in the morning
The time is now, almost twenty to eight, in the morning
The time is now, exactly quarter to nine, in the morning
The time is now, just after ten to ten, in the morning
The time is now, a little after five to eleven, in the morning
The time is now, almost twelve.
The time is now, just after five to one, in the afternoon
The time is now, a little after ten to two, in the afternoon
The time is now, exactly quarter to three, in the afternoon
The time is now, almost twenty to four, in the afternoon
The time is now, just after twenty-five to five, in the afternoon
The time is now, a little after half past six, in the evening
The time is now, exactly twenty-five past seven, in the evening
The time is now, almost twenty past eight, in the evening
The time is now, just after quarter past nine, in the evening
The time is now, almost ten past ten, in the evening
The time is now, exactly five past eleven, in the evening
The time is now, a little after quarter to midnight.

These examples are first put in the prompt file with an utterance number and the
prompt in double quotes like this.

(time0001 "The time is now ...")
(time0002 "The time is now ...")
(time0003 "The time is now ...")
...

These prompt should be put into etc/DOMAIN.data. This file is used by many of the
following sub-processes.

40

Chapter 5. Limited domain synthesis

Recording the prompts
The best way to record the prompts is to use a professional speaker in a professional
recording studio (anechoic chamber) using dual channel (one for audio and the other
for the electroglottograph signal) direct to digital media using a high quality head
mounted microphone.

However most of us don’t have such equipment (or voice talent) so readily avail-
able so whatever you do will probably have to be a compromise. The head mounted
mike requirement is the cheapest to meet and it is pretty important so you should
at least meet that requirement. Anechoic chambers are expensive, and even profes-
sional recording studios aren’t easy to access (though most Universities will have
some such facilities). It is possible to do away with the EGG reading if a little care is
taken to ensure pitchmarks are properly extracted from the waveform signal alone.

We have been successful in recording with a standard PC using a standard sound-
blaster type 16bit audio card though results do vary frommachine to machine. Before
attempting this you should record a few examples on the PC to see how much noise
is being picked up by the mike. For example try the following

$ESTDIR/bin/na_record -f 16000 -time 5 -o test.wav -otype riff

This will record 5 seconds from the microphone in the machine you run the
command on. You should also do this to test that the microphone is plugged in (and
switched on). Play back the recorded wave with na_play and perhaps play with
the mixer levels until you get the least background noise with the strongest spoken
signal. Now you should display the waveform to see (as well as hear) how much
noise is there.

$FESTVOXDIR/src/general/display_sg test.wav

This will display the waveform and its spectrogram. Noise will show up in the
silence (and other) parts.

There a fewways to reduce noise. Ensure the microphone cable isn’t wrapped around
other cables (especially power cables). Turning the computer 90 degrees may help
and repositioning things can help too. Moving the sound board to some other slot in
the machine can also help as well as getting a different microphone (even the same
make).

There is a large advantage in recording straight to disk as it allows the recording to
go directly into right files. Doing off-line recording (onto DAT) is better in reducing
noise but transferring it to disk and segmenting it is a long and tedious process.

Once you have checked your recording environment you can proceed with the build
process.

First generate the prompts with the command

festival -b festvox/build_ldom.scm ’(build_prompts "etc/time.data")’

and prompt and record them with the command

bin/prompt_them etc/time.data

You may or may not find listening to the prompts before speaking useful. Simply
displaying them may be adequate for you (if so comment out the na_play line in
bin/prompt_them}.

41

Chapter 5. Limited domain synthesis

Autolabeling the prompts
The recorded prompt can be labeled by aligning them against the synthesize
prompts. This is done by the command

bin/make_labs prompt-wav/*.wav

If the utterances are long (> 10 seconds of speech) you may require lots of swap
space to do this stage (this could be fixed).

Once labeled you should check that they are labeled reasonable. The labeler typically
gets it pretty much correct, or very wrong, so a quick check can often save time later.
You can check the database using the command

emulabel etc/emu_lab

Once you are happy with the labeling you can construct the whole utterance struc-
ture for the spoken utterances. This is done by combining the basic structure from the
synthesized prompts and the actual times from the automatically labeled ones. This
can be done with the command

festival -b festvox/build_ldom.scm ’(build_utts "etc/time.data")’

Extracting pitchmarks and building LPC coefficients
Getting good pitchmarks is important to the quality of the synthesis, see
the Section called Extracting pitchmarks from waveforms in Chapter 4 for more
detailed discussion on extrating pitchmarks from waveforms. For the limited
domain synthesizers the pitch extract is a little less crucial that for diphone
collection. Though spending a little time on this does help.

If you have recorded EGG signals the you can use bin/make_pm from the .lar files.
Note that you may need to add (or remove) the option -inv depending on the up-
downness of your EGG signal. However so far only the CSTR larygnograph seems to
produce inverted signals so the default should be adequate. Also note the parameters
that specify the pitch period range, -min and max the default setting are suitable for
a male speaker, for a female you should modify these to something like

-min 0.0033 -max 0.0875 -def 0.005

The changing from a range of (male) 200Hz-80Hz with a default of 100Hz, to a
female range of 300Hz-120Hz and default of 200Hz.

If you don’t have an EGG signal you must extract the pitch from the waveform itself.
This works thoughmay require a little modification of parameters, and it is computa-
tionally more expensive (and wont be as exact as from an EGG signal). There are two
methods, one using Entropic’s epoch program which work pretty well without tun-
ing parameters. The second is to use the free Speech Tools program pitchmark. The
first is very computationally expensive, and as Entropic is no longer in existence, the
program is no longer available (though rumours circulate that it may appear again
for free). To use epoch use the program

bin/make_pm_epoch wav/*.wav

To use pitchmark use the command

bin/make_pm_wave wav/*.wav

42

Chapter 5. Limited domain synthesis

As with the EGG extraction pitchmark uses parameters to specify the range of the
pitch periods, you should modify the parameters to best match your speakers range.
The other filter parameters also can make a different to the success. Rather than try to
explainwhat changing the figuresmean (I admit I don’t fully know), the best solution
is to explain what you need to obtain as a result.

Irrespective of how you extract the pitchmarks we have found that a post-processing
stage that moves the pitchmarks to the nearest peak is worthwhile. You can achieve
this by

bin/make_pm_fix pm/*.pm

At this point you may find that your waveform file is upside down. Normally this
wouldn’t matter but due to the basic signal processing techniques we used to find
the pitch periods upside down signals confuse things. People tell me that it shouldn’t
happen but some recording devices return an inverted signal. From the cases we’ve
seen the same device always returns the same form so if one of your recordings
is upside down all of them probably are (though there are some published speech
databases e.g. BU Radio data, where a random half are upside down).

In general the higher peaks should be positive rather than negative. If not you can
invert the signals with the command

for i in wav/*.wav
do
ch_wave -scale -1.0 $i -o $i

done

If they are upside, invert them and re-run the pitch marking. (If you do invert them
it is not necessary to re-run the segment labeling.)

Power normalization can help too. This can be done globally by the function

bin/simple_powernormalize wav/*.wav

This should be sufficient for full sentence examples. In the diphone collection we
take greater care in power normalization but that vowel based technique will be too
confused by the longer more varied examples.

Once you have pitchmarks, next you need to generate the pitch synchronous MEL-
CEP parameterization of the speech used in building the cluster synthesizer.

bin/make_mcep wav/*.wav

Building a clunit based synthesizer from the utterances
Building a full clunit synthesizer is probably a little bit of over kill but the technique
basically works. See Chapter 12 for a more detailed discussion of unit selection tech-
nique. The basic parameter file festvox/time_build.scm, is reasonable as a start.

festival -b festvox/build_ldom.scm ’(build_clunits "etc/time.data")’

If all goes well this should create a file
festival/clunits/cmu_time_awb.catalogue and set of index
trees in festival/trees/cmu_time_awb_time.tree.

43

Chapter 5. Limited domain synthesis

Testing and tuning
To test the new voice start Festival as

festival festvox/cmu_time_awb_ldom.scm ’(voice_cmu_time_awb_ldom)’

The function (saytime) can now be called and it should say the current time, or
(saythistime "11:23").

Note this synthesizer can only say the phrases that it has phones for which basically
means it can only say the time in the format given at the start of this chapter. Thus
although you can use SayText it will only synthesis words that are in the domain.
That’s what limited domain synthesis is.

A full directory structure of this example with the recordings and parameters
files is available at http://festvox.org/examples/cmu_time_awb_ldom/.
And an on-line demo of this voice in that directory is available at
http://festvox.org/examples/cmu_time_awb_ldom/2.

Making it better
The above walkthough is to give you a basic idea of the stages involved in building
a limited domain synthesizer. The quality of a limited domain synthesizer will most
likely be excellent in parts and very bad in others which is typical of techniques like
this. Each stage is, of course, more complex than this and there are a number of things
that can be done to improve it.

For limited domain synthesize it should be possible to correct the errors such that
it is excellent always. To do so though requires being able to diagnose where the
problems are. The most likely problems are listed here

• Mis-labeling Due to lipsmacks, and other reasons the labeling may not be correct.
The result may the wrong, extra or missing segments in the synthesized utterance.
Using emulabel you can check and hand correct the labels.

• Mis-spoken data The speaker may have made a mistake in the content. This can
often happen even when the speaker is careful. Mistakes can be actual content
(it is easy to read a list of number wrongly), but also hesitations and false starts
can make the recording bad. Also note that inconsistent prosodic variation can
also affect the synthesis quality. Re-recording can be considered for bad examples,
or you can delete them from the etc/LDOM.data list, assuming there is enough
variation in the rest of the examples to ensure proper coverage of the domain.

• Bad pitchmarking Automatic pitchmarking is not really automatic. It is very
worthwhile checking to see if it is correct and re-running the pitchmarking with
better parameters until it is better. (We need better documentation here on how to
know what "correct" is.)

• Looking at the data There is never a substitute for actually looking at the data. Use
emulabel to actually look at the recorded utterances and see what the labeling is.
Ensure these match and files haven’t got out of order. Look at a random selection
not just the first example.

• Improving the unit clustering The clustering techniques and the features used here
are pretty generic and by no means optimal. Even for the simple example given
here it is not very good. See Chapter 12 on unit selection for more discussion on
this. Adding new features for use in cluster may help a lot.

The line between limited domain synthesis and unit selection is fuzzy. Themore com-
plex and varied the phrases you synthesize are, the more difficult it is to produce
reliable synthesis.

44

Chapter 5. Limited domain synthesis

Notes
1. http://festvox.org/examples/cmu_time_awb_ldom/

2. http://festvox.org/ldom/index.html

45

Chapter 5. Limited domain synthesis

46

Chapter 6. Text analysis

This chapter discusses some of the basic problems in analyzing text when trying to
convert it to speech. Although it is oftain considered a trival problem, not worthy of
specnding time one, to anyone who has to actually listen to general text-to-speech
systems quickly realises it is not as easy to pronounce text as it first appears. Num-
bers, symbols, acronyms, abbreviations apear to various degrees in different types
of text, even the most general types, like news stoires and novels still have tokens
which do not have a simple pronunciaiton that can be found merely by looking up
the token in a lexicon, or using letter to sound rules.

In any new language, or any new domain that you wish to tranfer text to speech
building an apporpriate text analysis module is necessary. As an attempt to define
what we mean by text analysis more specifically we will consider this module as tak-
ing in strings of characters and producing strings of words where we defined words
to be items for which a lexicon can provide pronucniations either by direct lookup or
by some form of letter to sound rules.

The degree of difficult of this convertion task depends on the text type and language.
For example in lanmguages like Chinese, Japanese etc., there is, conventionally, no
use of whitespace characaters between words as found in most Western language,
thus even identfying the token boundaries is an interesting task. Even in English
text the proportion of simple pronouncable words to what we will term non-standard
words can vary greatly. We define non-standard words (NSWs) to be those tokens
which do not apear directly in the lexicon (at least as a first simplication). Thus to-
kens contains digits, abbreviations, and out of vocabulary words are all considered to
be NSWs that require some form of identification before their pronunciation can be
specified. Sometimes NSWs are ambiguous and some (often shallow) level of analy-
sis is necessary to identfiy them. For example in English the string of digits 1996 can
have several different pronunciations depending on its use. If it is used as a year it
is pronunciation as nineteen ninety-six, if it is a quantity it is more likely pronu-
ounced as one thousand nine hundred (and) ninety-sixwhile if it is used as a
telephone extention it can be pronounced simpelas a string of digits one nine nine
six . Deterimining the appropriate type of expansion is the job of the text analysis
module.

Much of this chapter is based on a project that was carried out at a summer workshop
at Johns Hopkins University in 1999 [JHU-NSW-99] and later published in [Sproat00],
the tools and techniques developed at that workshop were further developed and
documented and now distributed as part of the FestVox project. After a discussion
of the problem in more detail, concentrating on English examples, a full presentation
of NSW text analysis technique will be given with a simple example. After that we
will address different appropaches that can be taken in Festival to build general and
customized text analysis models. Then we will address a number of specifc problems
that appear in text analysis in various languages including homogra[h disambigua-
tion, number pronunciation in Slavic languages, and segmentation in Chinese.

Non-standard words analysis
In an attempt to avoid relying solely on a bunch of "hacky" rules, we can better define
the task of analyzing text using a number of statistical trained models using either
labeled or unlabeled text from the desired domain. At first approximation it may
seem to be a trival problem, but the number of non-standardwords is enough even in
what is considered clean text such as presswire news articales tomake their synthesis
sound bad without it.

Full NSW model description and justification to be added, doan play the following
(older) parts.

47

Chapter 6. Text analysis

Token to word rules
The basic model in Festival is that each token will be mapped a list of words by a
call to a token_to_word function. This function will be called on each token and it
should return a list of words. It may check the tokens to context (within the current
utterance) too if necessary. The default action should (for most languages) simply
be returning the token itself as a list of own word (itself). For example your basic
function should look something like.

(define (MYLANG_token_to_words token name)
"(MYLANG_token_to_words TOKEN NAME)
Returns a list of words for the NAME from TOKEN. This primarily
allows the treatment of numbers, money etc."
(cond
(t
(list name))))

This function should be set in your voice selection function as the function for token
analysis

(set! token_to_words MYLANG_token_to_words)

This function should be added to to deal with all tokens that are not in your lexicon,
cannot be treated by your letter-to-sound rules, or are ambiguous in some way and
require context to resolve.

For example suppose we wish to simply treat all tokens consisting of strings of digits
to be pronounced as a string of digits (rather than numbers). We would add some-
thing like the following

(set! MYLANG_digit_names
’((0 "zero")
(1 "one")
(2 "two")
(3 "three")
(4 "four")
(5 "five")
(6 "six")
(7 "seven")
(8 "eight")
(9 "nine")))

(define (MYLANG_token_to_words token name)
"(MYLANG_token_to_words TOKEN NAME)
Returns a list of words for the NAME from TOKEN. This primarily
allows the treatment of numbers, money etc."
(cond
((string-matches name "[0-9]+") ;; any string of digits
(mapcar
(lambda (d)
(car (cdr (assoc_string d MTLANG_digit_names))))
(symbolexplode name)))
(t
(list name))))

But more elaborate rules are also necessary. Some tokens require context to disam-
biguate and sometimes multiple tokens are really one object e.g “$12 billion” must
be rendered as “twelve billion dollars”, where the money name crosses over the second
word. Suchmulti-token rules must be split into multiple conditions, one for each part
of the combined token. Thus we need to identify the “$DIGITS” is in a context fol-
lowed by “?illion”. The code below renders the full phrase for the dollar amount. The

48

Chapter 6. Text analysis

second condition ensures nothing is returned for the “?illion” word as it has already
been dealt with by the previous token.

((and (string-matches name "\\$[123456789]+")
(string-matches (item.feat token "n.name") ".*illion.?"))

(append
(digits_to_cardinal (string-after name "$")) ;; amount
(list (item.feat token "n.name")) ;; magnitude
(list "dollars"))) ;; currency name

((and (string-matches name ".*illion.?")
(string-matches (item.feat token "p.name") "\\$[123456789]+"))

;; dealt with in previous token
nil)

Note this still is not enough as there may be other types of currency pounds, yen,
francs etc, some of which may be mass nouns and require no plural (e.g. “yen}” and
some of which make be count nouns require plurals. Also this only deals with whole
numbers of .*illions, “$1.25 million” is common too. See the full example (for English)
in festival/lib/token.scm.

A large list of rules are typically required. They should be looked upon as breaking
down the problem into smaller parts, potentially recursive. For example hyphenated
tokens can be split into two words. It is probably wise to explicitly deal with all
tokens than are not purely alphabetic. Maybe having a catch-all that spells out all
tokens that are not explicitly dealt with (e.g. the numbers). For example you could
add the following as the penumtilmate condition in your token_to_words function

((not (string-matches name "[A-Za-z]"))
(symbolexplode name))

Note this isn’t necessary correct when certain letters may be homograpths. For ex-
ample the token “a” may be a determiner or a letter of the alhpabet. When its a dert-
erminer it may (often) be reduced) while as a letter it probably ins’t (i.e pronunciation
in “@” or “ei}”. Other languages also example this problem (e.g. Spanish “y”. There-
fore when we call symbol explode we don’t want just the the letter but to also specify
that it is the letter pronunciation we want and not the any other form. To ensure
the lexicon system gets the right pronunciation we there wish to specify the part fo
speech with the letter. Actually rather than just a string of atomic words being re-
turned by the token_to_words function the words may be descriptions including
features. Thus for example we dont just want to return

(a b c)

We want to be more specific and return

(((name a) (pos nn))
((name b) (pos nn))
((name c) (pos nn)))

This can be done by the code

((not (string-matches name "[A-Za-z]"))
(mapcar
(lambda (l)
((list ’name l) (list ’pos ’nn)))
(symbolexplode name)))

The above assumes that all single characters symbols (letters, digits, punctuation
and other "funny" characters have an entry in your lexicon with a part of speech field
nn, with a pronunctiation of the character in isolation.

49

Chapter 6. Text analysis

The list of tokens that you may wish to write/train rules for is of couse language
dependent and to a certain extent domain dependent. For example there are many
more numbers in email text that in narative novels. The number of abbreviations is
alsomuch higher in email and news stories than inmore normal text. It may beworth
having a look at some typical data to find out the distribution and find out what is
worth working on. For a rough guide the folowing is a list if the symbol types we
currentl deal with in English, many of which will require some treatment in other
languages.

Money

Money amounts often have different treatment than simple numbers and con-
ventions about the sub-currency part (i.e. cents, pfennings etc). Remember that
you its not just numbers in the local currency you have to deal with currency
values from different countries are common in lots of different texts (e.g dollars,
yen, DMs and euro).

Numbers

strings of digits will of course need mapping even if there is only one mapping
for a language (rare). Consider at least telphone numbers verses amounts, most
languages make a distinction here. In English we need to distinguish further, see
below for the more detailed discussion.

number/number

This can be used as a date, fraction, alternate, context will help, though tech-
niques of dropping back to saying the the string of characters often preserve the
ambiguity which can be better that forcing a decision.

acronyms

List of upper case letters (with or without vowels). The decision to pronounce
as a word or as letters is difficult in general but good guesses go far. If its short
(< 4 chatacters) not in your lexicon not surround by other words in upper case,
its probably an acronym, further analyss of vowels, consonant clusters etc will
help.

number-number

Could be a range, of score (football), dates etc.

word-word

Usually a simple split on each part is sufficient---but not as when used as a dash.

word/word

As an alternative, or a Unix pathname

’s or TOKENs

An appended “s” to a non alphabetic token is probably some form of pluraliza-
tion, removing it and recursing on the analysis is a reasonable thing to try.

times and dates

These exist is variaous stnadardized forms many of which are easy to recognize
and break down.

telephone numbers

This various from country to country (and by various conventions) but there
may be standard forms that can be recognized.

50

Chapter 6. Text analysis

romain numerals

Sometimes these are pronounced as numbers “chapter II”, or as cardinals “James
II”.

ascii art

If you are dealing with on line text there are often extra characters in a document
that should be ignored, or at least not pronounced literally, e.g. lines of hyphens
used as separators.

email addresses, URLs, file names

Depending on your context this may be worth spending time on.

tokens containing any other non-alphanumeric character

Spliting the token around the non-alphanumeric and recursing on each part be-
fore and after it may be reasonable.

Remember the first purpose of text analysis is ensure you can deal with anything,
even if it is just saying the word “unknown” (in the appropriate language). Also its
probably not worth spending time on rare token forms, though remember it not easy
to judge what are rare and what are not.

Number pronunciation
Almost every one will expect a synthesizer to be able to speech numbers. As it is not
feasible to list all possible digit strings in your lexicon. You will need to provide a
function that returns a string of words for a given string of digits.

In its simplest form you should provide a function that decodes the string of digits.
The example spanish_number (and spanish_number_from_digits} in the released
Spanish voice (festvox_ellpc11k.tar.gz is a good general example.

Multi-token numbers
A number of languages uses spaces within numbers where English might use com-
mas. For example German, Polish and others text may contain

64 000

to denote sixty four thousand. As this will be multiple tokens in Festival’s basic
analysis it is necessary to write multiple conditions in your token_to_words func-
tion.

Declensions
Inmany languages, the pronunciation of a number depends on the thing that is being
counted. For example the digit ’1’ in Spanish has multiple pronunciations depending
on whether it is refering to a masculine or feminine object. In some languages this
becomes much more complex where there are a number of possible declensions. In
our Polish synthesizer we solved this by adding an extra argument to number gener-
ation function which then selected the actual number word (typically the final word
in a number) based in the desired declension.

%%%%%%%%%%%%%%%%%%%
Example to be added
%%%%%%%%%%%%%%%%%%%

51

Chapter 6. Text analysis

Homograph disambiguation

%%%%%%%%%%%%%%%%%%%%%%
Discussion to be added
%%%%%%%%%%%%%%%%%%%%%%

TTS modes

%%%%%%%%%%%%%%%%%%%%%%
Discussion to be added
%%%%%%%%%%%%%%%%%%%%%%

Mark-up modes
In some situtation it ispossible for the user of a text-to-speech system to providemore
information for the synthesizer that just the text, or the type of text. It is near impos-
sible for TTS engines to get everything right all of the time, so in such situation it is
useful to offer the developer a method to help guide the synthesizer in its syntehsis
process.

Most speech synthesizer offer some speech method or embedded commands but
these are specific to one interface or one API. For example the Microsoft SAPI in-
terface allows various commands to be embedded in a text string

* some examples
.

However there has been a move more recently to offer a general mark up method
that is more general. A number of people saw the potential use of XML as a general
method for marking up text for speech synthesis. The earliest method we know was
in a Masters thesis at Edinburgh in 1995 [isard]. This was later published under the
name SSML. A number of other groups were alos looking at this and a large con-
sortium formed to define this further under various names STML, and eventually
Sable.

Around the same time, more serious definitions of such a mark-up were being de-
veloped. The first to reach a well-define stage was JSML, (Java Speech Mark-up Lan-
guage), which covered aspects of speech recognition and grammars as well as speech
synthesis mark-up. Unlike any of the other XML based markup languages, JSML, as
it was embeddedwithin Java, could define exceptions in a reasonable way. One of the
problems iwth a simpel XML markup is that it is one way. You can request a voice or
a language or some functionality, but there is no mechanism for feedback to know if
such a feature is actually available.

XML markup for speech have been further advances with VoiceXML, which de-
fines a mark-up language for basic dialog systems. The speech synthesi part of the
VoiceXML is closely follows the functionality of JSML and its predecessors.

A new standard for markup for speech synthesis is currently being defined by W3C
under the name SSML, confusingly the same name as the earliest example, but not
designed to be compatible with the original, but take into account the functionaly

52

Chapter 6. Text analysis

and desires of users of TTS. SSML markup is also defined as the method for speech
synthesis markup in Microsoft’s SALT tags.

%%%%%%%%%%%%%%%%%%%%%%
Discussion to be added
%%%%%%%%%%%%%%%%%%%%%%

53

Chapter 6. Text analysis

54

Chapter 7. Lexicons

This chapter covers method for finding the pronunciation of a word. This is either by
a lexicon (a large list of words and their pronunciations) or by some method of letter
to sound rules.

Word pronunciations
A pronunciation in Festival requires not just a list of phones but also a syllabic struc-
ture. In some languages the syllabic structure is very simple and well defined and
can be unambiguously derived from a phone string. In English however this may
not always be the case (compound nouns being the difficult case).

The lexicon structure that is basically available in Festival takes both a word and
a part of speech (and arbitrary token) to find the given pronunciation. For English
this is probably the optimal form, although there exist homographs in the language,
the word itself and a fairly broad part of speech tag will mostly identify the proper
pronunciation.

An example entry is

("photography"
n
(((f @) 0) ((t o g) 1) ((r @ f) 0) ((ii) 0)))

Not that in addition to explicit marking of syllables a stress value is also given (0 or
1). In some languages lexical is fully predictable, in others highly irregular. In some
this field may be more appropriately used for an other purpose, e.g. tone type in
Chinese.

There may be other languages which require a more complex (less complex) format
and the decision to use some other format rather than this one is up to you.

Currently there is only residual support for morphological analysis in Festival. A
finite state transducer based analyzer for English based on the work in [ritchie92]
is included in festival/lib/engmorph.scm and festival/lib/engmorphsyn.scm.
But this should be considered experimental at best. Give the lack of such an analyzer
our lexicons need to list not only based forms of words but also all their morpholog-
ical variants. This is (more or less) acceptable in languages such as English or French
but which languages with richer morphology such as German it may seem an un-
necessary requirement. Agglutenative languages such as Finnish and Turkish this
appears to be even more a restriction. This is probably true but this current restric-
tion not necessary hopeless. We have successfully build very good letter-to-sound
rules for German, a language with a rich morphology which allows the system to
properly predict pronunciations of morphological variants of root words it has not
seen before. We have not yet done any experiments with Finnish or Turkish but see
this technique would work, (though of course developing a properly morphological
analyzer would be better).

Lexicons and addenda
The basic assumption in Festival is that you will have a large lexicon, tens of thou-
sands of entries, that is a used as a standard part of an implementation of a voice.
Letter-to-sound rules are used as back up when a word is not explicitly listed. This
view is based on how English is best dealt with. However this is a very flexible view,
An explicit lexicon isn’t necessary in Festival and it may be possible to do much of
the work in letter-to-sound rules. This is how we have implemented Spanish. How-
ever even when there is strong relationship between the letters in a word and their
pronunciation we still find the a lexicon useful. For Spanish we still use the lexicon
for symbols such as “$”, “%”, individual letters, as well as irregular pronunciations.

55

Chapter 7. Lexicons

In addition to a large lexicon Festival also supports a smaller list called an addenda
this is primarily provided to allow specific applications and users to add entries that
aren’t in the existing lexicon.

Out of vocabulary words
Because its impossible to list all words in a natural language for general text-to-
speech you will need to provide something to pronounce out of vocabulary words.
In some languages this is easy but in other’s it is very hard. No matter what you
do you must provide something even if it is simply replacing the unknown word
with the word “unknown” (or its local language equivalent). By default a lexicon in
Festival will throw an error if a requested word isn’t found. To change this you can
set the lts_method. Most usefully you can reset this to the name of function, which
takes a word and a part of speech specification and returns a word pronunciation as
described above.

For example is we are always going to return the word unknown but print a warning
the the word is being ignored a suitable function is

(define (mylex_lts_function word feats)
"Deal with out of vocabulary word."
(format t "unknown word: %s\n" word)
’("unknown" n (((uh n) 1) ((n ou n) 1))))

Note the pronunciation of “unknown” must be in the appropriate phone set. Also
the syllabic structure is required. You need to specify this function for your lexicon
as follows

(lex.set.lts.method ’mylex_lts_function)

At one level above merely identifying out of vocabulary words, they can be spelled,
this of course isn’t ideal but it will allow the basic information to be passed over to
the listener. This can be done with the out of vocabulary function, as follows.

(define (mylex_lts_function word feats)
"Deal with out of vocabulary words by spelling out the letters in the
word."
(if (equal? 1 (length word))

(begin
(format t "the character %s is missing from the lexicon\" word)
’("unknown" n (((uh n) 1) ((n ou n) 1))))
(cons
word
’n
(apply
append
(mapcar
(lambda (letter)
(car (cdr (cdr (lex.lookup letter ’n)))))
(symbolexplode word))))))

A few point are worth noting in this function. This recursively calls the lexical
lookup function on the characters in a word. Each letter should appear in the lex-
icon with its pronunciation (in isolation). But a check is made to ensure we don’t
recurse for ever. The symbolexplode function assumes that that letters are single
bytes, which may not be true for some languages and that function would need to be
replaced for that language. Note that we append the syllables of each of the letters in
the word. For long words this might be too naive as there could be internal prosodic
structure in such a spelling that this method would not allow for. In that case you

56

Chapter 7. Lexicons

would want letters to be words thus the symbol explosion to happen at the token to
word level. Also the above function assumes that the part of speech for letters is n.
This is only really important where letters are homographs in languages so this can
be used to distinguish which pronunciation you require (cf. “a” in English or “y” in
French).

Building letter-to-sound rules by hand
For many languages there is a systematic relationship between the written form of
a word and its pronunciation. For some languages this can be fairly easy to write
down, by hand. In Festival there is a letter to sound rule system that allows rules
to be written, but we also provided a method for building rule sets automatically
which will often be more useful. The choice of using hand-written or automatically
trained rules depends on the language you are dealing with and the relationship it
has between its orthography and its phone set.

For well defined languages like Spanish and Croatian writting rules by hand can
be more simple than training. Training requires an existing set of lexical entries to
train from and that may be your decision criteria. Hand written letter to sound rules
are context dependent re-write rules which are applied in sequence mapping strings
letters to string of phones (though the system does not explicitly care what the types
of the strings actually will be used for.

The basic form of the rules is

(LC [alpha] RC => beta)

Which is interpreter as alpha, a string of one or more symbols on the input tape
is written to beta, a string of zero or more symbols on the output tape, when in the
presence of LC, a left context of zero or more input symbols, and RC a right context on
zero or more input symbols. Note the input tape and the output tape are different,
allthough the input and output alphabets need not be distinct the left hand side of a
rule only can refer to the input tape and never to anything that has been produce by
a right hand side. Thus rules within a ruleset cannot "feed" or "bleed" themselves. It
is possible to cascade multiple rule sets, but we will discuss that below.

For example to desl with the pronunciation of the letters "ch" word initially in English
we may right two rules like this

(# [c h] r => k)
(# [c h] => ch)

To deal with words like "christmas", and "chair". Note the # symbol is special and
used to denote a word boundary. LTS rule may refer to word boundary but cannot
refer to prevous or following words, you would need to do this with some form
of post-lexical rule (See the Section called Post-lexical rules) where the word is within
some context. In the above rules we are mapping two letters c and h to a single phone
k or ch. Also note the order of these rules. The first rule is more specific than the
second. This is should appear first to deal with the specific case. In the order were
reversed k could never apply as the chwould cover that case too.

Thus LTS rules should be written with the most specific cases first and typically end
in a default case. Their should be a default case for all individual letters in the lan-
guage’s alphabet without and context restrictions mapping to some default phone.
Therefore following the above rules there would be other c rules with various con-
texts but the final one should probably be

([c] => k)

57

Chapter 7. Lexicons

As it is a common error in writting these rules, it is worth repeating. If a rule set is to
be universally applicable all letters in the input alphabetmust have at a rule mapping
them to some phone.

The section to be mapped (within square brackets) and the section it is mapped into
(after the "=>") must be items in the input and output alphabets and may not include
sets or regular expression operators. This does mean more rules need to be explicitly
written than you might like, but that will also help you not forget some rules that are
required.

For some languages it is conveninet to write a number of rules sets. For example, one
to map the input in lower case, and maybe deal with alternate treatments of accent
characters e.g. re-write the ASCII "e’" as

* AWB: e acute
. Also we have used rule tests to post process the generated phone string to add stress
and syllable breaks.

Finally some people have stressed that writing good letter to sound rules is hard. We
would disagree with this, from our experience writing good letter to sound rules by
hand is very hard and very skilled and very laborious. For anything but the simplest
of languages writting rules by hand requires much more time that people typically
have, and will still contain errors (even with an exception list). However hand rules
sets may be ideal in some circumstances.

Building letter-to-sound rules automatically
For some languages the writing of a rule system is too difficult. Although there have
been many valiant attempts to do so for languages like English life is basically too
short to do this. Therefore we also include a method for automatically building LTS
rules sets for a lexicon of pronunciations. This technique has successfully been used
from English (British and American), French and German. The difficulty and appro-
priateness of using letter-to-sound rules is very language dependent,

The following outlines the processes involved in building a letter to sound model
for a language given a large lexicon of pronunciations. This technique is likely to
work for most European languages (including Russian) but doesn’t seem particularly
suitable for very language alphabet languages like Japanese and Chinese. The process
described here is not (yet) fully automatic but the hand intervention required is small
and may easily be done even by people with only a very little knowledge of the
language being dealt with.

The process involves the following steps

• Pre-processing lexicon into suitable training set

• Defining the set of allowable pairing of letters to phones. (We intend to do this fully
automatically in future versions).

• Constructing the probabilities of each letter/phone pair.

• Aligning letters to an equal set of phones/_epsilons_.

• Extracting the data by letter suitable for training.

• Building CART models for predicting phone from letters (and context).

• Building additional lexical stress assignment model (if necessary).

All except the first two stages of this are fully automatic.

Before building a model its wise to think a little about what you want it to do. Ide-
ally the model is an auxiliary to the lexicon so only words not found in the lexicon
will require use of the letter-to-sound rules. Thus only unusual forms are likely to
require the rules. More precisely the most common words, often having the most

58

Chapter 7. Lexicons

non-standard pronunciations, should probably be explicitly listed always. It is pos-
sible to reduce the size of the lexicon (sometimes drastically) by removing all entries
that the training LTS model correctly predicts.

Before starting it is wise to consider removing some entries from the lexicon before
training, I typically will remove words under 4 letters and if part of speech informa-
tion is available I remove all function words, ideally only training from nouns verbs
and adjectives as these are the most likely forms to be unknown in text. It is use-
ful to have morphologically inflected and derived forms in the training set as it is
often such variant forms that not found in the lexicon even though their root mor-
pheme is. Note that in many forms of text, proper names are the most common form
of unknown word and even the technique presented here may not adequately cater
for that form of unknown words (especially if they unknown words are non-native
names). This is all stating that this may or may not be appropriate for your task but
the rules generated by this learning process have in the examples we’ve done been
much better thanwhat we could produce by handwriting rules of the form described
in the previous section.

First preprocess the lexicon into a file of lexical entries to be used for training, remov-
ing functions words and changing the headwords to all lower case (may be language
dependent). The entries should be of the form used for input for Festival’s lexicon
compilation. Specifically the pronunciations should be simple lists of phones (no syl-
labification). Depending on the language, you may wish to remove the stressing---for
examples here we have though later tests suggest that we should keep it in even for
English. Thus the training set should look something like

("table" nil (t ei b l))
("suspicious" nil (s @ s p i sh @ s))

It is best to split the data into a training set and a test set if you wish to know how
well your training has worked. In our tests we remove every tenth entry and put it in
a test set. Note this will mean our test results are probably better than if we removed
say the last ten in every hundred.

The second stage is to define the set of allowable letter to phone mappings irrespec-
tive of context. This can sometimes be initially done by hand then checked against
the training set. Initially construct a file of the form

(require ’lts_build)
(set! allowables

’((a _epsilon_)
(b _epsilon_)
(c _epsilon_)
...
(y _epsilon_)
(z _epsilon_)
(# #)))

All letters that appear in the alphabet should (at least) map to _epsilon_, including
any accented characters that appear in that language. Note the last two hashes. These
are used by to denote beginning and end of word and are automatically added during
training, they must appear in the list and should only map to themselves.

To incrementally add to this allowable list run festival as

festival allowables.scm

and at the prompt type

festival> (cummulate-pairs "oald.train")

59

Chapter 7. Lexicons

with your train file. This will print out each lexical entry that couldn’t be aligned
with the current set of allowables. At the start this will be every entry. Looking at
these entries add to the allowables to make alignment work. For example if the fol-
lowing word fails

("abate" nil (ah b ey t))

Add ah to the allowables for letter a, b to b, ey to a and t to letter t. After doing
that restart festival and call cummulate-pairs again. Incrementally add to the allow-
able pairs until the number of failures becomes acceptable. Often there are entries for
which there is no real relationship between the letters and the pronunciation such as
in abbreviations and foreign words (e.g. "aaa" as "t r ih p ax l ey"). For the lexicons
I’ve used the technique on less than 10 per thousand fail in this way.

It is worth while being consistent on defining your set of allowables. (At least) two
mappings are possible for the letter sequence ch}---havin letter c go to phone ch
and letter h go to _epsilon_ and also letter c go to phone _epsilon_ and letter h
goes to ch. However only one should be allowed, we preferred c to ch.

It may also be the case that some letters give rise tomore than one phone. For example
the letter x in English is often pronounced as the phone combination k and s. To allow
this, use the multiphone k-s. Thus themultiphone k-swill be predicted for x in some
context and the model will separate it into two phones while it also ignoring any
predicted _epsilons_. Note that multiphone units are relatively rare but do occur.
In English, letter x give rise to a few, k-s in taxi, g-s in example, and sometimes
g-zh and k-sh in luxury. Others are w-ah in one, t-s in pizza, y-uw in new (British),
ah-m in -ism etc. Three phone multiphone are much rarer but may exist, they are not
supported by this code as is, but such entries should probably be ignored. Note the -
sign in the multiphone examples is significant and is used to identify multiphones.

The allowables for OALD end up being

(set! allowables
’
((a _epsilon_ ei aa a e@ @ oo au o i ou ai uh e)
(b _epsilon_ b)
(c _epsilon_ k s ch sh @-k s t-s)
(d _epsilon_ d dh t jh)
(e _epsilon_ @ ii e e@ i @@ i@ uu y-uu ou ei aa oi y y-u@ o)
(f _epsilon_ f v)
(g _epsilon_ g jh zh th f ng k t)
(h _epsilon_ h @)
(i _epsilon_ i@ i @ ii ai @@ y ai-@ aa a)
(j _epsilon_ h zh jh i y)
(k _epsilon_ k ch)
(l _epsilon_ l @-l l-l)
(m _epsilon_ m @-m n)
(n _epsilon_ n ng n-y)
(o _epsilon_ @ ou o oo uu u au oi i @@ e uh w u@ w-uh y-@)
(p _epsilon_ f p v)
(q _epsilon_ k)
(r _epsilon_ r @@ @-r)
(s _epsilon_ z s sh zh)
(t _epsilon_ t th sh dh ch d)
(u _epsilon_ uu @ w @@ u uh y-uu u@ y-u@ y-u i y-uh y-@ e)
(v _epsilon_ v f)
(w _epsilon_ w uu v f u)
(x _epsilon_ k-s g-z sh z k-sh z g-zh)
(y _epsilon_ i ii i@ ai uh y @ ai-@)
(z _epsilon_ z t-s s zh)
(# #)
))

60

Chapter 7. Lexicons

Note this is an exhaustive list and (deliberately) says nothing about the contexts or
frequency that these letter to phone pairs appear. That information will be generated
automatically from the training set.

Once the number of failed matches is significantly low enough let cummulate-pairs
run to completion. This counts the number of times each letter/phone pair occurs in
allowable alignments.

Next call

festival> (save-table "oald-")

with the name of your lexicon. This changes the cumulation table into probabilities
and saves it.

Restart festival loading this new table

festival allowables.scm oald-pl-table.scm

Now each word can be aligned to an equally-lengthed string of phones, epsilon and
multiphones.

festival> (aligndata "oald.train" "oald.train.align")

Do this also for you test set.

This will produce entries like

aaronson _epsilon_ aa r ah n s ah n
abandon ah b ae n d ah n
abate ah b ey t _epsilon_
abbe ae b _epsilon_ iy

The next stage is to build features suitable for wagon to build models. This is done by

festival> (build-feat-file "oald.train.align" "oald.train.feats")

Again the same for the test set.

Now you need to construct a description file for wagon for the given data. The can be
done using the script make_wgn_desc provided with the speech tools

Here is an example script for building the models, you will need to modify it for your
particular database but it shows the basic processes

for i in a b c d e f g h i j k l m n o p q r s t u v w x y z
do
Stop value for wagon
STOP=2
echo letter $i STOP $STOP
Find training set for letter $i
cat oald.train.feats |
awk ’{if ($6 == "’$i’") print $0}’ >ltsdataTRAIN.$i.feats
split training set to get heldout data for stepwise testing
traintest ltsdataTRAIN.$i.feats
Extract test data for letter $i
cat oald.test.feats |
awk ’{if ($6 == "’$i’") print $0}’ >ltsdataTEST.$i.feats
run wagon to predict model
wagon -data ltsdataTRAIN.$i.feats.train -test ltsdataTRAIN.$i.feats.test \

-stepwise -desc ltsOALD.desc -stop $STOP -output lts.$i.tree
Test the resulting tree against

61

Chapter 7. Lexicons

wagon_test -heap 2000000 -data ltsdataTEST.$i.feats -desc ltsOALD.desc \
-tree lts.$i.tree

done

The script traintest splits the given file X into X.train and X.test with every
tenth line in X.test and the rest in X.train.

This script can take a significant amount of time to run, about 6 hours on a Sun Ultra
140.

Once the models are created the must be collected together into a single list structure.
The trees generated by wagon contain fully probability distributions at each leaf, at
this time this information can be removed as only the most probable will actually be
predicted. This substantially reduces the size of the tress.

(merge_models ’oald_lts_rules "oald_lts_rules.scm" allowables)

(merge_models is defined within lts_build.scm The given file will contain a set!
for the given variable name to an assoc list of letter to trained tree. Note the above
function naively assumes that the letters in the alphabet are the 26 lower case letters
of the English alphabet, you will need to edit this adding accented letters if required.
Note that adding "’" (single quote) as a letter is a little tricky in scheme but can be
done---the command (intern "’")will give you the symbol for single quote.

To test a set of lts models load the saved model and call the following function with
the test align file

festival oald-table.scm oald_lts_rules.scm
festival> (lts_testset "oald.test.align" oald_lts_rules)

The result (after showing all the failed ones), will be a table showing the results
for each letter, for all letters and for complete words. The failed entries may give
some notion of how good or bad the result is, sometimes it will be simple vowel
differences, long versus short, schwa versus full vowel, other times it may be who
consonants missing. Remember the ultimate quality of the letter sound rules is how
adequate they are at providing acceptable pronunciations rather than how good the
numeric score is.

For some languages (e.g. English) it is necessary to also find a stress pattern for un-
known words. Ultimately for this to work well you need to know the morphological
decomposition of the word. At present we provide a CART trained system to predict
stress patterns for English. If does get 94.6% correct for an unseen test set but that isn’t
really very good. Later tests suggest that predicting stressed and unstressed phones
directly is actually better for getting whole words correct even though the models do
slightly worse on a per phone basis [black98b].

As the lexicon may be a large part of the system we have also experimented with
removing entries from the lexicon if the letter to sound rules system (and stress
assignment system) can correct predict them. For OALD this allows us to half the
size of the lexicon, it could possibly allow more if a certain amount of fuzzy ac-
ceptance was allowed (e.g. with schwa). For other languages the gain here can be
very significant, for German and French we can reduce the lexicon by over 90%. The
function reduce_lexicon in festival/lib/lts_build.scmwas used to do this. A
discussion of using the above technique as a dictionary compression method is dis-
cussed in [pagel98]. A morphological decomposition algorithm, like that described
in [black91], may even help more.

The technique described in this section and its relative merits with respect to a num-
ber of languages/lexicons and tasks is discussed more fully in [black98b].

62

Chapter 7. Lexicons

Post-lexical rules
In fluent speech word boundaries are often degraded in a way that causes
co-articulation across boundaries. A lexical entry should normally provide
pronunciations as if the word is being spoken in isolation. It is only once the word
has been inserted into the the context in which it is going to spoken can co-articulary
effects be applied.

Post lexical rules are a general set of rules which can modify the segment relation
(or any other part of the utterance for that matter), after the basic pronunciations
have been found. In Festival post-lexical rules are defined as functions which will be
applied to the utterance after intonational accents have been assigned.

For example in British English word final /r/ is only produced when the following
word starts with a vowel. Thus all other word final /r/s need to be deleted. A Scheme
function that implements this is as follows

(define (plr_rp_final_r utt)
(mapcar
(lambda (s)
(if (and (string-equal "r" (item.name s)) ;; this is an r

;; it is syllable final
(string-equal "1" (item.feat s "syl_final"))
;; the syllable is word final
(not (string-equal "0"

(item.feat s "R:SylStructure.parent.syl_break")))
;; The next segment is not a vowel
(string-equal "-" (item.feat s "n.ph_vc")))

(item.delete s)))
(utt.relation.items utt ’Segment)))

In English we also use post-lexical rules for phenomena such as vowel reduction
and schwa deletion in the possessive “’s”.

Building lexicons for new languages
Traditionally building a new lexicon for a language was a significant piece of work
taking several expert phonologists perhaps several years to construct a lexicon with
reasonable coverage. However we include a method here that can cut this time sig-
nificantly using the basic technology provided with this documentation.

The basic idea is add the most common words to a lexicon, expclitly giving their
pronunciation by hand, then automatically build letter to sound rules from the initial
data. Then finding the most common words submit them to the system and check
their correctness. If wrong they are corrected and added to the lexicon, if correct they
are added to the lexicon as is. Over multiple passes the lexicon and letter to sound
rules will improve. As each pass the letter to sound rules are re-generate with the
new data making them more correct.

This tecynique has been proved succesful for a number of language cutting the
amount to time and effort to perhaps checking thousands of words rather than tens
of thousands of words. It also is a structured method that requires only knowledge
of the basic language to carry out. Good lexicons can be generated in as little as a
coupld of weeks, though to get greater than 95% correctness of words in a language
could still take several months work.

As stated above you can never list all the words in a language, but having grateter
than 95% coverage with letter to sound rule accuracy grater than 75% you will have a
lexicon that is competitive with those that take many year build. In fact because you
can build a lexicon in a shorter time it more likely to be consistent and there better
for synthesis.

63

Chapter 7. Lexicons

64

Chapter 8. Building prosodic models

Phrasing
Prosodic phrasing in speech synthesis makes the whole speechmore understandable.
Due to the size of peoples lungs there is a finite length of time people can talk before
they can take a breath, which defines an upper bound on prosodic phrases. However
we rarely make our phrases this maximum length and use phrasing to mark groups
within the speech. There is the apocryphal story of the speech synthesis examplewith
an unnaturally long prosodic phrase played at a conference presentation. At the end
of the phrase the audience all took a large in-take of breathe.

For the most case very simple prosodic phrasing is sufficient. A comparison of var-
ious prosodic phrasing techniques is discussed in [taylor98a], though we will cover
some of them here also.

For English (and most likely many other language too) simple rules based on punc-
tuation is a very good predictor of prosodic phrase boundaries. It is rare that punc-
tuation exists where there is no boundary, but there will be a substantial number
of prosodic boundaries which are not explicitly marked with punctuation. Thus a
prosodic phrasing algorithm solely based on punctuation will typically under pre-
dict but rarely make a false insertion. However depending on the actual application
you wish to use the synthesizer for it may be the case that explicitly adding punc-
tuation at desired phrase breaks is possible and a prediction system based solely on
punctuation is adequate.

Festival basically supports two methods for predicting prosodic phrases, though any
other method can easily be used. Note that these do not necessary entail pauses in the
synthesized output. Pauses are further predicted from prosodic phrase information.

The first basic method is by CART tree. A test is made on each word to predict it is
at the end of a prosodic phrase. The basic CART tree returns B or BB (though may
return what you consider is appropriate form break labels as long as the rest of your
models support it). The two levels identify different levels of break, BB being a used
to denote a bigger break (and end of utterance).

The following tree is very simple and simply adds a break after the last word of
a token that has following punctuation. Note the first condition is done by a lisp
function as we wand to ensure that only the last word in a token gets the break.
(Earlier erroneous versions of this would insert breaks after each word in “1984.”

(set! simple_phrase_cart_tree
’
((lisp_token_end_punc in ("?" "." ":"))
((BB))
((lisp_token_end_punc in ("’" "\"" "," ";"))
((B))
((n.name is 0) ;; end of utterance
((BB))
((NB))))))

This tree is defined festival/lib/phrase.scm in the standard distribution and is
certainly a good first step in defining a phrasing model for a new language.

To make a better phrasing model requires more information. As the basic punctu-
ation model underpredicts we need information that will find reasonable bound-
aries within strings of words. In English, boundaries are more likely between content
words and function words, because most function words are before the words they
related to, in Japanese function words are typically after their relate content words
so breaks are more likely between function words and content words. If you have
no data to train from, written rules, in a CART tree, can exploited this fact and give
a phrasing model that is better than a punctuation only. Basically a rule could be if

65

Chapter 8. Building prosodic models

the current word is a content word and the next is a function word (or the reverse if
that appropriate for a language) and we are more than 5 words from a punctuation
symbol them predict a break. We maybe also want to insure that we are also at least
five words from predicted break too.

Note the above basic rules aren’t optimal but when you are building a new voice in a
new language and have no data to train from you will get reasonably far with simple
rules like that, such that phrasing prediction will be less of a problem than the other
problems you will find in you voice.

To implement such a scheme we need three basic functions: one to determine if the
current word is a function of content word, one to determine number of words since
previous punctuation (or start of utterance) and one to determine number of words to
next punctuation (or end of utterance. The first of these functions is already provided
for with a feature, through the feature function gpos. This uses the word list in the
lisp variable guess_pos to determine the basic category of a word. Because in most
languages the set of function words is very nearly a closed class they can usually
be explicitly listed. The format of the guess_pos variable is a list of lists whose first
element is the set name and the rest of the list if the words that are part of that set.
Any word not a member of any of these sets is defined to be in the set content. For
example the basic definition for this for English, given in festival/lib/pos.scm is

(set! english_guess_pos
’((in of for in on that with by at from as if that against about
before because if under after over into while without
through new between among until per up down)

(to to)
(det the a an no some this that each another those every all any

these both neither no many)
(md will may would can could should must ought might)
(cc and but or plus yet nor)
(wp who what where how when)
(pps her his their its our their its mine)
(aux is am are was were has have had be)
(punc "." "," ":" ";" "\"" "’" "(" "?" ")" "!")
))

The punctuation distance check can be written as a Lisp feature function

(define (since_punctuation word)
"(since_punctuation word)
Number of words since last punctuation or beginning of utterance."
(cond
((null word) 0) ;; beginning or utterance
((string-equal "0" (item.feat word "p.lisp_token_end_punc")) 0)
(t
(+ 1 (since_punctuation (item.prev word))))))

The function looking forward would be

(define (until_punctuation word)
"(until_punctuation word)
Number of words until next punctuation or end of utterance."
(cond
((null word) 0) ;; beginning or utterance
((string-equal "0" (token_end_punc word)) 0)
(t
(+ 1 (since_punctuation (item.prev word))))))

The whole tree using these features that will insert a break at punctuation or be-
tween content and function words more than 5 words from a punctuation symbol is
as follows

66

Chapter 8. Building prosodic models

(set! simple_phrase_cart_tree_2
’
((lisp_token_end_punc in ("?" "." ":"))
((BB))
((lisp_token_end_punc in ("’" "\"" "," ";"))
((B))
((n.name is 0) ;; end of utterance
((BB))
((lisp_since_punctuation > 5)
((lisp_until_punctuation > 5)
((gpos is content)
((n.gpos content)
((NB))
((B))) ;; not content so a function word
((NB))) ;; this is a function word
((NB))) ;; to close to punctuation
((NB))) ;; to soon after punctuation
((NB))))))

To use this add the above to a file in your festvox/ directory and ensure it is loaded
by your standard voice file. In your voice definition function. Add the following

(set! guess_pos english_guess_pos) ;; or appropriate for your language

(Parameter.set ’Phrase_Method ’cart_tree)
(set! phrase_cart_tree simple_phrase_cart_tree_2)

A much better method for predicting phrase breaks is using a full statistical model
trained from data. The problem is that you need a lot of data to train phrase break
models. Elsewhere in this document we suggest the use of a timit style database
or around 460 sentences, (around 14500 segments) for training models. However a
database such as this as very few internal utterance phrase breaks. An almost perfect
model word predict breaks at the end of each utterances and never internally. Even
the f2b database from the Boston University Radio New Corpus [ostendorf95] which
does have a number of utterance internal breaks isn’t really big enough. For En-
glish we used the MARSEC database [roach93] which is much larger (around 37,000
words). Finding such a database for your language will not be easy and you may
need to fall back on a purely hand written rule system.

Often syntax is suggested as a strong correlate of prosodic phrase. Although there
is evidence that it influences prosodic phrasing, there are notable exceptions
[bachenko90]. Also considering how difficult it is to get a reliable parse tree it is
probably not worth the effort, training a reliable parser is non-trivial, (though we
provide a method for training stochastic context free grammars in the speech tools,
see manual for details). Of course if your text to be synthesized is coming from a
language system such as machine translation or language generation then a syntax
tree may be readily available. In that case a simple rule mechanism taking into
account syntactic phrasing may be useful

When only moderate amounts of data are available for training a simple CART tree
may be able to tease out a reasonable model. See [hirschberg94] for some discussion
on this. Here is a short example of building a CART tree for phrase prediction. Let us
assume you have a database of utterances as described previously. By convention we
build models in directories under festival/ in the main database directory. Thus let
us create festival/phrbrk.

First we need to list the features that are likely to be suitable predictors for phrase
breaks. Add these to a file phrbrk.feats, what goes in here will depend on what
you have, full part of speech helps a lot but youmay not have that for your language.
The gpos described above is a good cheap alternative. Possible features may be

67

Chapter 8. Building prosodic models

word_break
lisp_token_end_punc
lisp_until_punctuation
lisp_since_punctuation
p.gpos
gpos
n.gpos

Given this list you can extract features form your database of utterances with the
Festival script dumpfeats

dumpfeats -eval ../../festvox/phrbrk.scm -feats phrbrk.feats \
-relation Word -output phrbrk.data ../utts/*.utts

festvox/phrbrk.scm should contain the definitions of the function
until_punctuation, since_punctuation and any other Lisp feature functions you
define.

Next we want to split this data into test and train data. We provide a simple shell
script called traintest which splits a given file 9:1, i.e every 10th line is put in the
test set.

traintest phrbrk.data

Aswe intend to run wagon the CART tree builder on this datawe also need create the
feature description file for the data. The feature description file consists of a bracketed
list of feature name and type. Type may be int float or categorical where a list of
possible values is given. The script make_wagon_desc (distributed with the speech
tools) will make a reasonable approximation for this file

make_wagon_desc phrbrk.data phrbrk.feats phrbrk.desc

This script will treat all features as categorical. Thus any float or int features will
be treated categorically and each value found in the data will be listed as a sepa-
rate item. In our example lisp_since_punctuation and lisp_until_punctuation
are actually float (well maybe even int) but they will be listed as categorically in
phrbrk.desc, something like

...
(lisp_since_punctuation
0
1
2
4
3
5
6
7
8)
...

You should change this entry (by hand) to be

...
(lisp_since_punctuation float)
...

The script cannot work out the type of a feature automatically so you must make
this decision yourself.

Now that we have the data and description we can build a CART tree. The basic
command for wagonwill be

68

Chapter 8. Building prosodic models

wagon -desc phrbrk.desc -data phrbrk.data.train -test phrbrk.data.test \
-output phrbrk.tree

You will probably also want to set a stop value. The default stop value is 50, which
means there must be at least 50 examples in a group before it will consider looking
for a question to split it. Unless you have a lot of data this is probably too large and a
value of 10 to 20 is probably more reasonable.

Other arguments to wagon should also be considered. A stepwise approach where
all features are tested incrementally to find the best set of features which give the
best tree can give better results than simply using all features. Though care should
be taken with this as the generated tree becomes optimized from the given test set.
Thus a further held our test set is required to properly test the accuracy of the result.
In the stepwise case it is normal to split the train set again and call wagon as follows

traintest phrbrk.data.train
wagon -desc phrbrk.desc -data phrbrk.data.train.train \
-test phrbrk.data.train.test \
-output phrbrk.tree -stepwise

wagon_test -data phrbrk.data.test -desc phrbrk.desc \
-tree phrbrk.tree

Stepwise is particularly useful when features are highly correlated with themselves
and its not clear which is best general predictor. Note that stepwise will take much
longer to run as it potentially must build a large number of trees.

Other arguments to wagon can be considered, refer to the relevant chapter in speech
tools manual for their details.

However it should be noted that without a good intonation and duration model
spending time on producing good phrasing is probably not worth it. The quality of
all these three prosodic components is closely related such that if one is much better
than there may not be any real benefit.

Accent/Boundary Assignment
Accent and boundary tones are what we will use, hopefully in a theory independent
way, to refer to the two main types of intonation event. For English, and for many
other languages the prediction of position of the accents and boundaries can be done
as an independent process from F0 contour generation itself. This is definite true from
the major theories we will be considering.

As with phrase break prediction there are some simple rules that will go a surpris-
ingly long way. And as with most of the other statistical learning techniques simple
rules cover most of the work, more complex rules work better, but the best results are
from using the sorts of information you were using in rules but statistically training
them from a appropriate data.

For English the placement of accents on stressed syllables in all content words is a
quite reasonable approximation achieving about 80% accuracy on typical databases.
[hirschberg90] is probably the best example of a detailed rule driven approach (for
English). CART trees based on the sorts of features Hirschberg uses are quite reason-
able. Though eventual these rules become limiting and a richer knowledge source is
required to assign accent patterns to complex nominals (see [sproat90}].

However all these techniques quickly come to the stumbling block that although sim-
ple so-called discourse neutral intonation is relatively easy achieve, achieving realis-
tic, natural accent placement is still beyond our synthesis systems (though perhaps
not for much longer).

The simplest rule for English may be reasonable for other languages. There are even
simpler solutions to this, such as fixed prosody, or fixed declination, but apart from
debugging a voice these are simpler than is required even for the most basic voices.

69

Chapter 8. Building prosodic models

For English, adding a simple hat accent on lexically stressed syllables in all content
words works surprisingly well. To do this in Festival you need a CART tree to predict
accentedness, and rules to add the hat accent (though wewill leave out F0 generation
until the next section).

A basic tree that predicts accents of stressed syllables in content words is

(set! simple_accent_cart_tree
’
(
(R:SylStructure.parent.gpos is content)
((stress is 1)
((Accented))
((NONE))

)
)
)

The above tree simply distinguishes accented syllables from non-accented. In the-
ories like ToBI [silverman92], a number of different types of accent are supported.
ToBI, with variations, has been applied to a number of languages and may be suit-
able for yours. However, although accent and boundary types have been identified
for various languages and dialects, a computational mechanism for generating and
F0 contour from an accent specification often has not yet been specified (we will dis-
cuss this more fully below).

If the above is considered too naive a more elaborate hand specified tree can also
be written, using relevant factors, probably similar to those used in [hirschberg90].
Following that, training from data is the next option. Assuming a database exists
and has been labeled with discrete accent classifications, we can extract data from it
for training a CART tree with wagon. We will build the tree in festival/accents/.
First we need a file listing the features that are felt to affect accenting. For this we will
predict accents on syllables as that has been used for the English voices created so far,
but there is an argument for predict accent placement on a word basis as although
accents will need to be syllable aligned, which syllable in a word gets the accent is
reasonably well defined (at least compared with predicting accent placement).

A possible list of features for accent prediction is put in the file accent.feats.

R:Intonation.daughter1.name
R:SylStructure.parent.R:Word.p.gpos
R:SylStructure.parent.gpos
R:SylStructure.parent.R:Word.n.gpos
ssyl_in
syl_in
ssyl_out
syl_out
p.stress
stress
n.stress
pp.syl_break
p.syl_break
syl_break
n.syl_break
nn.syl_break
pos_in_word
position_type

We can extract these features from the utterances using the Festival script dumpfeats

dumpfeats -feats accent.feats -relation Syllable \
-output accent.data ../utts/*.utts

70

Chapter 8. Building prosodic models

We now need a description file for the features which can be approximated by the
speech tools script make_wagon_desc

make_wagon_desc accent.data accent.feat accent.desc

Because this script cannot determine if a feature is categorical, if takes an range of
values you must hand edit the output file and change any feature to float or int if
that is what it is.

The next stage is to split the data into training and test sets. If stepwise training is to
be used for building the CART tree (which is recommended) then the training data
should be further split

traintest accent.data
traintest accent.data.train

Deciding on a stop value for training depends on the number of examples, though
this can be tuned to ensure over-training isn’t happening.

wagon -data accent.data.train.train -desc accent.desc \
-test accent.data.train.test -stop 10 -stepwise -output accent.tree

wagon_test -data accent.data.test -desc accent.desc \
-tree accent.tree

This above is designed to predict accents, and similar tree should be used to predict
boundary tones as well. For the most part intonation boundaries are defined to occur
at prosodic phrase boundaries so that task is somewhat easier, though if you have
a number of boundary tone types in your inventory then the prediction is not so
straightforward.

When training ToBI type accent types it is not easy to get the right type of variation
in the accent types. Although some ToBI labels have been associated with semantic
intentions and including discourse information has been shown help prediction (e.g.
[black97a}], getting this acceptably correct is not easy. Various techniques in modify-
ing the training data do seem to help. Because of the low incidence of “L*” labels in
at least the f2b data, duplicating all sample points in the training data with L’s does
increase the likelihood of prediction and does seem to give a more varied distribu-
tion. Alternatively wagon returns a probability distribution for the accents, normally
the most probable is selected, this could be modified to select from the distribution
randomly based on their probabilities.

Once trees have been built they can be used in a voices as follows. Within the voice
definition function

(set! int_accent_cart_tree simple_accent_cart_tree)
(set! int_tone_cart_tree simple_tone_cart_tree)
(Parameter.set ’Int_Method Intonation_Tree)

or if only one tree is required you can use the simpler intonation method

(set! int_accent_cart_tree simple_accent_cart_tree)
(Parameter.set ’Int_Method Intonation_Simple)

71

Chapter 8. Building prosodic models

F0 Generation
Predictingwhere accents go (and their types) is only half of the problem.We also have
build an F0 contour based on these. Note intonation is split between accent placement
and F0 generation as it is obvious that accent position influences durations and an
F0 contour cannot be generated without knowing the durations of the segments the
contour is to be generated over.

There are three basic F0 generation modules available in Festival, though others
could be added, by general rule, by linear regression/CART, and by Tilt.

F0 by rule
The first is designed to be the most general and will always allow some form of F0
generation. This method allows target points to be programmatically created for each
syllable in an utterance. The idea follows closely a generalization of the implemen-
tation of ToBI type accents in [anderson84], where n-points are predicted for each
accent. They (and others in intonation) appeal to the notion of baseline and place
target F0 points above and below that line based on accent type, position in phrase.
The baseline itself is often defined to decline over the phrase reflecting the general
declination of F0 over type.

The simple idea behind this general method is that a Lisp function is called for each
syllable in the utterance. That Lisp function returns a list of target F0 points that lie
within that syllable. Thus the generality of this methods actual lies in the fact that it
simply allows the user to program anything they want. For example our simple hat
accent can be generated using this technique as follows.

This fixes the F0 range of the speaker so would need to be changed for different
speakers.

(define (targ_func1 utt syl)
"(targ_func1 UTT STREAMITEM)
Returns a list of targets for the given syllable."
(let ((start (item.feat syl ’syllable_start))

(end (item.feat syl ’syllable_end)))
(if (equal? (item.feat syl "R:Intonation.daughter1.name") "Accented")

(list
(list start 110)
(list (/ (+ start end) 2.0) 140)
(list end 100)))))

It simply checks if the current syllable is accented and if so returns a list of posi-
tion/target pairs. A value at the start of the syllable or 110Hz, a value at 140Hz at the
mid-point of the syllable and a value of 100 at the end.

This general technique can be expanded with other rules as necessary. Festival in-
cludes an implementation of ToBI using exactly this technique, it is based on the
rules described in [jilka96] and in the file festival/lib/tobi_f0.scm.

F0 by linear regression
This technique was developed specifically to avoid the difficult decisions of exactly
what parameters with what value should be used in rules like those of [anderson84].
The first implementation of this work is presented [black96]. The idea is to find the
appropriate F0 target value for each syllable based on available features by training
from data. A set of features are collected for each syllable and a linear regression
model is used to model three points on each syllable. The technique produces rea-
sonable synthesis and requires less analysis of the intonation models that would be
required to write a rule system using the general F0 target method described in the
previous section.

72

Chapter 8. Building prosodic models

However to be fair, this technique is also much simpler and there are are obviously a
number of intonational phenomena which this cannot capture (e.g. multiple accents
on syllables and it will never really capture accent placement with respect to the
vowel). The previous technique allows specification of structure but without explicit
training from data (though doesn’t exclude that) while this technique imposes almost
no structure but depends solely on data. The Tilt modeling discussed in the following
section tries to balance these two extremes.

The advantage of the linear regression method is very little knowledge about the
intonation the language under study needs to be known. Of course if there is knowl-
edge and theories it is usually better to follow them (or at least find the features
which influence the F0 in that language). Extracting features for F0 modeling is sim-
ilar to extracting features for the other models. This time we want the means F0 at
the start middle and end of each utterance. The Festival features syl_startpitch,
syl_midpitch and syl_endpitch proved this. Note that syl_midpitch returns the
pitch at the mid of the vowel in the syllable rather than the middle of the syllable.

For a linear regression model all features must be continuous. Thus features which
are categorical that influence F0 need to be converted. The standard technique for
this is to introduce new features, one for each possible value in the class and output
values of 0 or 1 for these modified features depending on the value of the base fea-
tures. For example in a ToBI environment the output of the feature tobi_accentwill
include H*, L*, L+H* etc. In the modified form you would have features of the form
tobi_accent_H*, tobi_accent_L*, tobi_accent_L_H*, etc.

The program ols in the speech tools takes feature files and description files in exactly
the same format as wagon, except that all feature must be declared as type float.
The standard ordinary least squares algorithm used to find the coefficients cannot,
in general, deal with features that are directly correlated with others as this causes a
singularity when inverting the matrix. The solution to this is to exclude such features.
The option -robust enables that though at the expense of a longer compute time.
Again like file a stepwise option is included so that the best subset of features may
be found.

The resulting models may be used by the Int_Targets_LR module which takes its
LR models from the variables f0_lr_start, f0_lr_mid and f0_lr_end. The output
of ols is a list of coefficients (with the Intercept first). These need to be converted to
the appropriate bracket form including their feature names. An example of which is
in festival/lib/f2bf0lr.scm.

If the conversion of categoricals to floats seems to much work or would prohibitively
increase the number of features you could use wagon to generate trees to predict
F0 values. The advantage is that of a decision tree over the LR model is that it can
deal with data in a non-linear fashion, But this is also the disadvantage. Also the
decision tree technique may split the data sub-optimally. The LR model is probably
more theoretically appropriate but ultimately the results depend on how goods the
models sound.

Dump features as with the LR models, but this time there is no need convert
categorical features to floats. A potential set of features to do this from (substitute
syl_midpitch and syl_endpitch for the other two models is

syl_endpitch
pp.tobi_accent
p.tobi_accent
tobi_accent
n.tobi_accent
nn.tobi_accent
pp.tobi_endtone
R:Syllable.p.tobi_endtone
tobi_endtone
n.tobi_endtone
nn.tobi_endtone
pp.syl_break

73

Chapter 8. Building prosodic models

p.syl_break
syl_break
n.syl_break
nn.syl_break
pp.stress
p.stress
stress
n.stress
nn.stress
syl_in
syl_out
ssyl_in
ssyl_out
asyl_in
asyl_out
last_accent
next_accent
sub_phrases

The above, of course assumes a ToBI accent labeling, modify that as appropriate for
you actually labeling.

Once you have generated three trees predicting values for start, mid and end points
in each syllable you will need to add some Scheme code to use these appropriately.
Suitable code is provided in src/intonation/tree_f0.scmyou will need to include
that in your voice. To use it as the intonation target module you will need to add
something like the following to your voice function

(set! F0start_tree f2b_F0start_tree)
(set! F0mid_tree f2b_F0mid_tree)
(set! F0end_tree f2b_F0end_tree)
(set! int_params
’((target_f0_mean 110) (target_f0_std 10)
(model_f0_mean 170) (model_f0_std 40)))

(Parameter.set ’Int_Target_Method Int_Targets_Tree)

The int_params values allow you to use the model with a speaker of a different
pitch range. That is all predicted values are converted using the formula

(+ (* (/ (- value model_f0_mean) model_f0_stddev)
target_f0_stddev) target_f0_mean)))

Or for those of you who can’t real Lisp expressions

((value - model_f0_mean) / model_f0_stddev) * target_f0_stddev)+
target_f0_mean

The values in the example above are for converting a female speaker (used for
training) to a male pitch range.

Tilt modeling
Tilt modeling is still under development and not as mature as the other methods as
described above, but it potentially offers a more consistent solution to the problem.
A tilt parameterization of a natural F0 contour can be automatically derived from a
waveform and a labeling of accent placements (a simple “a” for accents and “b” of
boundaries) [taylor99]. Further work is being done on trying to automatically find
the accents placements too.

For each “a” in an labeling four continuous parameters are found: height, duration,
peak position with respect to vowel start, and tilt. Prediction models may then be
generate to predict these parameters which we feel better capture the dimensions

74

Chapter 8. Building prosodic models

of F0 contour itself. We have had success in building models for these parameters,
[dusterhoff97a], with better results than the linear regression model on comparable
data. However so far we have not done any tests with Tilt on languages other than
English.

The speech tools include the programs tilt_analyse and tilt_synthesize to aid
model building but we do not yet include fill Festival end support for using the gen-
erated models.

Duration
Like the above prosody phenomena, very simple solutions to predicting durations
work surprisingly well, though very good solutions are extremely difficult to achieve.

Again the basic strategy is assigning fixed models, simple rules models, complex
rule modules, and trained models using the features in the complex rule models. The
choice of where to stop depends on the resources available to you and time you wish
to spend on the problem. Given a reasonably sized database training a simple CART
tree for durations achieves quite acceptable results. This is currently what we do for
our English voices in Festival. There are better models out there but we have not fully
investigated them or included easy scripts to customize them.

The simplest model for duration is a fixed duration for each phone. A value of 100
milliseconds is a reasonable start. This type of model is only of use at initial test-
ing of a diphone database beyond that it sounds too artificial. The Festival function
SayPhones uses a fixed duration model, controlled by the value (in ms) in the vari-
able FP_duration. Although there is a fixed duration module in Festival (see the
manual) its worthwhile starting off with something a little more interesting.

The next level for duration models is to use average durations for the phones. Even
when real data isn’t available to calculate averages, writing values by hand can be
acceptable, basically vowels are longer than consonants, and stops are the shortest.
Estimating values for a set of phones can be done by looking at data from another
language, (if you are really stuck, see festival/lib/mrpa_durs.scm}, to get the
basic idea of average phone lengths.

In most languages phones are longer at the phrase final and to a lesser extent phrase
initial positions. A simple multiplicative factor can be defined for these positions.
The next stage from this is a set of rules that modify the basic average based on the
context they occur in. For English the best definition of such rules is the duration
rules given in chapter 9, [allen87] (often referred to as the Klatt duration model). The
factors used in this may also apply to other languages. A simplified form of this, that
we have successfully used for a number of languages, and is often used as our first
approximation for a duration rule set is as follows.

Here we define a simple decision tree that returns a multiplication factor for a seg-
ment

(set! simple_dur_tree
’
((R:SylStructure.parent.R:Syllable.p.syl_break > 1) ;; clause initial
((R:SylStructure.parent.stress is 1)
((1.5))
((1.2)))
((R:SylStructure.parent.syl_break > 1) ;; clause final
((R:SylStructure.parent.stress is 1)
((1.5))
((1.2)))
((R:SylStructure.parent.stress is 1)
((ph_vc is +)
((1.2))
((1.0)))

75

Chapter 8. Building prosodic models

((1.0))))))

You may modify this adding more conditions as much as you want. In addition to
the tree you need to define the averages for each phone in your phone set. For reasons
we will explain below the format of this information is “segname 0.0 average” as in

(set! simple_phone_data
’(
(# 0.0 0.250)
(a 0.0 0.080)
(e 0.0 0.080)
(i 0.0 0.070)
(o 0.0 0.080)
(u 0.0 0.070)
(i0 0.0 0.040)
...

))

With both these expressions loaded in your voice you may set the following in
your voice definition function. setting up this tree and data as the standard and the
appropriate duration module.

;; Duration prediction
(set! duration_cart_tree simple_dur_tree)
(set! duration_ph_info simple_phone_data)
(Parameter.set ’Duration_Method ’Tree_ZScores)

Though in your voice use voice specific names for the simple_ variables otherwise
you may class with other voices.

It has been shown [campbell91] that a better representation for duration for modeling
is zscores, that is number of standard deviations from the mean. The duration module
used in the above is actually designed to take a CART tree that returns zscores and
uses the information in duration_ph_info to change that into an absolute duration.
The two fields after the phone name are mean and standard deviation. The interpre-
tation of this tree and this phone info happens to give the right result when we use
the tree to predict factors and have the stddev field contain the average duration, as
we did above.

However no matter if we use zscores or absolutes, a better way to build a duration
model is to train from data rather than arbitrarily selecting modification factors.

Given a reasonable sized database we can dump durations and features for each
segment in the database. Then we can train a model using those samples. For our
English voices we have trained regression models using wagon, though we include
the tools for linear regression models too.

An initial set of features to dump might be

segment_duration
name
p.name
n.name
R:SylStructure.parent.syl_onsetsize
R:SylStructure.parent.syl_codasize
R:SylStructure.parent.R:Syllable.n.syl_onsetsize
R:SylStructure.parent.R:Syllable.p.syl_codasize
R:SylStructure.parent.position_type
R:SylStructure.parent.parent.word_numsyls
pos_in_syl
syl_initial
syl_final
R:SylStructure.parent.pos_in_word
p.seg_onsetcoda

76

Chapter 8. Building prosodic models

seg_onsetcoda
n.seg_onsetcoda
pp.ph_vc
p.ph_vc
ph_vc
n.ph_vc
nn.ph_vc
pp.ph_vlng
p.ph_vlng
ph_vlng
n.ph_vlng
nn.ph_vlng
pp.ph_vheight
p.ph_vheight
ph_vheight
n.ph_vheight
nn.ph_vheight
pp.ph_vfront
p.ph_vfront
ph_vfront
n.ph_vfront
nn.ph_vfront
pp.ph_vrnd
p.ph_vrnd
ph_vrnd
n.ph_vrnd
nn.ph_vrnd
pp.ph_ctype
p.ph_ctype
ph_ctype
n.ph_ctype
nn.ph_ctype
pp.ph_cplace
p.ph_cplace
ph_cplace
n.ph_cplace
nn.ph_cplace
pp.ph_cvox
p.ph_cvox
ph_cvox
n.ph_cvox
nn.ph_cvox
R:SylStructure.parent.R:Syllable.pp.syl_break
R:SylStructure.parent.R:Syllable.p.syl_break
R:SylStructure.parent.syl_break
R:SylStructure.parent.R:Syllable.n.syl_break
R:SylStructure.parent.R:Syllable.nn.syl_break
R:SylStructure.parent.R:Syllable.pp.stress
R:SylStructure.parent.R:Syllable.p.stress
R:SylStructure.parent.stress
R:SylStructure.parent.R:Syllable.n.stress
R:SylStructure.parent.R:Syllable.nn.stress
R:SylStructure.parent.syl_in
R:SylStructure.parent.syl_out
R:SylStructure.parent.ssyl_in
R:SylStructure.parent.ssyl_out
R:SylStructure.parent.parent.gpos

By convention we build duration models in festival/dur/. We will save the above
feature names in dur.featnames. We can dump the features with the command

dumpfeats -relation Segment -feats dur.featnames -output dur.feats \
../utts/*.utt

77

Chapter 8. Building prosodic models

This will put all the features in the file dur.feats. For wagonwe need to build a fea-
ture description file, we can build a first approximation with the make_wagon_desc
script available with the speech tools

make_wagon_desc dur.feats dur.featnames dur.desc

You will then need to edit dur.desc to change a number of
features from their categorical list (lots of numbers) into type float.
Specifically for the above list the features segment_duration,
R:SylStructure.parent.parent.word_numsyls, pos_in_syl,
R:SylStructure.parent.pos_in_word, R:SylStructure.parent.syl_in,
R:SylStructure.parent.syl_out, R:SylStructure.parent.ssyl_in and
R:SylStructure.parent.ssyl_out should be declared as floats.

We then need to split the data into training and test sets (and further split the train
set if we are going to use stepwise CART building.

traintest dur.feats
traintest dur.feats.train

We can no build a model using wagon

wagon -data dur.feat.train.train -desc dur.desc \
-test dur.feats.train.test -stop 10 -stepwise \
-output dur.10.tree

wagon_test -data dur.feats.test -tree dur.10.tree -desc dur.desc

You may wish to remove all examples of silence from the data as silence durations
typically has quite a different distribution from other phones. In fact it is common
that databases include many examples of silence which are not of natural length as
they are arbitrary parts of the initial and following silence around the spoken utter-
ances. Their durations are not something that should be trained for.

These instructions above will build a tree that predicts absolute values. To get such
a tree to work with the zscore module simply make the stddev field above 1. As
stated above using zscores typically give better results. Although the correlation of
these duration models in the zscore domain may not be as good as training models
predicting absolute scores when those predicted scores are convert back into the ab-
solute domain we have found (for English) that the correlations are better, and RMSE
smaller.

In order to train a zscore model you need to convert the absolute segment durations,
to do that you need the means and standard deviations for each segment in your
phoneset.

There is a whole branch of possible mappings for the distribution of durations: zs-
cores, logs, logs-zscores, etc or even more complex functions [bellegarda98]. These
variations do give some improvements. The intention is to map the distribution to a
normal distribution which makes it easier to learn.

Other learning techniques, particularly Sums of Products model ([sproat98] chapter
5), which has been shown to training better even on small amounts of data.

Another technique, which although shouldn’t work is to borrow a models trained
for another language for which data is available. Actually the duration model used
in Festival for the US and UK voices is the same, it was in fact trained from the
f2b database, a US English database. As the phone sets are different for US and UK
English we trained the models using phonetic features rather than phone names,
and trained them in the zscore domain keeping the actual phone names and means
and standard deviations separate. Although the models were slightly better if we in-
cluded the phone names themselves, it was only slightly better and the models were
also substantially larger (and took longer to train). Using the phonetic feature offers a

78

Chapter 8. Building prosodic models

more general model (it works for UK English), more compact, quicker learning time
and with only a small cost in performance.

Also in the German voice developed at OGI, the same English duration model was
used. The results are acceptable and are at least better than any hand written rule
system that could be written. Improvements in that model are probably only possible
by training on real German data. Note however such cross language borrowing of
models is unlikely to work in general but there may be cases where it is a reasonable
fall back position.

Prosody Research
Note that the above descriptions are for the easy implementation of prosody models
which unfortunately means that the models will not be perfect. Of course no models
will be perfect but with some work it is often possible to improve the basic models
or at least make them more appropriate to the synthesis task. For example if your
intend use of your synthesis voice is primarily for dialog systems training one news
caster speech will not give the best effect. Festival is designed as a research system as
well as tool to build languages so it is well adapted to prosody research.

One thing which clearly shows off how imporoverished our prosodic models are is
the comparing of predicted prosody with natural prosody. Given a label file and an
F0 Target file the following code will generate\ that utterance using the current voice

(define (resynth labfile f0file)
(let ((utt (Utterance SegF0))) ; need some u to start with
(utt.relation.load utt ’Segment labfile)
(utt.relation.load utt ’Target f0file)
(Wave_Synth utt))

)

The format of the label file should be one that can be read into Festival (e.g. the
XLabel format) For example

#
0.02000 26 pau ;
0.09000 26 ih ;
0.17500 26 z ;
0.22500 26 dh ;
0.32500 26 ae ;
0.35000 26 t ;
0.44500 26 ow ;
0.54000 26 k ;
0.75500 26 ey ;
0.79000 26 pau ;

The target file is a little more complex again it is a label file but with features "pos"
and "F0" at each stage. Thus the format for a naturally rendered version of the above
would be.

#
0.070000 124 0 ; pos 0.070000 ; f0 133.045230 ;
0.080000 124 0 ; pos 0.080000 ; f0 129.067890 ;
0.090000 124 0 ; pos 0.090000 ; f0 125.364600 ;
0.100000 124 0 ; pos 0.100000 ; f0 121.554800 ;
0.110000 124 0 ; pos 0.110000 ; f0 117.248260 ;
0.120000 124 0 ; pos 0.120000 ; f0 115.534490 ;
0.130000 124 0 ; pos 0.130000 ; f0 113.769620 ;
0.140000 124 0 ; pos 0.140000 ; f0 111.513180 ;
0.240000 124 0 ; pos 0.240000 ; f0 108.386380 ;
0.250000 124 0 ; pos 0.250000 ; f0 102.564100 ;

79

Chapter 8. Building prosodic models

0.260000 124 0 ; pos 0.260000 ; f0 97.383600 ;
0.270000 124 0 ; pos 0.270000 ; f0 97.199710 ;
0.280000 124 0 ; pos 0.280000 ; f0 96.537280 ;
0.290000 124 0 ; pos 0.290000 ; f0 96.784970 ;
0.300000 124 0 ; pos 0.300000 ; f0 98.328150 ;
0.310000 124 0 ; pos 0.310000 ; f0 100.950830 ;
0.320000 124 0 ; pos 0.320000 ; f0 102.853580 ;
0.370000 124 0 ; pos 0.370000 ; f0 117.105770 ;
0.380000 124 0 ; pos 0.380000 ; f0 116.747730 ;
0.390000 124 0 ; pos 0.390000 ; f0 119.252310 ;
0.400000 124 0 ; pos 0.400000 ; f0 120.735070 ;
0.410000 124 0 ; pos 0.410000 ; f0 122.259190 ;
0.420000 124 0 ; pos 0.420000 ; f0 124.512020 ;
0.430000 124 0 ; pos 0.430000 ; f0 126.476430 ;
0.440000 124 0 ; pos 0.440000 ; f0 121.600880 ;
0.450000 124 0 ; pos 0.450000 ; f0 109.589040 ;
0.560000 124 0 ; pos 0.560000 ; f0 148.519490 ;
0.570000 124 0 ; pos 0.570000 ; f0 147.093260 ;
0.580000 124 0 ; pos 0.580000 ; f0 149.393750 ;
0.590000 124 0 ; pos 0.590000 ; f0 152.566530 ;
0.670000 124 0 ; pos 0.670000 ; f0 114.544910 ;
0.680000 124 0 ; pos 0.680000 ; f0 119.156750 ;
0.690000 124 0 ; pos 0.690000 ; f0 120.519990 ;
0.700000 124 0 ; pos 0.700000 ; f0 121.357320 ;
0.710000 124 0 ; pos 0.710000 ; f0 121.615970 ;
0.720000 124 0 ; pos 0.720000 ; f0 120.752700 ;

This file was generated from a waveform using the folloing command

pda -s 0.01 -otype ascii -fmax 160 -fmin 70 wav/utt003.wav |
awk ’BEGIN @{ printf("#\n") @}

@{ if ($1 > 0)
printf("%f 124 0 ; pos %f ; f0 %f ; \n",

NR*0.010,NR*0.010,$1) @}’ >Targets/utt003.Target

The utetrance may then be rendered as

festival> (set! utt1 (resynth "lab/utt003.lab" "Targets/utt003.utt"))

Note that this methodwill loose a little in diphone selection. If your diphone database
uses consonant cluster allophones it wont be possible to properly detect these as there
is no syllabic structure in this. That may or may not be important to you. Even this
simple method however clearly shows how important the right prosody is to the
understandability of a string of phones.

We have successfully done this on a number of natural utterances. We extracted the
labels automatically by using the aligner discussed in the diphone chapter. As we
were using diphones from the same speaker as the natural utterances (KAL) the
alignment is surprisingly good and trivial to do. You must however synthesis the
utterance first and save the waveform and labels. Note you should listen to ensure
that the synthesizer has generated the right labels (as much as that is possible), in-
cluding breaks in the same places. Comparing synthesized utterances with natural
ones quickly shows up many problems in synthesis.

Prosody Walkthrough
This section gives a walkthrough of a set of basic scripts that can be used to build
duration and F0 models. The results will be reasonable but they are designed to be
language independent and hence more appropriatemodels will almost certainly give
better results. We have used these methods when building diphone voices for new

80

Chapter 8. Building prosodic models

languages when we know almost nothing explicit about the language structure. This
walkthrough however explcitly covers most of the major steps and hence will be
useful as a basis for building new better models.

In many ways this process is simialr to the limited domain voice building process.
here we will design a set of prompts which are believed to cover the prosody that
we wish to model, we record and label the data and then build models from the
utterances built from the natural speech. In fact the basic structure for this uses the
limited domain scripts for the initial part of the process.

The basic stages of this task are

• Design database

• Setup directory structure

• Synthesizing prompts (for labeling)

• Recording prompts

• Phonetically label prompts

• Extract pitchmarks and F0 contour

• Build utterance structures

• For duration models

• extract means and standard deviations of phone durations

• extract features for prediction

• build feature description files

• Build regression model to predict durations

• construct scheme file with duration model

• For F0 models

• extract features for prediction

• build feature description files

• Build regression model to preict F0 at start, mid and end of syllable

• construct scheme file with F0 model

Design database
The object here is to cpature enough speech in prosodic style that you wish your
syntehsizer to use. Note as prosodic modeling is still and extremely difficult area all
models are extremely imporerished (especially the very simple models we are pre-
senting here), thus do not be too ambitious. However it is worthwhile consider if
you wish dialog (i.e. conversational speech) or prose (i.e. read speech). Prose can be
news reader style or story telling style. Most synthesizers are trained on news reader
style becuase its fairly consistent and believe to be easier to model, and reading para-
graphs of text is seens as a basic apllication for text to speech synthesizers. However
today with more dialog systems such prosodic models are often not as appropriate.

Ideally your database will be marked up with prosodic tagging that your voice talent
will understand and be able to deliver appropriately. Designing such a database isn’t
easy but when starting off in new languages anything may be better than fixed dura-
tions and a naive declining F0. Thus simply a list of 500 sentences from newspapers
may give rise to better models than.

Suppose you have your 500 sentences, construct a prompt list as is done with the
limited domain constuction. That is, you need a file of the form.

81

Chapter 8. Building prosodic models

(sent_0001 "She had your dark suit in greasy washwater all year.")
(sent_0002 "Don’t make me carry an oily rag like that.")
(sent_0003 "They wanted to go on a barge trip.")
...

Setup directory structure
As with the rest of the festvox tools, you need to set the following to environment
variables to allow them to work properly. In bash or other Bourne shell compatibles
type, with the appropriate pathnames for you installation of the Edinburgh Speech
Tools an Festvox itself.

export FESTVOXDIR=/home/awb/projects/festvox
export ESTDIR=/home/awb/projects/speech_tools

For csh and its derivative you should type

setenv FESTVOXDIR /home/awb/projects/festvox
setenv ESTDIR /home/awb/projects/speech_tools

As the basic structure is so similar to the limited domain building structure, first you
should all that setup procedure. If you are building prosodic models for an already
existing limited domain then you do not need this part.

mkdir cmu_timit_awb
cd cmu_timit_awb
$FESTVOXDIR/src/ldom/setup_ldom cmu timit awb

The arguments are, institution, domain type, and speaker name.

After setting this up you need to also setup the extra directories and scripts need to
build prosody models. This is done by the command

$FESTVOXDIR/src/prosody/setup_prosody

You shold copy your database files as created in the previous section into etc/.

Synthesizing prompts
We then synthesizer the prompts. As we are trying to collect natural speech these
prompts should not normally be presented to the voice talent as they may then copy
the syntehsizer intonation, which would almost certainly be a bad thing. As this will
sometimes be the first serious use of a new diphone syntehsizerin a new language,
(with impoverished prosodymodels) it is important to check that the prompts can be
generate phonetically correct. This may require more additions to the lexicon and/or
more token to word rules. We synthesize the prompts for two reasons. First, to use
for autolabeling in that the synthesized prompts will be aligned using dtw against
what the speaker actually says. Second we are trying to construct festival utterances
structures for each utterance in this database with natural durations and F0. so we
may learn from them.

You should change the line setting the "closest" voice

(set! cmu_timit_awb::closest_voice ’voice_kal_diphone)

82

Chapter 8. Building prosodic models

This is in the file festvox/cmu_timit_awb_ldom.scm. This is the voice that will be
used to syntehsized the prompts. Often this will be your new diphone voice.

Ideally we would like these utterances to also have natural phone sequences, such
that schwas, allophones such as flaps, and post-lexical rules have been applied. At
present we do not include that here though for more serious prosody modeling such
phonomena should be included in the utterance structures here.

The prompts can be synthesizer by the command

festival -b festvox/build_ldom.scm ’(build_prompts "etc/timit.data")’

Recording the prompts
The usual caveats apply to recording, (the Section called Recording under Unix in Chapter 4)
and the issues on selecting a speaker.

As prosody modeling is difficult, and if you are inexperienced in building such mod-
els, it is wise not to attempt anything hard. Just building reliable models for default
unmarked intonation is very useful if your current models are simply the default
fixed intonation. Thus the senetences should be read in a natural but not too varied
style.

Recording can be done with pointyclicky or prompt_them. If you are using
prompt_them, you should modify that script so that it does not play the prompts, as
they will confuse the speaker. The speaker should simply read the text (and markup,
if present).

pointyclicky etc/timit.data

or

bin/prompt_them etc/timit.data

Phonetically label prompts
After recording the spoken utterances must be labeled

bin/make_labs prompt-wav/*.wav

This is one of the computationally expensive parts of the process and for longer
sentences it can require much memory too.

After autolabeling it is always worthwhiel to inspect the labels and correct mistakes.
Phrasing can particularly cause problems so adding or deleting silences can make the
derived prosody models much more accurate. You can use emulabel to to this.

emulabel etc/emu_lab

83

Chapter 8. Building prosodic models

Extract pitchmarks and F0
At this point we diverge from the process used for building limited domain syn-
thesizers. You can construct such synthesizers from the same recordings, maybe you
wish more appropriate prosodic models for the fallback synthesizer. But at this poijnt
we need to extract the pitchmark in a slightl differentway.We are intending to extract
F0 contours for all non-silence parts of the speech signal. We do this by extracting
pitchmarks for the voiced sections alone then (in the next section) interpolating the
F0 through the non-voiced (but non-silence) sections.

the Section called Extracting pitchmarks from waveforms in Chapter 4 discusses the set-
ting of parameters to get bin/make_pm_wave to work for a particular voice. In this
case we need those same parameters (which should be found by experiment). These
shold be copied from bin/make_pm_wave and added to bin/make_F0_pm in the vari-
able PM_ARGS. The distribution contains something like

PM_ARGS=’-min 0.0057 -max 0.012 -def 0.01 -wave_end -lx_lf 140 -lx_lo 111 -lx_hf 80 -lx_ho 51 -
med_o 0’

Importnantly this differs from the parameters in bin/make_pm_wave as we do not
use the -fill option to fill in pitchmarks over the rest of the waveform.

The second part of this section is the construction of an F0 contour which is build
from the extracted pitchmarks. Unvoiced speech sections are assigned an F0 con-
tour by interpolation from the voiced section around it, and the result is smnoothed.
The label files are used to define which parts of the signal are silence and which are
speech.

The variable SILENCE in bin/make_f0_pm must be modified to reflect the symbol
used for silence in your phoneset.

Once the pitchmark parameters have be determined, and the appropriate SILENCE
value set you can extract the smoothed F0 by the command

bin/make_f0_pm wav/*.wav

You can view the F0 contrours with the command

emulabel etc/emu_f0

Build utterance structures
With the labels and F0 created we can now rebuild the utterance structures by syn-
tehsizing the prompt snad merging in the values from the natural durations and F0
from the naturally spoken utterances.

festival -b festvox/build_ldom.scm ’(build_utts "etc/timit.data")’

Duration models
The script bin/make_dur_model contains all of the following commands but it is wise
to understand the stages as due to errors in labeling it may not all run completely
smoothly and small fixes may be required.

84

Chapter 8. Building prosodic models

We are building a duration model using a CART tree to predict zscore values for
phones. Zscores (number of standard deviations from the mean) have often been
used in duration modeling as they allow a certain amount of normalization over
different phones.

You shold first look at the script bin/make_dur_model and edit the following three
variable values

SILENCENAME=SIL
VOICENAME=’(kal_diphone)’
MODELNAME=cmu_us_kal

these should contain the name for silence in your phoneset, the call for the voice you
are building the model for (or at least one that uses the same phoneset), and finally
the name for the model, which can be the same INST_LANG_VOX part of the voice you
call.

The first stage is to find the means and standard deviations for each phone. A festival
script in the festival distribution is used to load in all the utetrances and a calculate
these values. With the command

durmeanstd -output festival/dur/etc/durs.meanstd festival/utts/*.utt

You should check festival/dur/etc/durs.meanstd, the generated file to ensure
that the numbers look raosnable. If there is only one example of a particular phone,
the standard deviation cannot be calculated and the value is given as nan (not-a-
number). Thus must be changed to a standard numeric value (say one-third or the
mean). Also some of the values in this table maybe adversely affected by bad labeling
so you may wish to hand modify the values, or go back and correct the labeling.

The next stage is extract the features from which we will predict the durations. The
list of features extracted as in festival/dur/etc/dur/feats. These cover phonetic
context, syllable, word position etc. These may or may not be appropriate for your
new language or domain and you you may wish to add to these before doing the
extraction. The extraction process takes each phoneme and dumps the named feature
values for that phone into a file. This uses the standard festival script dumpfeats to
do this. The command looks like

$DUMPFEATS -relation Segment -eval $VOICENAME \
-feats festival/dur/etc/dur.feats =
-output festival/dur/feats/%s.feats \
-eval festival/dur/etc/logdurn.scm \
festival/utts/*.utt

These feature files are then concatenated into a single file which is then split (90/10)
into traing and test sets. The training set is further split force use as a held-out testset
used in the training phase. Also at this stage we remove all silence phones form the
training and test set. This is, perhaps naively, because the distribution of silences is
very wide and often files contain silences at the start and end of utterances which
themslves aren’t part of the speech content (they’re just the edges) and having these
in the training set can skew the results.

This is done by the commands

cat festival/dur/feats/*.feats | \
awk ’{if ($2 != "’$SILENCENAME’") print $0}’ >festival/dur/data/dur.data

bin/traintest festival/dur/data/dur.data
bin/traintest festival/dur/data/dur.data.train

For wagon the CART tree builder to work it needs to know what possible values each
feature can take. This can mostly be determined automatically but some featuresmay

85

Chapter 8. Building prosodic models

have values that could be either numeric or classes, thus we use a post-processing
function on the automatically generated description file to get our desired result.

$ESTDIR/bin/make_wagon_desc festival/dur/data/dur.data \
festival/dur/etc/dur.feats festival/dur/etc/dur.desc

festival -b --heap 2000000 festvox/build_prosody.scm \
$VOICENAME ’(build_dur_feats_desc)’

Now we can build the model itself. A key factor in the time this takes (and the ac-
curacy of the model) is the "stop" value, that is the number of examples that must
exist before a split searched for. The smaller this number the longer the search will
be, though up to a certasin point the more accurate the model will be. But at some
level this will over train. The default in the distribution is 50 which may or may not
be appropriate. Not for large databases and for smaller values of STOP the training
may take days even on a fast processor.

Although we have guessed a reasonable value for this for databases of around 50-
1000 utterances it may not be appropriate for you.

The learning technique used is basic CART tree growing but with an important ex-
tentionwhichmakes the processmuchmore robust on unseen data but unfortunately
much more computationally expensive. The -stepwise option on wagon incremen-
tally searches for the best features to use in building three, in addition to at each
iteration finding the best questions about each feature that best model data. If you
want a quicker result removing the -stepwise option will give you that.

The basic wagon command is

wagon -data festival/dur/data/dur.data.train.train \
-desc festival/dur/etc/dur.desc \
-test festival/dur/data/dur.data.train.test \
-stop $STOP \
-output festival/dur/tree/$PREF.S$STOP.tree \
-stepwise

To tets the results on data not used inthe training we use the command

wagon_test -heap 2000000 -data festival/dur/data/dur.data.test \
-desc festival/dur/etc/dur.desc \
-tree festival/dur/tree/$PREF.S$STOP.tree

Interpreting the results isn’t easy in isolation. The smaller the RMSE (root mean
squared error) the better and the larger the correlation is the better (it should never
be greater than 1, and should never be below 0, though if you model is very bad it
can be below 0). For English, with this script on a Timit database we get an RMSE
value of 0.81 and correlation of 0.58, on the test data. Note these values are not in the
abosolute domain (i.e. seconds) they are in the zscore domain.

The final stage, probably after a number of iterations of the build process we must
package model into a scheme file that can be used with a voice. This scheme file
contains the means and standard deviations (so we can convert the predicted values
back into seconds) and the prediction tree itself. We also add in predictions for the
silence phone by hand. The comamnd to generate this is

festival -b --heap 2000000 \
festvox/build_prosody.scm $VOICENAME \
’(finalize_dur_model "’$MODELNAME’" "’$PREF.S$STOP.tree’")’

86

Chapter 8. Building prosodic models

This will generate a file festvox/cmu_timit_awb_dur.scm. If you model name is the
same as the basic diphone voice you intend to use it in you cna simply copy this file
to the festvox/ directory of your diphone voice and it will automatically work. But
it is worth explaining what this install process really is. The duration model scheme
file contains two lisp expression setting the the variables MODELNAME::phone_durs
and MODELNAME::zdurtree. To uses these in a voice you must load this file, typically
by adding

(require ’MODELNAME_dur)

to the diphone voice definition file (festvox/MODELNAME_diphone.scm). And then
get the voice defintion to use these new variables. This is done by the commands in
the voice definition function

;; Duration prediction
(set! duration_cart_tree MODELNAME::zdurtree)
(set! duration_ph_info MODELNAME::phone_durs)
(Parameter.set ’Duration_Method ’Tree_ZScores)

F0 contour models
(what about accents ?)

extract features for prediction build feature description files Build regression model
to preict F0 at start, mid and end of syllable construct scheme file with F0 model

87

Chapter 8. Building prosodic models

88

Chapter 9. Corpus development

This chapter discusses the techniques used to design a good corpus for recording for
use in general speech synthesis. The basic requirements for a speech synthesis corpus
are:

• Phonetically and prosodically balanced

• Targeted toward the intended domain(s)

• Easy to say by voice talent without mistakes

• Short enough for the voice talent to be willing to say it.

To make life easier in designing prompt list we have included scripts which go some
way to aid the process. The general idea is to take a very large amount of text and
automatically find "nice" utterances that match these criteria.

The CMU ARCTIC Database prompt list [kominek 2003] was created very much in
this way, though with an earlier version of the scripts.

As with most of our work there is a single script, that does a number of basic stages.
The default is reasonable in many cases, but with prompt selection it is always worth
hand checking and potentially modifying and refining the process.

The basic idea is to limit the chosen utterances to those of a reasonable length (5-15
words), only choose sentences with high frequency words (which should be easier to
say and less ambiguous in pronunciation, also restrict to words that are in the lexicon
(avoiding letter to sound issues).

The script make_nice_prompts is set up for two classes of language, Latin script
languages and non-Latin script languages. Though as the non-Latin case is much
more varied you may need to modify things. We have successfully used it for UTF-8
encoded Hindi.

For the Latin-script languages (as opposed "asis" cases) we downcase the text when
looking for variation. Although some Latin based language make a significant case
distinction, e.g. German, this is a reasonable route to avoid sentences with too many
repeated words in them.

First gather lots of text data. When we say lots we mean at least millions of words,
or even 10s on millions of words. This basic selection process is aimed at getting
sentences for general voices and hence as large amount of starting data as possible is
important.

Please also note the copyright of the data you are selecting from. In CMUARCTICwe
used out-of-copyright texts from the Gutenberg project, so there would be no issue
in distributing the data. Copyright law in many countries allows for small subsets
for copyright data, but this fair use is often argued by some. There may not actually
be a good solution to this, News stories, are typically copyright by the press agency
releasing them. Licenses on LDC data are often sufficient for using such texts to build
prompts and then having no restriction on the voices generated, but the database
itself may be under question. If you care about distribution (free or selling) you will
need to address these issues.

The first stage once you have collected you data is check its encoding. Make sure
its all the same encoding. Also check its reasonable. For example the Europal data is
nice and clean (as conditioned for Machine Translation models) but the punctuation
has been separated from the words. You may want to to de-htmlify your data before
passing it to the selection routines.

Once you have a set of nice relatively clean data, you use the first stage of the script.
This finds the word frequencies of all the tokens in the text data.

$FESTVOXDIR/src/promptselect/make_nice_promptsfind_freq TEXT0 TEXT1TEXT2

89

Chapter 9. Corpus development

Give all the text files as arguments to this script. The working files will be created in
the current directory, but the text file arguments may be pathnames.

The next stage is to build a Festival lexicon for themost frequent words. By defaultwe
select the top 5000 words, which has proven a reasonable choice. You can optionally
override the 5000 with an argument.

$FESTVOXDIR/src/promptselect/make_nice_prompts make_freq_lex

The next stage processes each sentence in the large text database to find those utter-
ances that are "nice". That of reasonable length, has only words in the frequency lex-
icon, no strange punctuation, capitals at the beginning, and punctuation at the end,
and a few other heuristic rule conditions. These seem toworkwell for the Latin-script
languages (though it is possible the conditions are overly strict for some languages).

Although Festival’s text front end is used for processing the text, you do not need
to build any language specific text front end (at least not normally). Finding nice
prompts is considered one of the very first parts of buildings support for a new lan-
guage, so we are aware that there will be almost no resources available for the target
language yet.

Because this process is using Festival’s front end, it is not fast, as it needs to process
thewhole text database. It is not unusual for this to take a number of hours to process.
While processing "nice" utterances are written to data_nice.data. You should check
this regularly in case there is some inappropriate condition in the rules and you are
getting the wrong type of data.

$FESTVOXDIR/src/promptselect/make_nice_prompts find_nice TEXT0 TEXT1 ...

Note this will only search for the first 100,000 nice utterances, from the data set, you
can change the number in the script if you want more (or less).

Once the "nice" utterances are found you can now find those nice utterances that have
the best phonetic coverage. There are two mechanism available here. Because this is
often the very first stage in building support for a new language, no lexicon and pho-
netics are available, thus selecting based on phonetic is not an option. Therefore we
provide a simpler technique that selections based on letter coverage (in fact di-letter
coverage). This is often a reasonable solution, but it will depend on the language
whether this is reasonable solution or not. Note that for English, in spite of its some-
what poor relationship between orthography and pronunciation, this is reasonable,
so don’t exclude this as a possibility without trying it.

Letter selection will find the subset of the nice utterances that has the best letter cov-
erage. It is a greedy algorithm, but this is usually sufficient. This process also takes a
number to define the number of utterances it is looking for. The process will be ap-
plied multiple times to the remaining data until that number is reached. If there isn’t
enough data to select from it might loop for ever. By default it looks for 1000 utter-
ance, which is not unreasonable for a unit selection voices, 500 is probably sufficient
for a CLUSTERGEN voice. But, as they say, your mileage may vary.

$FESTVOXDIR/src/promptselect/make_nice_prompts select_letter_n

If you do have a pronunciation lexicon for you language, you can also do select based
on segments rather than letters. We have not done exhaustive comparisons of how
valuable segment selection is over letter selection. It is clear that although probably
important, it is probably less important that selecting a good voice talent, or recording
the prompts in a high quality manner. Two stages are required for segment selection.
The first stage is to render the nice prompts from words to segments

90

Chapter 9. Corpus development

$FESTVOXDIR/src/promptselect/make_nice_prompts synth_seg

Then greedily select the utterances with the best di-phone coverage.

$FESTVOXDIR/src/promptselect/make_nice_prompts select_seg

We do not yet support select_seg_n.

After selection the nice prompts will me in data.done.data. Look at it. Do not ex-
pect it to be perfect. I have never done this for a new language, without having to do
it multiple times until I get something reasonable. Even once you have the result, it is
worth while checking each utterance and correcting and/or rejecting it for other rea-
sons, such as ungrammatical, hard to read, ambiguous words etc. Be bold and get rid
of weird sentences, it will save you trouble later. The selection process is deliberately
designed to have redundancy as speech is a variable medium and we can never be
sure what exact the voice talent will say, or how the unit selection process will select
the units from the database.

It is wise to first go through every sentence and attempt to record it and at that time
decide if the sentence is actually a reasonable utterance to include in the prompt set
for that language.

The final stage extracts the vocabulary of the selected prompt set. You can use this
vocab list to start building your pronunciation lexicon as you will need that to build
your speech databases (unless you are using an orthography based selection tech-
nique).

$FESTVOXDIR/src/promptselect/make_nice_prompts find_vocab

You can also do the whole process with the command

$FESTVOXDIR/src/promptselect/make_nice_prompts do_all TEXT0 TEXT1 ...

As really the find_nice stage takes up about 98% of processing time, redoing the
other parts each time isn’t unreasonable.

Non-Latin-script languages
For non-Latin-script languages there are options that seem to work well, if the lan-
guage has spaces between words. We have used this quite extensively for UTF-8 en-
coded languages (Arabic and Hindi). For these language use

$FESTVOXDIR/src/promptselect/make_nice_prompts select_seg
$FESTVOXDIR/src/promptselect/make_nice_prompts find_freq_asis TEXT0 TEXT1 ...
$FESTVOXDIR/src/promptselect/make_nice_prompts make_freq_lex
$FESTVOXDIR/src/promptselect/make_nice_prompts find_nice_asis TEXT0 TEXT1 ...
$FESTVOXDIR/src/promptselect/make_nice_prompts select_letter_n
$FESTVOXDIR/src/promptselect/make_nice_prompts find_vocab_asis

You can also do the whole process with the command

$FESTVOXDIR/src/promptselect/make_nice_prompts do_all_asis TEXT0 TEXT1 ...

For languages that do not have spaces between the words (Chinese, Japanese, Thai
etc), the above techniques will not work. We have used the above techniques for
Chinese, by first segmenting the data into words.

91

Chapter 9. Corpus development

92

Chapter 10. Waveform Synthesis

This part of the book discusses the techniques required to actually create the speech
waveform from a complete phonetic and prosodic description.

Traditionally we can identify four different methods that are used for creating wave-
forms from such descriptions.

Articulatory synthesis is a method where the human vocal tract, tongue, lips, etc are
modeled in a computer. This method can produce very natural sounding samples of
speech but at present it requires too much computational power to be used in pratical
systems.

Formant synthesis is a technique where the speech signal is broken down into iverlap-
ping parts, such as formats (hence the name), voicing, asperation, nasality etc. The
output of individual generators are then composed from streams of parameters de-
scribing the each sub-part of the speech. With carefully tuned parameters the quality
of the speech can be close to that of natural speech, showing that this encoiding is
sufficient to represent human speech. However automatic prediction of these param-
eters is harder and the typical quality of synthesizers based on this technology can
be very understandable but still have a distinct no-human or robotic quality. Format
synthesizers are best typified MITalk, the work of Dennis Klatt, and what was later
commercialised as DECTalk. DECTalk is at present probably the most familar form
of speech synthesis to the world. Dr Stephen Hawkins, Lucindian Professor of Math-
ematics at Cambridge University, has lost the use of his voice and uses a formant
synthesizer for his speech.

Concatenative synthesis is the third form which we will spend the some time on. Here
waveforms are created by concatenating parts of natural speech recording from hu-
mans.

Statistical parametric synthesis is the fourth form which we will also spend some one.
Here waveforms are created by building generative models by "average" data from
natural speech recordings from humans.

In the search for more natural synthesis there has been a move to use recorded hu-
man speech rather than techniques to construct it from its fundamental parts. The
potential for using recorded speech has in some sense been made possible by the
increase in power of computer and storage media. Format synthesizers require a rel-
atively small amount of data but concatenative speech synthesizer typically require
much more disk space to contain the inventory of speech sounds. And more recently
the size databases used has grown further as there is some relationhip between voice
quality and database size.

The techniques described here and the following chapters are concerned solely of
concatenative synthesis. Concatenative synthesis techniques not only give the most
natural sounding speech synthesis, it also is the most accessible to the general user
in that it is quite easy for us to record speech and the technique used here to analyse
it are, to the most part, automatic.

The area of concatenative systems can be viewed as a complex continunium, as there
are many choices in selecting unit type, size etc. We have included examples and
techniques from the most conservative (i.e. most likely to work) to the forefront of
the art of voice building. It is important to understand the space of possible syn-
thesis techniques in order to select the best one for your particular application. The
resources required to develop each of the basic types of concatenative synthesizers
varies greatly. It is possible to get a general speech synthesizer working in English
in under an hour, though its quality isn’t very good (though can be understandable).
At the other extreme, in the area of speech synthesis we have yet to develop a sys-
tem that is both natural and flexible to satisfy all synthesis requirements so the task
of building a voice may take a lifetime. However the following chapter outline tech-
niques which can be completed by an interest person in as little a day or at most a
week which can produce high, natural sounding voices suitable for a wide range of
computer speech applications.

93

Chapter 10. Waveform Synthesis

In order for synthesis of any piece of text we need to have examples of every unit
in the language to be synthesized. At some extreme this would mean you’d need
recordings of every sentence (or even paragraph) of everything that needs to be said.
This of course is impractical and defeats the whole purpose of a having a synthe-
sizer. Thus we need to make some simplifying assumptions. The simplest (and most
extreme) is to assume that speech is made of up strings of discrete phonemes. US En-
glish has (by one definiton) 43 different phonemes. That is the fundamental sounds
in the language, thus the word, "bit" is made up of three phones /B/ /IH/ and /T/.
The word "beat" however is made up of the phonemes /B/ /IY/ and /T/.

In the following chapter we consider the absolute simplest waveform synthesizer
that consists of recording each phone int he language and the resequencing them to
form new words. Although this is a easy and quick synthesizer to build it is immedi-
ately obvious that it is not of very good quality. The reason being thate human speech
just doesn’t consist of isloated phonemes concatenated to gether but that there are
articulatory effects that cross over multiple phones (co-articulation). Thus the more
practical technique is to build a diphone synthesizer where we record each phoneme
in the context of each other phoneme.

However speech is more varied than that although we can modify the selected di-
phones to obtain the desired prosody, such modification is not as good as if it were
actual spoken by a human. Thus the area of general unit selection synthesis has grown
where the datbases we select from has many more examples of speech, in more con-
texts and not just one example of each phoneme-phoneme transition in the language.
The size and design of a databases most suitable for unit selection is difficult and we
discuss this in the following chapter. The techniques required to find the most ap-
prorpiate unit, taking into account, phonetic context, word position, phrase position
as well prosodic context is important but finding the right palance of these features
is still something of an art. In Chapter 12 we present a number techniques and exper-
iments to build such synthesizers.

Although unit selection synthesizer clear offer the best quality synthesis, their
databases are substantial piece of work. They must be preoperly labeled and
although we include automatic alignment techniques there will always be mistakes
and hand correction is certainly both desirable and worthwhile. But that takes
time and certain skills to do. When the unit selection is bad due to bad labels
inappropriate weight of features or just simply not enough good examples int he
dtaabase to choose from the quality can be serverely worse than diphones so the
work in tuning a unit selection synthesizer is as much avoiding the bad examples as
improving the good ones. The third chapter on waveform syntehsizers offers a
very rpactical compramise between diphone (safe) synthesizers and unit selection
(exciting) synthesizers. In Chapter 5 on limited domain synthesis, we discuss how to
target your recorded database to a particular application and get the benefits of the
high quality of unit selection synthesis without the requirement of very carefully
labeled databases. In many case this thrid option is the most practical.

Of course it is possible to combine approaches. This requries more care in the design
but sometimes offers the best of all techniques. Having a targeted limited domain
synthesizer which can cover most of the desired language will be good but falling
back on good unit selection synthesizer for unknown words may be a real posibility.

Key choices:
size, type, prosodic modification, number of occurrences
Key positions in the space
uniphones, diphones
unit selection, limited domain vs open

Need diagram for space of synthesizers

94

Chapter 11. Diphone databases

This chapter describes the processes involved in designing, listing recording, and
using a diphone database for a language.

Diphone introduction
The basic idea behind building diphone databases is to explicitly list all possible
phone-phone transitions in a language. This makes the incorrect but practical and
simplifying assumption that co-articulatory effects never go over more than two
phones. The exact definition of phone here is in general nontrivial, and what a "stan-
dard" phone set should be is not uncontroversial -- various allophonic variations,
such as light and dark /l/, may also be included. Unlike generalized unit selection
where multiple occurrences of phones may exists with various distinguishing fea-
tures, in a diphone database only one occurrence of each diphone is recorded. This
makes selection much easier but also makes for a large laborious collection task.

In general, the number of diphones in a language is the square of the number of
phones. However, in natural human languages, there are phonotactic constraints --
some phone-phone pairs, even whole classes of phones-phone combinations, may
not occur at all. These gaps are common in the world’s languages. The exact defi-
nition of never exist is also problematic. Humans can often generate those so-called
non-existent diphones if they try, and one must always think about phone pairs that
cross over word boundaries as well, but even then, certain combinations cannot ex-
ist; for example, /hh/ /ng/ in English is probably impossible (we would probably
insert a schwa). /ng/ may really only appears after the vowel in a syllable (in coda
position); however, in other languages it can appear in syllable-initial position. /hh/
cannot appear at the end of a syllable, though sometimes it may be pronouncedwhen
trying to add aspiration to open vowels.

Diphone synthesis, and more generally any concatenative synthesis method, makes
an absolutely fixed choice about which units exist, and in circumstances where some-
thing else is required, a mapping is necessary. When humans are given a context
where an unusual phone is desired, for example in a foreign word, they will (often)
attempt to produce it even though it falls outside their basic phonetic vocabulary.
The articulatory system is flexible enough to produce (or attempt to produce) unfa-
miliar phones, as we all share the same underlying physical structures. Concatena-
tive synthesizers, however, have a fixed inventory, and cannot reasonably be made
to produce anything outside their pre-defined vocabulary. Formant and articulatory
synthesizers have the advantage here. This is a basic trade off, concatenative synthe-
sizers typically produce much more natural synthesis than formants synthesizer but
at the cost of being only able to produce those phones defined within their inventory.

Since we wish to build voices for arbitrary text-to-speech systems which may include
unusual phones, some mapping, typically at the lexical level, can be used to ensure
all the required diphones lie within the recorded inventory. The resulting voice will
therefore be limited, and unusual phones will lie outside its range. This inmany cases
is acceptable though if the voice is specifically to be used for pronouncing Scottish
place names it would be advisable to include the /X/ phone as in "loch".

In addition to the base phones, various allophonic variations may also be considered.
Flapping, as when the /t/ becoming a /dx/ in the word "butter" is an example of an
allophonic variation reduction which occurs naturally in American English, and in-
cluding flaps in the phone set makes the synthetic speech more natural. Stressed and
unstressed vowels in Spanish, consonant cluster /r/ verses lone /r/ in English, inter-
syllabic diphones verses intra-syllabic ones -- variations like these are well worth
considering. Ideally, all such possible variations should be included in a diphone list,
but the more variations you include, the larger the diphone set will be -- remember
the general rule that the number of diphones is nearly the square of the number of
phones. This affects recording time, labeling time and ultimately the database size.

95

Chapter 11. Diphone databases

Duplicating all the vowels (e.g. stressed/unstressed versions) will significantly in-
crease the database size.

These inventory questions are open, and depending on the resources you are willing
or able to devote, can be extended considerably. It should be clear, however, that such
a list is simply a basic set. Alternative synthesis methods and inventories of differ-
ent unit sizes may produce better results for the amount of work (or data collected).
Demi-syllable databases and mixed inventory methods such as Hadifix [portele96]
may give better results under some conditions. Still, controlling the inventory and us-
ing acoustic measures rather than linguistic knowledge to define the space of possible
units in your inventory has also been attempted as in work like Whistler [huang97].
The most extreme view where the unit inventory is not predefined at all but based
solely on what is available in general speech databases is CHATR [campbell96].

Although generalized unit selection can producemuch better synthesis than diphone
techniques, using more units makes selecting appropriate ones more difficult. In the
basic strategy presented in this section, selection of the appropriate unit from the
diphone inventory is trivial, while in a system like CHATR, selection of the appro-
priate unit is a significantly difficult problem. (See Chapter 12 on unit selection for
more discussion of such techniques). With a harder selection task, it is more likely
that mistakes will be made, which in unit selection can give some selections which
are much worse worse that diphones, even though other examples may be better.

Defining a diphone list
Since diphones need to be cleanly articulated, various techniques have been pro-
posed to elicit them from subjects. One technique is to use target words embedded
carrier sentences to ensure that the diphones are pronounced with acceptable dura-
tion and prosody (i.e. consistently). We have typically used nonsense words that it-
erate through all possible combinations; the advantage of this is that you don’t need
to search for natural examples that have the desired diphone, the list can be more
easily checked and the presentation is less prone to pronunciation errors than if real
words were presented. The words look unnatural but collecting all diphones in not a
particularly natural thing to do. See [isard86] or [stella83] for some more discussion
on the use of nonsense words for collecting diphones.

For best results, we believe the words should be pronounced with consistent vocal
effort, with as little prosodic variation as possible. In fact pronouncing them in a
monotone is ideal. Our nonsense words consist of a simple carrier form with the di-
phones (where appropriate) being taken from a middle syllable. Except where schwa
and syllabic consonants are involved that syllable should normally be a full stressed
one.

Some example code is given in src/diphone/darpaschema.scm. The basic idea is to
define classes of diphones, for example: vowel consonant, consonant vowel, vowel
vowel and consonant consonant. Then define carrier contexts for these and list the
cases. Here we use Festival’s Scheme interpreter to generate the list though any
scripting language is suitable. Our intention is that the diphone will come from a
middle syllable of the nonsense word so it is fully articulated and minimize the artic-
ulatory effects at the start and end of the word.

For example to generate all vowel vowel diphone we define a carrier

(set! vv-carrier ’((pau t aa t) (t aa pau)))

And we define a simple function that will enumerate all vowel vowel transitions

(define (list-vvs)
(apply
append
(mapcar

96

Chapter 11. Diphone databases

(lambda (v1)
(mapcar
(lambda (v2)
(list
(string-append v1 "-" v2)
(append (car vv-carrier) (list v1 v2) (car (cdr vv-carrier)))))

vowels))
vowels)))

For those of you who aren’t used to reading Lisp this simple lists all possible com-
binations or in some potentially more readable format (in an imaginary language)

for v1 in vowels
for v2 in vowels
print pau t aa t $v1 $v2 t aa pau

The actual Lisp code returns a list of diphone names and phone string. To be more
efficient, the DARPAbet example produces consonant-vowel and vowel-consonant
diphones in the same nonsense word, which reduces the number of words to be spo-
ken quite significantly. Your voice talent will appreciate this.

Although the idea seems simple to begin with, simply listing all contexts and pairs,
there are other constraints. Some consonants can only appear in the onset of a syllable
(before the vowel), and others are restricted to the coda.

While one can collect all the diphones without considering where they fall in a sylla-
ble, it often makes sense to collect diphones in different syllabic contexts. Consonant
clusters are the obvious next set to consider; thus the example DARPAbet schema
includes simple consonant clusters with explicit syllable boundaries. We also include
syllabic consonants though these may be harder to pronounce in all contexts. You can
add other phenomena too, but this is at the cost of not only making the list longer
(and making it take longer to record), but making it harder to produce. You must
consider how easy it is for your voice talent to pronounce them, and how consistent
they can be about it. For example, not all American speakers produce flaps (/dx/)
in all of the same contexts (and some may produce them even when you ask them
not to), and its quite difficult for some to pronounce them, which can lead to produc-
tion/transcription mismatches.

A second and related problem is language interference, which can cause phoneme
crossover. Because of the prevalence of English, especially in electronic text, how
many "foreign" phone should be considered for addition? For example, should /w/
be include for German speakers, (maybe), /t-i/ for Japanese (probably) or both /b/
and /v/ for Spanish speakers ("B de burro / V de vaca"). This problem is made diffi-
cult by the fact that the people you are recording will often be fluent or nearly fluent
in English, and hence already have reasonably ability in phones that are not in their
native language. If you are unfamiliar with the phone set and constraints on a lan-
guage, it pays off considerably to either ask someone (like a linguist!) who knows
the language analytically (not just by intuition), to check the literature, or to do some
research.

To the degree that they are expected to appear, regardless of their status in the target
language per se, foreign phones should be considered for the inventory. Remem-
ber that in most languages, nowadays, making no attempt to accommodate foreign
phones is considered ignorant at least and possibly even arrogant.

Ultimately, when more complex forms are needed, extending the "diphone" set be-
comes prohibitive and has diminishing returns. Obviously there are phonetic dif-
ferences between onset and coda positions, co-articulatory effects which go over
more then one phone, stress differences, intonational accent differences, and phrase-
positional difference to name but a few. Explicitly enumerating all of these, or even
deciding the relative importance of each, is a difficult research question, and arguably

97

Chapter 11. Diphone databases

shouldn’t be done in an abstract, linguistically generated fashion from a strict inter-
pretation of the language. Identifying these potential differences and finding an in-
ventory which takes into account the actual distinctions a speaker makes is far more
productive and is the fundamental part of many new research directions in concate-
native speech synthesis. (See the discussion in the introduction above).

However you choose to construct the diphone list, and whatever examples you
choose to include, the the tools and scripts included with this document require that
it be in a particular format.

Each line should contain a file id, a prompt, and a diphone name (or list of names if
more than one diphone is being extracted from that file). The file id is used to in the
filename for the waveform, label file, and any other parameters files associated with
the nonsense word. We usually make this distinct for the particular speaker we are
going to record, e.g. their initials and possibly the language they are speaking.

The prompt is presented to the speaker at recording time, and here it contains a string
of the phones in the nonsense word from which the diphones will be extracted. For
example the following is taken from the DARPAbet-generated list

(uk_0001 "pau t aa b aa b aa pau" ("b-aa" "aa-b"))
(uk_0002 "pau t aa p aa p aa pau" ("p-aa" "aa-p"))
(uk_0003 "pau t aa d aa d aa pau" ("d-aa" "aa-d"))
(uk_0004 "pau t aa t aa t aa pau" ("t-aa" "aa-t"))
(uk_0005 "pau t aa g aa g aa pau" ("g-aa" "aa-g"))
(uk_0006 "pau t aa k aa k aa pau" ("k-aa" "aa-k"))
...
(uk_0601 "pau t aa t ey aa t aa pau" ("ey-aa"))
(uk_0602 "pau t aa t ey ae t aa pau" ("ey-ae"))
(uk_0603 "pau t aa t ey ah t aa pau" ("ey-ah"))
(uk_0604 "pau t aa t ey ao t aa pau" ("ey-ao"))
...
(uk_0748 "pau t aa p - r aa t aa pau" ("p-r"))
(uk_0749 "pau t aa p - w aa t aa pau" ("p-w"))
(uk_0750 "pau t aa p - y aa t aa pau" ("p-y"))
(uk_0751 "pau t aa p - m aa t aa pau" ("p-m"))
...

Note the explicit syllable boundary marking - for the consonant-consonant di-
phones is used to distinguish them from the consonant cluster examples that appear
later.

Synthesizing prompts
To help keep pronunciation consistent we suggest synthesizing prompts and playing
them to your voice talent at collection time. This helps the speaker in two ways --
if they mimic the prompt they are more likely to keep a fixed prosodic style; it also
reduces the number of errors where the speaker vocalizes the wrong diphone. Of
course for new languages where a set of diphones doesn’t already exist, producing
prompts is not easy, however giving approximations with diphone sets from other
languagesmaywork. The problem then is that in producing prompts from a different
phone set, the speaker is likely to mimic the prompts hence the diphone set will
probably seem to have a foreign pronunciation, especially for vowels. Furthermore,
mimicing the synthesizer too closely can remove some of the speaker’s natural voice
quality, which is under their (possibly subconscious) control to some degree.

Even when synthesizing prompts from an existing diphone set, you must be aware
that that diphone set may contain errors or that certain examples will not be syn-
thesized appropriately (e.g. consonant clusters). Because of this, it is still worthwhile
monitoring the speaker to ensure they say things correctly.

The basic code for generating the prompts is in src/diphone/diphlist.scm,
and a specific example for DARPA phone set for American English in

98

Chapter 11. Diphone databases

src/diphone/us_schema.scm. The prompts can be generated from the diphone list
as described above (or at the same time). The example code produces the prompts
and phone labels files which can be used by the aligning tool described below.

Before synthesizing, the function Diphone_Prompt_Setup is called, if it has been de-
fined. You should define this to set up the appropriate voices in Festival, as well
as any other initialization you might need -- for example, setting the fundamental
frequency (F0) for the prompts that are to be delivered in a monotone (disregard-
ing so-called microprosody, which is another matter). This value is set through the
variable FP_F0 and should be near the middle of the range for the speaker, or at least
somewhere comfortable to deliver. For the DARPAbet diphone list for KAL, we have:

(define (Diphone_Prompt_Setup)
"(Diphone_Prompt_Setup)
Called before synthesizing the prompt waveforms. Uses the kal_dphone
voice for prompting and sets F0."
(voice_kal_diphone) ;; US male voice
(set! FP_F0 90) ;; lower F0 than ked
)

If the function Diphone_Prompt_Word is defined, it will be called after the basic
prompt-word utterance has been created, and before the actual waveform synthesis.
This may be used to map phones to other phones, set durations or whatever you feel
appropriate for your speaker/diphone set. For the KAL set, we redefined the syl-
labic consonants to their full consonant forms in the prompts, since the ked diphone
database doesn’t actually include syllabics. Also, in the example below, instead of
using fixed (100ms) durations we make the diphones use a constant scaling factor
(here, 1.2) times the average duration of the phones.

(define (Diphone_Prompt_Word utt)
"(Diphone_Prompt_Word utt)
Specify specific modifications of the utterance before synthesis
specific to this particular phone set."
;; No syllabics in kal so flip them to non-syllabic form
(mapcar
(lambda (s)
(let ((n (item.name s)))
(cond
((string-equal n "el")
(item.set_name s "l"))
((string-equal n "em")
(item.set_name s "m"))
((string-equal n "en")
(item.set_name s "n")))))

(utt.relation.items utt ’Segment))
(set! phoneme_durations kd_durs)
(Parameter.set ’Duration_Stretch ’1.2)
(Duration_Averages utt))

By convention, the prompt waveforms are saved in prompt-wav/, and their labels in
prompt-lab/. The prompts may be generated after the diphone list is given using
the following command:

festival festvox/us_schema.scm festvox/diphlist.scm
festival> (diphone-gen-schema "us" "etc/usdiph.list")

If you already have a diphone list schema generated in the file etc/usdiphlist, you
can do the following

99

Chapter 11. Diphone databases

festival festvox/us_schema.scm festvox/diphlist.scm
festival> (diphone-gen-waves "prompt-wav" "prompt-lab" "etc/usdiph.list")

Another useful example of the setup functions is to generate prompts for a language
for which no synthesizer exists yet -- to "bootstrap" from one language to another. A
simple mapping can be given between the target phoneset and an existing synthe-
sizer’s phone set. We don’t know if this will be sufficient to actually use as prompts,
but we have found that it is suitable to use these prompts for automatic alignment.

The example here is using the voice_kal_diphone speaker, a US English
speaker, to produce prompts for japanese phone set, this code is in
src/diphones/ja_schema.scm

The function Diphone_Prompt_Setup calls the kal (US) voice, sets a suitable F0 value,
and sets the option diph_do_db_boundaries to nil. This option allows the diphone
boundaries to be dumped into the prompt label files, but this doesn’t work when
cross-language prompting is done, as the actual phones don’t match the desired ones.

(define (Diphone_Prompt_Setup)
"(Diphone_Prompt_Setup)
Called before synthesizing the prompt waveforms. Cross language prompts
from US male (for gaijin male)."
(voice_kal_diphone) ;; US male voice
(set! FP_F0 90)
(set! diph_do_db_boundaries nil) ;; cross-lang confuses this
)

At synthesis time, each Japanese phone must be mapped to an equivalent (one or
more) US phone. This is done though a simple table. set in nhg2radio_map which
gives the closest phone or phones for the Japanese phone (those unlisted remain the
same).

Our mapping table looks like this

(set! nhg2radio_map
’((a aa)

(i iy)
(o ow)
(u uw)
(e eh)
(ts t s)
(N n)
(h hh)
(Qk k)
(Qg g)
(Qd d)
(Qt t)
(Qts t s)
(Qch t ch)
(Qj jh)
(j jh)
(Qs s)
(Qsh sh)
(Qz z)
(Qp p)
(Qb b)
(Qky k y)
(Qshy sh y)
(Qchy ch y)
(Qpy p y))
(ky k y)
(gy g y)
(jy jh y)

100

Chapter 11. Diphone databases

(chy ch y)
(shy sh y)
(hy hh y)
(py p y)
(by b y)
(my m y)
(ny n y)
(ry r y)))

Phones that are not explicitly mentioned map to themselves (e.g. most of the conso-
nants).

Finally we define Diphone_Prompt_Word to actually do the mapping. Where the
mapping involves more than one US phone we add an extra segment to the Seg-
ment (defined in the Festival manual) relation and split the duration equally between
them. The basic function looks like

(define (Diphone_Prompt_Word utt)
"(Diphone_Prompt_Word utt)
Specify specific modifications of the utterance before synthesis
specific to this particular phone set."
(mapcar
(lambda (s)
(let ((n (item.name s))
(newn (cdr (assoc_string (item.name s) nhg2radio_map))))
(cond

((cdr newn) ;; its a dual one
(let ((newi (item.insert s (list (car (cdr newn))) ’after)))
(item.set_feat newi "end" (item.feat s "end"))
(item.set_feat s "end"
(/ (+ (item.feat s "segment_start")
(item.feat s "end"))

2))
(item.set_name s (car newn))))

(newn
(item.set_name s (car newn)))
(t
;; as is
))))
(utt.relation.items utt ’Segment))
utt)

The label file produced from this will have the original desired language phones,
while the acoustic waveform will actually consist of phones in the target language.
Although this may seem like cheating, we have found this to work for Korean and
Japanese from English, and is likely to work over many other language combination
pairs. For autolabeling as the nonse word phone names are pre-defined alignment
just needs to be the best matching path and as long as the phones are distinctive from
the ones around them this alignment method is likely to work.

Recording the diphones
The object of recording diphones is to get as uniform a set of pronunciations as possi-
ble. Your speaker should be relaxed, not be suffering for a cold, or cough, or a hang-
over. If something goes wrong with the recording and some of the examples need
to be re-recorded it is important that the speaker has as similar a voice as with the
original recording, waiting for another cold to come along is not reasonable, (though
some may argue that the same hangover can easily be induced). Also to try to keep
the voice potentially repeatable it is wise to record at the same time of day, morning
is a good idea. The points on speaker selection and recording in the previous section
should also be borne in mind.

101

Chapter 11. Diphone databases

The recording environment should be reconstructable, so that the conditions can be
set up again if needed. Everything should be aswell-defined as possible, as far as gain
settings, microphone distances, and so on. Anechoic chambers are best, but general
recording studios will do. We’ve even done recording in an open room, with care this
works (make sure there’s little background noise from computers, air conditioning,
outside traffic etc). Of course open rooms aren’t ideal but they are better than open
noisey rooms.

The distance between the speaker and the microphone is crucial. A head mounted
mike helps keep this constant; the Shure SM-2 headset, for instance, works well with
the mic positioned at 8mm from the lips or so. This can be checked with a ruler.
Considering the cost and availability of headmounted microphones and rulers, you
should really consider using them. While even fixed microphones like the Shure SM-
57 can be used well by professional voice talent, we strongly recommend a good
headset mic.

Ultimately, you need to split the recordings into individual files, one for each prompt.
Ideally this can be done while recording on a file-by-file basis, but as that may not
be practical and some other technique can be used, such as recording onto DAT and
transferring the data to disk (and downsampling) later. Files might contain 50-100
nonsense words each. In this case we hand label the words, taking into account any
duplicates caused be errors in the recording. The program ch_wave in the Edinburgh
Speech Tools (EST) offers a function to split a large file into individual files based on a
label file. We can use this to get our individual files. You may also add an identifiable
noise during recording and automatically detect that as a split point, as is often done
at the Oregon Graduate Instititute.. They typically use two different noises that can
easily be distinguished and use one for “OK” and “BAD” this can make the splitting
of the files into the individual nonsense words easier. Note you will also need to split
the electroglottograph (EGG) signal exactly the same way, if you are using one.

No matter how you split these, you should be aware that there will still often be
mistakes, and checking by listening will help.

We now almost always record directly to disk on a computer using a sound card;
see the Section called Recording under Unix in Chapter 4 for recording setup details.
There can be a reduction in the quality of the recording due to poor quality audio
hardware in computers (and often too much noise), though at least the hardware
issue is getting to be less of a problem these days. There are lots of advantages to
recordingdirectly to disk, as the stage of digitising, transfering and spliting the offline
records is laborious and prone to error.

Labeling the diphones
Labeling nonsense words is much easier than labeling continuous speech, whether
it is by hand or automatically. With nonsense words, it is completely defined which
phones are there and they are (hopefully) clearly articulated.

We have had significant experience in hand labeling diphones, and with the right
tools it can be done fairly quickly (e.g. 20 hours for 2500 nonsense words) even if it
is a mind-numbing exercise which your voice talent may offer you little sympathy
for after you’ve made them babble for hours in a box with electrodes on their throat
(optional). But labeling can’t realistically be done for more than an hour or two at
any one time. As a minimum, the start of the preceding phone to the first phone
in the diphone, the changeover, and the end of the second phone in the diphone
should be labeled. Note we recommend phone boundary labeling as that is much
better defined than phone middle marking. The diphone will, by default be extracted
from the middle of phone one to the middle of phone two.

Your data set conventions may include the labeling of closures within stops explicitly.
Thus you would expect the label tcl at the end of the silence part of a /t/ and a
label t after the burst. This way the diphone boundary can automatically be placed
within the silence part of the stop. The label DB can be used when explicit diphone

102

Chapter 11. Diphone databases

boundaries are desireable; this is useful within phones such as diphthongs where the
temporal middle need not be the most stable part.

Another place when specific diphone boundaries are recommended is in the phone-
to-silence diphones. The phones at the end of words are typically longer than word
internal phones, and tend to trail off in energy. Thus the midpoint of a phone immedi-
ately before a silence typically has much less energy than the midpoint of a word in-
ternal phone. Thus, when a diphone is to be concatenated to a phone-silence diphone,
there would be a big jump in energy (as well as other related spectral characteristics).
Our solution to this is explicitly label a diphone boundary near the beginning of the
phone before the silence (about 20% in) where the energy is much closer to what it
will be in the diphone that will precede it.

If you are using explicit closures, it is worth noting that stops at the start of words
don’t seem to have a closure part; however it is a good idea to actually label one
anyway, if you are doing this by hand. Just "steal" a suitable short piece of silence
from the preceding part of the waveform.

Because the words will often have very varying amounts of silence around them, it
is a good idea to label multiple silences around the word, so that the silence immedi-
ately before the first phone is about 200-300ms, and labeling the silence before that as
another phone; likewise with the final silence. Also, as the final phone before the end
silence may trail off, we recommend that the end of the last phone come at the very
end of any signal thus appear to include silence within it. Then label the real silence
(200-300ms) after it. The reason for this is if the end silence happens to include some
part of the spoken signal, and if this is duplicated, as is the case when duration is
elongated, an audible buzz can be introduced.

Because labeling of diphone nonsense words is such a constrained task we have in-
cluded a program for automatically providing a labeling for the spoken prompts.
This requires that prompts be generated for the diphone database. The aligner uses
those prompts to do the aligning. Though its not actually necessary that the prompts
were used as prompts they do need to be generated for this alignment process. This is
not the only means for alignment; you may also, for instance, use a speech recognizer,
such as CMU Sphinx, to segment (align) the data.

The idea behind the aligner is to take the prompt and the spoken form and derive
mel-scale cepstral parameterizations (and their deltas) of the files. Then a DTW (dy-
namic time warping) algorithm is used to find the best alignment between these two
sets of features. Then the prompt label file is used to index through the alignment
to give a label file for the spoken nonsense word. This is largely based on the tech-
niques described in [malfrere97], though this general technique has been used for
many years.

We have tested this aligner on a number of existing hand-labeled databases to
compare the quality of the alignments with respect to the hand labeling. We have
also tested aligning prompts generated from a language different from that being
recorded. To do this there needs to be reasonable mapping between the language
phonesets.

Here are results for automatically finding labels for the ked (US English) by aligning
them against prompts generated by three different voices

ked itself

mean error 14.77ms stddev 17.08

mwm (US English)

mean error 27.23ms stddev 28.95

gsw (UK English)

mean error 25.25ms stddev 23.923

103

Chapter 11. Diphone databases

Note that gsw actually gives better results than mwm, even though it is a different
dialect of English. We built three diphone index files from each of the label sets gen-
erated from there alignment processes. ked-to-ked was the best, and only marginally
worse that the databasemade from the manually produced labels. The database from
mwmand gsw produced labels were a little worse but not unacceptably so. Consider-
ing a significant amount of careful corrections were made to the manually produced
labels, these automatically produced labels are still significantly better than the first
pass of hand labels.

A further experiment was made across languages; the ked diphones were used as
prompts to align a set of Korean diphones. Even though there are a number of phones
in Korean not present in English (various forms of aspirated consonants), the results
are quite usable.

Whether you use hand labeling or automatic alignment, it is always worthwhile do-
ing some hand-correction after the basic database is built. Mistakes (sometimes sys-
tematic) always occur and listening to substantial subset of the diphones (or them all
if you resynthesize the nonsense words) is definitely worth the time in finding bad
diphones. The diva is in the details.

The script festvox/src/diphones/make_labs will process a set of prompts and
their spoken (recorded) form generating a set of label files, to the best of its ability.
The script expects the following to already exist

prompt-wav/

The waveforms as synthesized by Festival

prompt-lab/

The label files corresponding to the synthesized prompts in prompt-wav.

prompt-cep/

The directory where the cepstral feature streams for each prompt will be saved.

wav/

The directory holding the nonsense words spoken by your voice talent. The
should have the same file id as the waveforms in prompt-wav/.

cep/

The directory where the cepstral feature streams for the recorded material will
be saved.

lab/

The directory where the generated label files for the spoke words in wav/will be
saved.

To run the script over the prompt waveforms

bin/make_labs prompt-wav/*.wav

The script is written so it may be use used in parallel on multiple machines if you
want to distribute the process. On a Pentium Pro 200MHz,which you probablywon’t
be able to find any more, a 2000 word diphone databases can be labeled in about 30
minutes. Most of that time is in generating the cepstrum coefficients. This is down to
a few minutes at most on a dual Pentium III 550.

Once the nonsense words have been labeled, you need to build a diphone index.
The index identifies which diphone comes from which files, and from where.
This can be automatically built from the label files (mostly). The Festival script
festvox/src/diphones/make_diph_index will take the diphone list (as used
above), find the occurrence of each diphone in the label files, and build an index.

104

Chapter 11. Diphone databases

The index consists of a simple header, followed by a single line for each diphone: the
diphone name, the fileid, start time, mid-point (i.e. the phone boundary) and end
time. The times are given in seconds (note that early versions of Festival, using a
different diphone synthesizer module, used milliseconds for this. If you have such
an old version of Festival, it’s time to update it).

An example from the start of a diphone index file is

EST_File index
DataType ascii
NumEntries 1610
IndexName ked2_diphone
EST_Header_End
y-aw kd1_002 0.435 0.500 0.560
y-ao kd1_003 0.400 0.450 0.510
y-uw kd1_004 0.345 0.400 0.435
y-aa kd1_005 0.255 0.310 0.365
y-ey kd1_006 0.245 0.310 0.370
y-ay kd1_008 0.250 0.320 0.380
y-oy kd1_009 0.260 0.310 0.370
y-ow kd1_010 0.245 0.300 0.345
y-uh kd1_011 0.240 0.300 0.330
y-ih kd1_012 0.240 0.290 0.320
y-eh kd1_013 0.245 0.310 0.345
y-ah kd1_014 0.305 0.350 0.395
...

Note the number of entries field must be correct; if it is too small it will (often
confusingly) ignore the entries after that point.

This file can be created with a diphone list file and the lab files in by the command

$FESTVOXDIR/src/diphones/make_diph_index etc/usdiph.list dic/kaldiph.est

You should check that this has successfully found all the named diphones. When
an diphone is not found in a label file, an entry with zeroes for the start, middle, and
end is generated, which will produce a warning when being used in Festival, but it
is worth checking in advance.

The make_diph_index program will take the midpoint between phone boundaries
for the diphone boundary, unless otherwise specified with the label DB. It will also
automatically remove underscores and dollar symbols from the diphone names be-
fore searching for the diphone in the label file, and it will only find the first occurrence
of the diphone.

Extracting the pitchmarks
Festival, in its publically distributed form, currently only supports residual excited
Linear-Predictive Coding (LPC) resynthesis [hunt89]. It does support PSOLA
[moulines90], though this is not distributed in the public version. Both of these
techniques are pitch synchronous, that is there require information about where pitch
periods occur in the acoustic signal. Where possible, it is better to record with an
electroglottograph (EGG, also known as a laryngograph) at the same time as the
voice signal. The EGG records electrical activity in the glottis during speech, which
makes it easier to get the pitch moments, and so they can be more precisely found.

Although extracting pitch periods from the EGG signal is not trivial, it is fairly
straightforward in practice, as The Edinburgh Speech Tools include a program
pitchmark which will process the EGG signal giving a set of pitchmarks. However
it is not fully automatic and requires someone to look at the result and make some
decisions to change parameters that may improve the result.

105

Chapter 11. Diphone databases

The first major issue in processing the signal is deciding which way is up. From our
experience, we have seen the signal inverted in some cases and it is necessary to iden-
tify the direction in order for the rest of the processing to work properly. In general
we’ve found the CSTR’s LAR output is upside down while OGI’s and CMU’s output
is the right way up, though this can even flip from file to file. If you find inverted
signals, you should add -inv to the arguments to pitchmark.

The object is to produce a single mark at the peak of each pitch period and "fake"
or "phantom" periods during unvoiced regions. The basic command we have found
that works for us is

pitchmark lar/file001.lar -o pm/file001.pm -otype est \
-min 0.005 -max 0.012 -fill -def 0.01 -wave_end

It is worth doing one or two by hand and confirming that a reasonable pitch
periods are found. Note that the -min and -max arguments are speaker-dependent.
This can be moved towards the fixed F0 point used in the prompts, though
remember the speaker will not have been exactly constant. The script
festvox/src/general/make_pm can be copied and modified (for the particular
pitch range) and run to generate the pitchmarks

bin/make_pm lar/*.lar

If you don’t have an EGG signal for your diphones, the alternative is to extract the
pitch periods using some other signal processing function. Finding the pitch peri-
ods is similar to finding the F0 contour and, although harder than finding it from
the EGG signal, with clean laboratory-recorded speech, such as diphones, it is possi-
ble. The following script is a modification of the make_pm script above for extracting
pitchmarks from a rawwaveform signal. It is not as good as extracting from the EGG
file, but it works. It is more computationally intensive, as it requires rather high order
filters. The value should change depending on the speaker’s pitch range.

for i in $*
do
fname=‘basename $i .wav‘
echo $i
$ESTDIR/bin/ch_wave -scaleN 0.9 $i -F 16000 -o /tmp/tmp$$.wav
$ESTDIR/bin/pitchmark /tmp/tmp$$.wav -o pm/$fname.pm \

-otype est -min 0.005 -max 0.012 -fill -def 0.01 \
-wave_end -lx_lf 200 -lx_lo 71 -lx_hf 80 -lx_ho 71 -med_o 0

done

If you are extracting pitch periods automatically, it is worth taking more care to
check the signal. We have found that recording consistency and bad pitch extraction
the two most common causes of poor quality synthesis.

See the Section called Extracting pitchmarks from waveforms in Chapter 4 for a more
detailed discussion on how to do this.

Building LPC parameters
Currently the only publically distributed signal processing method in Festival is
residual excited LPC. To use this, you must extract LPC parameters and LPC residual
files for each file in the diphone database. Ideally, the LPC analysis should be done
pitch-synchronously, thus requiring that pitch marks are created before the LPC anal-
ysis takes place.

A script suitable for generating the LPC coefficients and residuals is given in
festvox/src/general/make_lpc and is repeated here.

106

Chapter 11. Diphone databases

for i in $*
do
fname=‘basename $i .wav‘
echo $i

Potential normalise the power
#$ESTDIR/bin/ch_wave -scaleN 0.5 $i -o /tmp/tmp$$.wav
resampling can be done now too
#$ESTDIR/bin/ch_wave -F 11025 $i -o /tmp/tmp$$.wav
Or use as is
cp -p $i /tmp/tmp$$.wav
$ESTDIR/bin/sig2fv /tmp/tmp$$.wav -o lpc/$fname.lpc \

-otype est -lpc_order 16 -coefs "lpc" \
-pm pm/$fname.pm -preemph 0.95 -factor 3 \
-window_type hamming

$ESTDIR/bin/sigfilter /tmp/tmp$$.wav -o lpc/$fname.res \
-otype nist -lpcfilter lpc/$fname.lpc -inv_filter

rm /tmp/tmp$$.wav
done

Note the (optional) use of ch_wave to attempt to normalize the power in thewave to
a percentage of its maximum. This is a very crude method for making the waveforms
have a reasonably equivalent power. Wildly different power fluctuations in power
between segments is likely to be noticed when they are joined. Differing power in the
nonsense wordsmay occur if not enough care has been taking in the recording. Either
the settings on the recording equipment have been changed (bad) or the speaker has
changed their vocal effort (worse). It is important that this should be avoided as the
above normalization does not make the problem of different power go away it only
makes the problem slightly less bad.

A more elaborate power normaliziation has been successful, but it is a little harder,
though it was definitely successful for the KED US American voice that had major
power fluctuations over different recording sesssions. The idea is to find the power
during vowels in each nonsense word, then find the mean power for each vowel
overall files. Then, for each file, find the average factor difference for each actual
vowel with the mean for that vowel and scale the waveform according to that value.
We now provided a basic script which does this

bin/find_powerfacts lab/*.lab

This script creates (among others) etc/powfacts which if it exists, is used to nor-
malize the power of each waveform file during the making of the LPC coefficients.

We generate a set of ch_wave commands that extract the parts of the wave from that
are vowels (using -start and -end options, make the output be in ascii -otype raw
-ostype ascii and use a simple script to calculate the RMS power. We then calcu-
late the mean power for each vowel with another awk script using the result as a
table, then finally we process the fileid, actual vowel power information to generate
a power factor to by averaging the ration of each vowel’s actual power to the mean
power for that vowel. You may wish to still modify the power further after this if it
is too low or high.

Note that power normalization is intended to remove artifacts caused by different
recording environment, i.e. the person moved from the microphone, the levels were
changed etc. they should not modify the intrinsic power differences in the phones
themselves. The above techniques try to preserve the intrinsic power, which is why
we take the average over all vowels in a nonsense word, though you should listen to
the results and make the ultimate decision yourself.

If all has been recorded properly, of course, individual power modification should be
unnecessary. Once again, we can’t stress enough how important it is to have good
and consistent recording conditions, so as to avoid steps like this.

107

Chapter 11. Diphone databases

If you want to generate a database using a different sampling rate than the recordings
were made with, this is the time to resample. For example an 8KHz or 11.025KHz
will be smaller than a 16KHz database. If the eventual voice is to be played over the
telephone, for example, there is little point in generating anything but 8Khz. Also it
will be faster to synthesize 8Khz utterances than 16Khz ones.

The number of LPC coefficients used to represent each pitch period can be changed
depending on sample rate you choose. Hearsay, reasonable experience, and perhaps
some theoretical underpining, suggests the following formula for calculating the or-
der

(sample_rate/1000)+2

But that should only be taken as a rough guide though a larger sample rate deserves
a greater number of coeeficients.

Defining a diphone voice
The easiest way to define a voice is to start from the skeleton scheme files distributed.
For English voices see Chapter 21, and for non-English voices see Chapter 20 for de-
tailed walkthroughs.

Although in many cases you’ll want to modify these files (sometimes quite substan-
tially), the basic skeleton files will give you a good grounding, and they follow some
basic conventions of voice files that will make it easier to integrate your voice into
the Festival system.

Checking and correcting diphones
This probably sounds like we’re repeating ourselves here, and we are, because it’s
quite important for the overall quality of the voice: once you have the basic di-
phone database working it is worthwhile systematically testing it as it is common
to have mistakes. These may be mislabeling, and mispronunciation for the phones
themselves. Two possible strategies are possible for testing both of which have their
advantages. This first is a simple exhaustive synthesis of all diphones. Ideally, the
diphone prompts are exactly the set of utterances that test each and every diphone.
using the SayPhones function you can synthesize and listen to each prompt. Actu-
ally, for a first pass, it may even be useful to synthesize each nonsense word without
listening as some of the problems missing files, missing diphones, badly extracted
pitchmarks will show up without you having to listen to at all.

When a problem occurs, trace back why, check the entry in the diphone index, then
check the label for the nonsense word, then check how that label matches the actually
waveform file itself (display the waveform with the label file and spectrogram to see
if the label is correct).

Listing all the problems that could occur is impossible. What you need to do is break
down the problem and find out where it might be occurring. If you just get apparent
garbage being synthesized, take a look at the synthesized waveform

(set! utt1 (SayPhones ’(pau hh ah l ow pau)))
(utt.save.wave utt1 "hello.wav")

Is it garbage, can you recognized any part of it? It could be a byte swap problem or a
format problem for your files. Can your nonsense word file be played and displayed
as is? Can your LPC residual files be played and displayed. Residual files should
look like very low powered waveform files and sound very buzzy when played but
almost recognizable if you know what is being said (sort of like Kenny from South
Park).

108

Chapter 11. Diphone databases

If you can recognize some of what is being said but it is fairly uniformly garbled it is
possible your pitchmarks are not being aligned properly. Use some display mech-
anism to see where the pitchmarks are. These should be aligned (during voiced
speech) with the peaks in the signal.

If all is well except for some parts of the signal are bad or overflowed, then check the
diphone where the errors occur.

There are a number of solutions to problems that may save you some time, for the
most part they should be considered cheating, but they may save having to re-record,
which is something that you will probably want to avoid if at all possible.

Note that some phones are very similar, particular the left half side of most stops are
indistinguishable, as the consist of mostly silence. Thus if you find you didn’t get
a good SOMETHING-p diphone you can easily make it use the SOMETHING-b diphone
instead. You can do this by hand editing the diphone index file accordingly.

The linguists among you may not find that acceptable, but you can go further, the
burst part of /p/ and /b/ isn’t that different when it comes down to it and if is it just
one or two diphones you can simply map those too. Considering problems are often
in one or two badly articulated phones replace a /p/ with a /b/ (or similar) in one
or two diphones may not be that bad.

Once, however, the problems become systematic over a number of phones
re-recording them should be considered. Though remember if you do have to
re-record you want to have as similar an environment as possible which is not
always easy. Eventually you may need to re-record the whole database again.

Recording diphone databases is not an exact science, although we have a fair amount
of experience in recording these databases, they never completely go as planned.
Some apparently minor problem often occurs, noise on the channel, slightly different
power over two sessions. Even when everything seems the same and we can’t iden-
tify any difference between two recording environments we have found that some
voices are better than others for building diphone databases. We can’t immediately
say why, we discussed some of these issues above in selecting a speaker but there is
still some other parameters which we can’t identify so don’t be disheartened when
you database isn’t as good as you hoped, ours sometimes fail too.

Diphone check list
The section contains a quick check list of the processes required to constructing a
working diphone database. Each part is discussed in detail above.

• Choose phoneset: Find an appropriate phoneset for the language, if possible using
an existing standard. If you already have a good lexicon in the desired language,
we recommend that you use that phone set.

• Construct diphone list: Construct the diphone list with appropriate carrier words.
Either using an existing list or generating one from the examples. Consider what
allophones, consonant clusters, etc., you also wish to record.

• Synthesize prompts: Synthesize prompts from an existing voice, if possible. Even
when a few phones are missing from that voice it can still be useful to have the
speaker listen to prompts as it keeps then focussed on minimal prosody and nor-
malized vocal effort as well as reminding them what they need to say.

• Record words: Record the words in the best possible conditions you can. Bad
recordings can never be corrected later. Ideally, you would use an anechoic cham-
ber with voice from close talking mike and larynograph channels.

• Hand label/align phones: If you used prompts you can probably use the provided
aligner to get a reasonable first pass at the phone labels. Alternatively, find a dif-
ferent aligner, or do it by hand.

109

Chapter 11. Diphone databases

• Extract pitchmarks: Extract the pitchmarks from the recorded signal, either from
the EGG signal, or by the more complicated approach of extracting them from the
speech signal itself.

• Build parameter files: If you don’t have PSOLA, extract the LPC parameters and
residuals from the speech signal, with power normalization if you feel its neces-
sary.

• Build database itself: Build the diphone index, correcting any obvious labeling er-
rors then test the database itself. Running significant tests to correct any further
labeling errors.

• Test and check database: Systematically check the database by synthesizing the
prompts again and synthesizing general text.

110

Chapter 12. Unit selection databases

This chapter discusses some of the options for building waveform synthesizers us-
ing unit selection techniques in Festival. This is still very much an on-going research
question and we are still adding new techniques as well as improving existing ones
often so the techniques described here are not as mature as the techniques as de-
scribed in previous diphone chapter.

By "unit selection" we actually mean the selection of some unit of speech which may
be anything from whole phrase down to diphone (or even smaller). Technically di-
phone selection is a simple case of this. However typically what we mean is unlike
diphone selection, in unit selection there is more than one example of the unit and
some mechanism is used to select between them at run-time.

ATR’s CHATR [hunt96] system and earlier work at that lab [nuutalk92] is an ex-
cellent example of one particular method for selecting between multiple examples
of a phone within a database. For a discussion of why a more generalized inven-
tory of units is desired see [campbell96] though we will reiterate some of the points
here. With diphones a fixed view of the possible space of speech units has been made
whichwe all know is not ideal. There are articulatory effectswhich go overmore than
one phone, e.g. /s/ can take on artifacts of the roundness of the following vowel even
over an intermediate stop, e.g. “spout” vs “spit”. But its not just obvious segmental
effects that cause variation in pronunciation, syllable position, word/phrase initial
and final position have typically a different level of articulation from segments taken
fromword internal position. Stressing and accents also cause differences. Rather than
try to explicitly list the desired inventory of all these phenomena and then have to
record all of them a potential alternative is to take a natural distribution of speech
and (semi-)automatically find the distinctions that actually exist rather predefining
them.

The theory is obvious but the design of such systems and finding the appropriate
selection criteria, weighting the costs of relative candidates is a non-trivial problem.
However techniques like this often produce very high quality, very natural sounding
synthesis. However they also can produce some very bad synthesis too, when the
database has unexpected holes and/or the selection costs fail.

Two forms of unit selection will discussed here, not because we feel they are the
best but simply because they are the ones actually implemented by us and hence
can be distributed. These should still be considered research systems. Unless you are
specifically interested or have the expertise in developing new selection techniques it
is not recommended that you try these, if you need a working voice within a month
and can’t afford to miss that deadline then the diphone option is safe, well tried
and stable. In you need higher quality and know something about what you need to
say, then we recommend the limited domain techniques discussed in the following
chapter. The limited domain synthesis offers the high quality of unit selection but
avoids much (all ?) of the bad selections.

Cluster unit selection
This is a reimplementation of the techniques as described in [black97c]. The idea is
to take a database of general speech and try to cluster each phone type into groups
of acoustically similar units based on the (non-acoustic) information available at syn-
thesis time, such as phonetic context, prosodic features (F0 and duration) and higher
level features such as stressing, word position, and accents. The actually features
used may easily be changed and experimented with as can the definition of the defi-
nition of acoustic distance between the units in a cluster.

In some sense this work builds on the results of both the CHATR selection algorithm
[hunt96] and the work of [donovan95], but differs in some important and significant
ways. Specifically in contrast to [hunt96] this cluster algorithm pre-builds CART trees
to select the appropriate cluster of candidate phones thus avoiding the computation-

111

Chapter 12. Unit selection databases

ally expensive function of calculating target costs (through linear regression) at se-
lection time. Secondly because the clusters are built directly from the acoustic scores
and target features, a target estimation function isn’t required removing the need to
calculate weights for each feature. This cluster method differs from the clustering
method in [donovan95] in that it can use more generalized features in clustering and
uses a different acoustic cost function (Donovan uses HMMs), also his work is based
on sub-phonetic units (HMM states). Also Donovan selects one candidate while here
we select a group of candidates and finds the best overall selection by finding the
best path through each set of candidates for each target phone, in a manner similar
to [hunt96] and [iwahashi93] before.

The basic processes involved in building a waveform synthesizer for the clustering
algorithm are as follows. A high level walkthrough of the scripts to run is given after
these lower level details.

• Collect the database of general speech.

• Building utterance structures for your database using the techniques discussed in
the Section called Utterance building in Chapter 3.

• Building coefficients for acoustic distances, typically some form of cepstrum plus
F0, or some pitch synchronous analysis (e.g. LPC).

• Build distances tables, precalculating the acoustic distance between each unit of
the same phone type.

• Dump selection features (phone context, prosodic, positional and whatever) for
each unit type.

• Build cluster trees using wagon with the features and acoustic distances dumped
by the previous two stages

• Building the voice description itself

Choosing the right unit type
before you start you must make a decision about what unit type you are going
to use. Note there are two dimensions here. First is size, such as phone, diphone,
demi-syllable. The second type itself which may be simple phone, phone plus stress,
phone plus word etc. The code here and the related files basically assume unit size is
phone. However because you may also include a percentage of the previous unit in
the acoustic distance measure this unit size is more effectively phone plus previous
phone, thus it is somewhat diphone like. The cluster method has actual restrictions
on the unit size, it simply clusters the given acoustic units with the given feature, but
the basic synthesis code is currently assuming phone sized units.

The second dimension, type, is very open and we expect that controlling this will be
a good method to attained high quality general unit selection synthesis. The param-
eter clunit_name_feat may be used define the unit type. The simplest conceptual
example is the one used in the limited domain synthesis. There we distinguish each
phone with the word it comes from, thus a d from the word limited is distinct from
the d in the word domain. Such distinctions can hard partition up the space of phones
into types that can be more manageable.

The decision of how to carve up that space depends largely on the intended use
of the database. The more distinctions you make less you depend on the clustering
acoustic distance, but themore you depend on your labels (and the speech) being (ab-
solutely) correct. The mechanism to define the unit type is through a (typically) user
defined feature function. In the given setup scripts this feature function will be called
lisp_INST_LANG_NAME::clunit_name. Thus the voice simply defines the function
INST_LANG_NAME::clunit_name to return the unit type for the given segment. If you
wanted to make a diphone unit selection voice this function could simply be

112

Chapter 12. Unit selection databases

(define (INST_LANG_NAME::clunit_name i)
(string_append
(item.name i)
"_"
(item.feat i "p.name")))

This the unittype would be the phone plus its previous phone. Note that the first
part of a unit name is assumed to be the phone name in various parts of the code
thus although you make think it would be neater to return previousphone_phone
that would mess up some other parts of the code.

In the limited domain case the word is attached to the phone. You can also consider
some demi-syllable information or more to differentiate between different instances
of the same phone.

The important thing to remember is that at synthesis time the same function is called
to identify the unittype which is used to select the appropriate cluster tree to select
from. Thus you need to ensure that if you use say diphones that the your database
really does not have all diphones in it.

Collecting databases for unit selection
Unlike diphone database which are carefully constructed to ensure specific cover-
age, one of the advantages of unit selection is that a much more general database is
desired. However, although voices may be built from existing data not specifically
gathered for synthesis there are still factors about the data that will help make better
synthesis.

Like diphone databases the more cleanly and carefully the speech is recorded the
better the synthesized voice will be. As we are going to be selecting units from dif-
ferent parts of the database the more similar the recordings are, the less likely bad
joins will occur. However unlike diphones database, prosodic variation is probably a
good thing, as it is those variations that can make synthesis from unit selection sound
more natural. Good phonetic coverage is also useful, at least phone coverage if not
complete diphone coverage. Also synthesis using these techniques seems to retain
aspects of the original database. If the database is broadcast news stories, the syn-
thesis from it will typically sound like read news stories (or more importantly will
sound best when it is reading news stories).

Although it is too early to make definitive statements about what size and type of
data is best for unit selection we do have some rough guides. A Timit like database
of 460 phonetically balanced sentences (around 14,000 phones) is not an unreason-
able first choice. If the text has not been specifically selected for phonetic coverage a
larger database is probably required, for example the Boston University Radio News
Corpus speaker f2b [ostendorf95] has been used relatively successfully. Of course all
this depends on what use you wish to make of the synthesizer, if its to be used in
more restrictive environments (as is often the case) tailoring the database for the task
is a very good idea. If you are going to be reading a lot of telephone numbers, having
a significant number of examples of read numbers will make synthesis of numbers
sound much better (see the following chapter on making such design more explicit).

The database used as an example here is a TIMIT 460 sentence database read by an
American male speaker.

Again the notes about recording the database apply, though it will sometimes be the
case that the database is already recorded and beyond your control, in that case you
will always have something legitimate to blame for poor quality synthesis.

113

Chapter 12. Unit selection databases

Preliminaries
Throughout our discussion we will assume the following database layout. It is highly
recommended that you follow this format otherwise scripts, and examples will fail.
There are many ways to organize databases and many of such choices are arbitrary,
here is our "arbitrary" layout.

The basic database directory should contain the following directories

bin/

Any database specific scripts for processing. Typically this first contains a copy
of standard scripts that are then customized when necessary to the particular
database

wav/

The waveform files. These should be headered, one utterances per file with a
standard name convention. They should have the extension .wav and the fileid
consistent with all other files through the database (labels, utterances, pitch
marks etc).

lab/

The segmental labels. This is usually the master label files, these may
contain more information that the labels used by festival which will be in
festival/relations/Segment/.

lar/

The EGG files (larynograph files) if collected.

pm/

Pitchmark files as generated from the lar files or from the signal directly.

festival/

Festival specific label files.

festival/relations/

The processed labeled files for building Festival utterances, held in direc-
tories whose name reflects the relation they represent: Segment/, Word/,
Syllable/ etc.

festival/utts/

The utterances files as generated from the festival/relations/ label files.

Other directories will be created for various processing reasons.

Building utterance structures for unit selection
In order to make access well defined you need to construct Festival utterance struc-
tures for each of the utterances in your database. This (in is basic form) requires labels
for: segments, syllables, words, phrases, F0 Targets, and intonation events. Ideally
these should all be carefully hand labeled but in most cases that’s impractical. There
are ways to automatically obtain most of these labels but you should be aware of the
inherit errors in the labeling system you use (including labeling systems that involve
human labelers). Note that when a unit selection method is to be used that funda-
mentally uses segment boundaries its quality is going to be ultimately determined
by the quality of the segmental labels in the databases.

114

Chapter 12. Unit selection databases

For the unit selection algorithm described below the segmental labels should be
using the same phoneset as used in the actual synthesis voice. However a more
detailed phonetic labeling may be more useful (e.g. marking closures in stops)
mapping that information back to the phone labels before actual use. Autoaligned
databases typically aren’t accurate enough for use in unit selection. Most
autoaligners are built using speech recognition technology where actual phone
boundaries are not the primary measure of success. General speech recognition
systems primarily measure words correct (or more usefully semantically correct)
and do not require phone boundaries to be accurate. If the database is to be used for
unit selection it is very important that the phone boundaries are accurate. Having
said this though, we have successfully used the aligner described in the diphone
chapter above to label general utterance where we knew which phone string we
were looking for, using such an aligner may be a useful first pass, but the result
should always be checked by hand.

It has been suggested that aligning techniques and unit selection training techniques
can be used to judge the accuracy of the labels and basically exclude any segments
that appear to fall outside the typical range for the segment type. Thus it, is believed
that unit selection algorithms should be able to deal with a certain amount of noise in
the labeling. This is the desire for researchers in the field, but we are some way from
that and the easiest way at present to improve the quality of unit selection algorithms
at present is to ensure that segmental labeling is as accurate as possible. Once we
have a better handle on selection techniques themselves it will then be possible to
start experimenting with noisy labeling.

However it should be added that this unit selection technique (and many others)
support what is termed "optimal coupling" [conkie96] where the acoustically most
appropriate join point is found automatically at run time when two units are selected
for concatenation. This technique is inherently robust to at least a few tens of mil-
lisecond boundary labeling errors.

For the cluster method defined here it is best to construct more than simply segments,
durations and an F0 target. A whole syllabic structure plus word boundaries, intona-
tion events and phrasing allow a much richer set of features to be used for clusters.
See the Section called Utterance building in Chapter 3 for a more general discussion of
how to build utterance structures for a database.

Making cepstrum parameter files
In order to cluster similar units in a database we build an acoustic representation
of them. This is is also still a research issue but in the example here we will use
Mel cepstrum. Interestingly we do not generate these at fixed intervals, but at pitch
marks. Thus have a parametric spectral representation of each pitch period. We have
found this a better method, though it does require that pitchmarks are reasonably
identified.

Here is an example script which will generate these parameters for a database, it is
included in festvox/src/unitsel/make_mcep.

for i in $*
do
fname=‘basename $i .wav‘
echo $fname MCEP
$SIG2FV $SIG2FVPARAMS -otype est_binary $i -omcep/$fname.mcep -pmpm/$fname.pm -
window_type hamming
done

The above builds coefficients at fixed frames. We have also experimented with build-
ing parameters pitch synchronously and have found a slight improvement in the

115

Chapter 12. Unit selection databases

usefulness of the measure based on this. We do not pretend that this part is par-
ticularly neat in the system but it does work. When pitch synchronous parameters
are build the clunits module will automatically put the local F0 value in coefficient
0 at load time. This happens to be appropriate from LPC coefficients. The script in
festvox/src/general/make_lpc can be used to generate the parameters, assuming
you have already generated pitch marks.

Note the secondary advantage of using LPC coefficients is that they are required
any way for LPC resynthesis thus this allows less information about the database
to be required at run time. We have not yet tried pitch synchronous MEL frequency
cepstrum coefficients but that should be tried. Also a more general duration/number
of pitch periods match algorithm is worth defining.

Building the clusters
Cluster building is mostly automatic. Of course you need the clunitsmodules com-
piled into your version of Festival. Version 1.3.1 or later is required, the version of
clunits in 1.3.0 is buggy and incomplete and will not work. To compile in clunits,
add

ALSO_INCLUDE += clunits

to the end of your festival/config/config file, nad recompile. To check if an in-
stallation already has support for clunits check the value of the variable *modules*.

The file festvox/src/unitsel/build_clunits.scm contains the basic parameters
to build a cluster model for a databases that has utterance structures and acoustic
parameters. The function build_clunits will build the distance tables, dump
the features and build the cluster trees. There are many parameters are set for the
particular database (and instance of cluster building) through the Lisp variable
clunits_params. An reasonable set of defaults is given in that file, and reasonable
run-time parameters will be copied into festvox/INST_LANG_VOX_clunits.scm
when a new voice is setup.

The function build_clunits runs through all the steps but in order to better explain
what is going on, we will go through each step and at that time explain which pa-
rameters affect the substep.

The first stage is to load in all the utterances in the database, sort them into segment
type and name them with individual names (as TYPE_NUM. This first stage is required
for all other stages so that if you are not running build_clunits you still need to
run this stage first. This is done by the calls

(format t "Loading utterances and sorting types\n")
(set! utterances (acost:db_utts_load dt_params))
(set! unittypes (acost:find_same_types utterances))
(acost:name_units unittypes)

Though the function build_clunits_initwill do the same thing.

This uses the following parameters

name STRING

A name for this database.

db_dir FILENAME

This pathname of the database, typically . as in the current directory.

utts_dir FILENAME

The directory contain the utterances.

116

Chapter 12. Unit selection databases

utts_ext FILENAME

The file extention for the utterance files

files

The list of file ids in the database.

For example for the KED example these parameters are

(name ’ked_timit)
(db_dir "/usr/awb/data/timit/ked/")
(utts_dir "festival/utts/")
(utts_ext ".utt")
(files ("kdt_001" "kdt_002" "kdt_003" ...))

In the examples below the list of fileids is extracted from the given prompt file at
call time.

The next stage is to load the acoustic parameters and build the distance tables. The
acoustic distance between each segment of the same type is calculated and saved in
the distance table. Precalculating this saves a lot of time as the cluster will require
this number many times.

This is done by the following two function calls

(format t "Loading coefficients\n")
(acost:utts_load_coeffs utterances)
(format t "Building distance tables\n")
(acost:build_disttabs unittypes clunits_params)

The following parameters influence the behaviour.

coeffs_dir FILENAME

The directory (from db_dir) that contains the acoustic coefficients as generated
by the script make_mcep.

coeffs_ext FILENAME

The file extention for the coefficient files

get_std_per_unit

Takes the value t or nil. If t the parameters for the type of segment are normal-
ized by finding the means and standard deviations for the class are used. Thus a
meanmahalanobis euclidean distance is found between units rather than simply
a euclidean distance. The recommended value is t.

ac_left_context FLOAT

The amount of the previous unit to be included in the the distance. 1.0 means
all, 0.0 means none. This parameter may be used to make the acoustic distance
sensitive to the previous acoustic context. The recommended value is 0.8.

dur_pen_weight FLOAT

The penalty factor for duration mismatch between units.

f0_pen_weight FLOAT

The penalty factor for F0 mismatch between units.

117

Chapter 12. Unit selection databases

ac_weights (FLOAT FLOAT ...)

The weights for each parameter in the coefficeint files used while finding the
acoustic distance between segments. There must be the same number of weights
as there are parameters in the coefficient files. The first parameter is (in normal
operations) F0. Its is common to give proportionally more weight to F0 that to
each individual other parameter. The remaining parameters are typicallyMFCCs
(and possibly delta MFCCs). Finding the right parameters and weightings is one
the key goals in unit selection synthesis so its not easy to give concrete recom-
mendations. The following aren’t bad, but there may be better ones too though
we suspect that real human listening tests are probably the best way to find bet-
ter values.

An example is

(coeffs_dir "mcep/")
(coeffs_ext ".mcep")
(dur_pen_weight 0.1)
(get_stds_per_unit t)
(ac_left_context 0.8)
(ac_weights
(0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5))

The next stage is to dump the features that will be used to index the clusters. Re-
member the clusters are defined with respect to the acoustic distance between each
unit in the cluster, but they are indexed by these features. These features are those
which will be available at text-to-speech time when no acoustic information is avail-
able. Thus they include things like phonetic and prosodic context rather than spectral
information. The name features may (and probably should) be over general allowing
the decision tree building program wagon to decide which of theses feature actual
does have an acoustic distinction in the units.

The function to dump the features is

(format t "Dumping features for clustering\n")
(acost:dump_features unittypes utterances clunits_params)

The parameters which affect this function are

fests_dir FILENAME

The directory when the features will be saved (by segment type).

feats LIST

The list of features to be dumped. These are standard festival feature names with
respect to the Segment relation.

For our KED example these values are

(feats_dir "festival/feats/")
(feats

(occurid
p.name p.ph_vc p.ph_ctype
p.ph_vheight p.ph_vlng
p.ph_vfront p.ph_vrnd
p.ph_cplace p.ph_cvox

n.name n.ph_vc n.ph_ctype
n.ph_vheight n.ph_vlng
n.ph_vfront n.ph_vrnd
n.ph_cplace n.ph_cvox

segment_duration

118

Chapter 12. Unit selection databases

seg_pitch p.seg_pitch n.seg_pitch
R:SylStructure.parent.stress
seg_onsetcoda n.seg_onsetcoda p.seg_onsetcoda
R:SylStructure.parent.accented
pos_in_syl
syl_initial
syl_final
R:SylStructure.parent.syl_break
R:SylStructure.parent.R:Syllable.p.syl_break
pp.name pp.ph_vc pp.ph_ctype

pp.ph_vheight pp.ph_vlng
pp.ph_vfront pp.ph_vrnd
pp.ph_cplace pp.ph_cvox))

Now that we have the acoustic distances and the feature descriptions of each unit the
next stage is to find a relationship between those features and the acoustic distances.
This we do using the CART tree builder wagon. It will find out questions about which
features best minimize the acoustic distance between the units in that class. wagon has
many options many of which are apposite to this task though it is interesting that this
learning task is interestingly closed. That is we are trying to classify all the units in
the database, there is no test set as such. However in synthesis there will be desired
units whose feature vector didn’t exist in the training set.

The clusters are built by the following function

(format t "Building cluster trees\n")
(acost:find_clusters (mapcar car unittypes) clunits_params)

The parameters that affect the tree building process are

tree_dir FILENAME

the directory where the decision tree for each segment type will be saved

wagon_field_desc LIST

A filename of a wagon field descriptor file. This is a standard field description
(field name plus field type) that is require for wagon. An example is given in
festival/clunits/all.descwhich should be sufficient for the default feature
list, though if you change the feature list (or the values those features can take
you may need to change this file.

wagon_progname FILENAME

The pathname for the wagon CART building program. This is a string and may
also include any extra parameters you wish to give to wagon.

wagon_cluster_size INT

The minimum cluster size (the wagon -stop value).

prune_reduce INT

This number of elements in each cluster to remove in pruning. This removes
the units in the cluster that are furthest from the center. This is down within the
wagon training.

cluster_prune_limit INT

This is a post wagon build operation on the generated trees (and perhaps a more
reliably method of pruning). This defines the maximum number of units that
will be in a cluster at a tree leaf. The wagon cluster size the minimum size. This is

119

Chapter 12. Unit selection databases

usefully when there are some large numbers of some particular unit type which
cannot be differentiated. Format example silence segments without context of
nothing other silence. Another usage of this is to cause only the center example
units to be used. We have used this in building diphones databases from general
databases but making the selection features only include phonetic context fea-
tures and then restrict the number of diphones we take by making this number
5 or so.

unittype_prune_threshold INT

When making complex unit types this defines the minimal number of units of
that type required before building a tree. When doing cascaded unit selection
synthesizers its often not worth excluding large stages if there is say only one
example of a particular demi-syllable.

Note that as the distance tables can be large there is an alternative function that does
both the distance table and clustering in one, deleting the distance table immediately
after use, thus you only need enough disk space for the largest number of phones in
any type. To do this

(acost:disttabs_and_clusters unittypes clunits_params)

Removing the calls to acost:build_disttabs and acost:find_clusters.

In our KED example these have the values

(trees_dir "festival/trees/")
(wagon_field_desc "festival/clunits/all.desc")
(wagon_progname "/usr/awb/projects/speech_tools/bin/wagon")
(wagon_cluster_size 10)
(prune_reduce 0)

The final stage in building a cluster model is collect the generated trees into a single
file and dumping the unit catalogue, i.e. the list of unit names and their files and
position in them. This is done by the lisp function

(acost:collect_trees (mapcar car unittypes) clunits_params)
(format t "Saving unit catalogue\n")
(acost:save_catalogue utterances clunits_params)

The only parameter that affect this is

catalogue_dir FILENAME

the directory where the catalogue will be save (the name parameter is used to
name the file).

Be default this is

(catalogue_dir "festival/clunits/")

There are a number of parameters that are specified with a cluster voice. These are
related to the run time aspects of the cluster model. These are

120

Chapter 12. Unit selection databases

join_weights FLOATLIST

This are a set of weights, in the same format as ac_weights that are used in
optimal coupling to find the best join point between two candidate units. This is
different from ac_weights as it is likely different values are desired, particularly
increasing the F0 value (column 0).

continuity_weight FLOAT

The factor to multiply the join cost over the target cost. This is probably not very
relevant given the the target cost is merely the position from the cluster center.

log_scores 1

If specified the joins scores are converted to logs. For databases that have a
tendency to contain non-optimal joins (probably any non-limited domain
databases), this may be useful to stop failed synthesis of longer sentences. The
problem is that the sum of very large number can lead to overflow. This helps
reduce this. You could alternatively change the continuity_weight to a number
less that 1 which would also partially help. However such overflows are often a
pointer to some other problem (poor distribution of phones in the db), so this is
probably just a hack.

optimal_coupling INT

If 1 this uses optimal coupling and searches the cepstrum vectors at each join
point to find the best possible join point. This is computationally expensive (as
well as having to load in lots of cepstrum files), but does give better results. If
the value is 2 this only checks the coupling distance at the given boundary (and
doesn’t move it), this is often adequate in good databases (e.g. limited domain),
and is certainly faster.

extend_selections INT

If 1 then the selected cluster will be extended to include any unit from the cluster
of the previous segments candidate units that has correct phone type (and isn’t
already included in the current cluster). This is experimental but has shown its
worth and hence is recommended. This means that instead of selecting just units
selection is effectively selecting the beginnings of multiple segment units. This
option encourages far longer units.

pm_coeffs_dir FILENAME

The directory (from db_dirwhere the pitchmarks are

pm_coeffs_ext FILENAME

The file extension for the pitchmark files.

sig_dir FILENAME

Directory containing waveforms of the units (or residuals if Residual LPC is be-
ing used, PCM waveforms is PSOLA is being used)

sig_ext FILENAME

File extension for waveforms/residuals

join_method METHOD

Specify the method used for joining the selected units. Currently it supports
simple, a very naive joining mechanism, and windowed, where the ends of the
units are windowed using a hamming window then overlapped (no prosodic
modification takes place though). The other two possible values for this fea-
ture are none which does nothing, and modified_lpc which uses the standard
UniSyn module to modify the selected units to match the targets.

121

Chapter 12. Unit selection databases

clunits_debug 1/2

With a value of 1 some debugging information is printed during synthesis, par-
ticularly how many candidate phones are available at each stage (and any ex-
tended ones). Also where each phone is coming from is printed.

With a value of 2 more debugging information is given include the above plus
joining costs (which are very readable by humans).

Building a Unit Selection Cluster Voice
The previous section gives the low level details ofin the building of a cluster unit
selection voice. This section gives a higher level view with explict command that you
should run. The steps involved in building a unit selection voices are basically the
same as that for building a limited domain voice (Chapter 5). Though in for general
voices, in constrast to ldom voice, it is much more important to get all parts correct,
from pitchmarks to labeling.

The following tasks are required:

• Read and understand all the issues regarding the following steps

• Design the prompts

• Record the prompts

• Autolabel the prompts

• Build utterance structures for recorded utterances

• Extract pitchmark and build LPC coefficients

• Building a clunit based synthesizer from the utterances

• Testing and tuning

The following are the commands that you must type (assuming all the other
hardwork has been done beforehand. It is assume that the environment variables
FESTVOXDIR and ESTDIR have been set to point to their respective directories. For
example as

export FESTVOXDIR=/home/awb/projects/festvox
export ESTDIR=/home/awb/projects/speech_tools

Next you must select a name for the voice, by convention we use three part names
consisting of a institution name, a language, and a speaker. Make a directory of that
name and change directory into it

mkdir cmu_us_awb
cd cmu_us_awb

There is a basic set up script that will construct the directory structure and copy in
the template files for voice building. If a fourth argument is given, it can be name one
of the standard prompts list.

For example the simplest is uniphone. This contains three sentences which contain
each of the US English phonemes once (if spoken appropriately). This prompt set
is hopelessly minimal for any high quality synthesis but allows us to illustrate the
process and allow you to build a voice quickly.

122

Chapter 12. Unit selection databases

$FESTVOXDIR/src/unitsel/setup_clunits cmu us awb uniphone

Alternatively you can copy in a prompt list into the etc directory. The format of these
should be in the standard "data" format as in

(uniph_0001 "a whole joy was reaping.")
(uniph_0002 "but they’ve gone south.")
(uniph_0003 "you should fetch azure mike.")

Note the spaces after the initial left parenthesis are significant, and double quotes
and backslashes within the quote part must be escaped (with backslash) as is com-
mon in Perl or Festival itself.

The next stage is to generate waveforms to act as prompts, or timing cues even if the
prompts are not actually played. The files are also used in aligning the spoken data.

festival -b festvox/build_clunits.scm ’(build_prompts_waves "etc/uniphone.data")’

Use whatever prompt file you are intending to use. Note that you may want to add
lexical entries to festvox/WHATEVER_lexicon.scm and other text analysis things as
desired. The purpose is that the prompt filesmatch the phonemes that the voice talent
will actually say.

You may now record, assuming you have prepared the recording studio, gotten writ-
ten permission to record your speaker (and explained to them what the resulting
voice might be used for), checked recording levels and sound levels and shield the
electrical equipment as much as possible.

./bin/prompt_them etc/uniphone.data

After recording the recorded files should be in wav/. It is wise to check that the are
actually there and sound like you expected. Getting the recording quality as high as
possible is fundamental to the success of building a voice.

Now we must label the spoken prompts. We do this my matching the synthesized
prompts with the spoken ones. As we know where the phonemes begin and end in
the synthesized prompts we can then map that onto the spoken ones and find the
phoneme segments. This technique works fairly well, but it is far from perfect and it
is worthwhile to at least check the result, and most probably fix the result by hand.

./bin/make_labs prompt-wav/*.wav

Especially in the case of the uniphone synthesizer, where there is one and only
one occurrence of each phone they all must be correct so its important to check the
labels by hand. Note for large collections you may find the full Sphinx based labeling
technique better the Section called Labeling with Full Acoustic Models in Chapter 14).

After labeling we can build the utterance structure using the prompt list and the now
labeled phones and durations.

festival -b festvox/build_clunits.scm ’(build_utts "etc/uniphone.data")’

The next stages are concerned with signal analysis, specifically pitch
marking and cepstral parameter extraction. There are a number of
methods for pitch mark extraction and a number of parameters within
these files that may need tuning. Good pitch periods are important. See
the Section called Extracting pitchmarks from waveforms in Chapter 4 . In its simplest
case the follow may work

123

Chapter 12. Unit selection databases

./bin/make_pm_wave wav/*.wav

The next stage it find the Mel Frequency Cepstral Coefficents. This is done pitch syn-
chronously and hence depends on the pitch periods extracted above. These are used
for clustering and for join measurements.

./bin/make_mcep wav/*.wav

Nowwe can do the main part of the build, building the cluster unit selection synthe-
sizer. This consists of a number os stages all based on the controlling Festival script.
The parameters of which are described above.

festival -b festvox/build_clunits.scm ’(build_clunits "etc/uniphone.data")’

For large databases this can take some time to run as there is a squared aspect to this
based on the number of instances of each unit type.

Diphones from general databases
As touched on above the choice of an inventory of units can be viewed as a line from
a small inventory phones, to diphones, triphones to arbitrary units. Though the direc-
tion you come from influences the selection of the units from the database. CHATR
[campbell96] lies firmly at the "arbitrary units" end of the spectrum. Although it can
exclude bad units from its inventory it is very much “everything minus some” view of
the world. Microsoft’s Whistler [huang97] on the other hand, starts off with a gen-
eral database base but selects typical units from it. Thus its inventory is substantially
smaller than the full general database the units are extracted from. At the other end
of the spectrum we have the fixed pre-specified inventory like diphone synthesis as
has bee described in the previous chapter.

In this section we’ll give some examples of moving along the line from the fixed pre-
specified inventory to the words the more general inventories but these techniques
still have a strong component of prespecification.

Firstly lets us assume you have a general database that is labeled with utterances
as described above. We can extract a standard diphone database from this general
database, however unless the database was specifically designed, a general database
is unlikely to have diphone coverage. Even when phonetically rich databases are
used such as Timit there is likely to be very few vowel-vowel diphones as they are
comparatively rare. But as these diphone are rarewe may be able to dowith out them
and hence it is at least an interesting exercise to extract an as complete as possible
diphone index from a general database.

The simplest method is to linearly search for all phone-phone pairs in the phone
set through all utterances simply taking the first example. Some same code is given
in src/diphone/make_diphs_index.scm. This basic idea is to load in all the utter-
ances in a database, and index each segment by is phone name and succeeding phone
name. Then various selection techniques can be use to select from the multiple can-
didates of each diphone (or you can split the indexing further). After selection a di-
phone index file can be saved.

The utterances to load are identified by a list of fileids. For example if the list of fileids
(without parenthesis) is in the file etc/fileids, the following will builds a diphone
index.

festival .../make_diphs_utts.scm
...

124

Chapter 12. Unit selection databases

festival> (set! fileids (load "etc/fileids" t))
...
festival> (make_diphone_index fileids "dic/f2bdiph.est")

Note that as this diphone index will contain a number of holes you will need to
either augment it with “similar” diphones or process your diphone selections through
UniSyn_module_hooks as described in the previous chapter.

As you complicate the selection, and the number of diphones you used from the
database you will need to complicate the names used to identify the diphones them-
selves. The convention of using underscores for syllable internal consonant clusters
and dollars for syllable initial consonants can be followed, but you will need to go
further if you wish to start introducing new feature such as phrase finality and stress.
Eventually going to a generalized naming scheme (type and number) as used by
the cluster selection technique described above, will prove worth while. Also us-
ing CART trees, through hand written and fully deterministic (one candidate at the
leafs), will be a reasonable algorithm to select between hand stipulated alternatives
with reasonable backoff strategies.

Another potential direction is to use the acoustic costs used in the clustering methods
described in the previous section. These can be used to identify what the most typical
unit in a cluster are (the mean distances from all other units are given in the leafs).
Pruning these trees until the cluster only contain a single example should help to
improve synthesis, in that variation in the feature in the "diphone" index will then be
determined by the features specified in the cluster train algorithm. Of course though
as you limit the number of distinct units types the more prosodic modification will
be required by your signal processing algorithm, which requires that you have good
pitch marks.

If you already have an existing database but don’t wish to go to full unit selection,
such techniques are probably quite feasible and worth further investigation.

125

Chapter 12. Unit selection databases

126

Chapter 13. Statistical Parametric Synthesis

Building a CLUSTERGEN Statistical Parametric Synthesizer
This method, inspired the work of Keiichi Tokuda and NITECH’s HMM Speech
Synthesis Toolkit, is a method for building statistical parametric synthesizers from
databases of natural speech. Although the result is still not as crisp as a well done
unit selection voice, this method is much easier to get a nice clear synthetic voice that
models the original speaker well.

Although this method is partially "tagged on to" the clunits method, it is actually
quite independent. The tasks are as follows.

• Read and understand all the issues regarding the following steps

• Set up the directory structure

• Record or import the prompts and prompt list

• Label the data with the HMM-state sized segments

• Build utterance structures for recorded utterances

• Extract F0, voicing and mcep coefficients.

• Build a CLUSTERGEN voice

• Build an HMM-state duration model

• Testing

We assume you have read the rest of this chapter (though, in reality, we know you
probably haven’t), thus the descriptions here are quite minimal.

First make an empty directory and in it run the setup_cg setup command.

mkdir cmu_us_awb_arctic
cd cmu_us_awb_arctic
$FESTVOXDIR/src/clustergen/setup_cg cmu us awb_arctic

In you already have an existing voice running setup_cgwill only copy in the neces-
sary files for clustergen, however I recommend starting from scratch as I don’t know
when you created your previous voice and I’m not sure of its exact state.

Now you need to get your waveform files and prompt file. Put your waveform files
in the wav/ and your prompt file in etc/txt.done.data. Note you should probably
use bin/get_wavs to copy the wavefiles so that they get power normalized and get
changed to a reasonable format (16KHz, 16bit, RIFF format).

In you are going to record them in your current directory, you should call

./bin/do_build build_prompts_waves

first to generate example waveforms, then use

./bin/prompt_them etc/txt.done.data 1

To prompt you and record the prompts. You must check that the recording actually
works. It should generate recordings in the wav/. You can use $ESTDIR/bin/na_play
to play the waveform files. prompt_them can be stopped with ctrl-c and restarted at
the line number given as the second argument.

If you have collected the waveform files by some other process you do not need to
generate the prompt waveform files thus you just use

127

Chapter 13. Statistical Parametric Synthesis

./bin/do_build build_prompts

which will generate the prompt utterances (which are used to find the expected
phones), but more the prompt waveforms.

The next stage is to label the data. If you aren’t very knowledgeable about labeling
in clustergen, you should use the EHMM labeler. EHMM constructs the labels in the
right format for segments and HMM states. and matches them properly with what
the synthesizer generates for the prompts. Using other labels is likely to cause more
problems. Even if you already have other labels use EHMM first.

./bin/do_build build_prompts

./bin/do_build label

./bin/do_build build_utts

The EHMM labeler has been shown to be very reliable, and can nicely deal with
silence insertion. It isn’t very fast though and will take several hours. You can check
the file ehmm/mod/log100.txt to see the Baum-Welch iterations, there will probably
be 20-30. The ARCTIC a-set takes about 3-4 hours to label.

Parametric synthesis require a reversible parameterization, this set up here uses a
form of mel cepstrum, the same version that is used by NITECH’s basic HTS build.
Parameter build is in two parts building the F0 and building the mceps themselves.
Then these are combined into a single parameter file for each utterance in the
database.

./bin/do_clustergen f0

./bin/do_clustergen mcep

./bin/do_clustergen voicing

./bin/do_clustergen combine_coeffs_v

Themcep part takes the longest. Note that the F0 part now tries to estimate the range
of the F0 on the speaker and modifies parameters for the F0 extraction program. (The
F0 params are saved in etc/f0.params.)

If youwant to have a test set of utterances, you can separate out some of your prompt
list. The test set should be put in the file etc/txt.done.data.test The follow com-
mands will make a training and test set (every 10th prompt in the test set, the other 9
in the training set).

./bin/traintest etc/txt.done.data
cat etc/txt.done.data.train >etc/txt.done.data

The next stage is to generate is to build the parametric model. There parts are re-
quired for this. This first is very quick and simply puts the state (and phone) names
into their respective files. It assumes a file etc/statenames which is generate by
EHMM. The second stage build the parametric models itself. The last builds a dura-
tion model for the state names

./bin/do_clustergen generate_statenames

./bin/do_clustergen generate_filters

./bin/do_clustergen cluster

./bin/do_clustergen dur

The resulting voice should now work

festival festvox/cmu_us_awb_arctic_cg.scm
...
festival> (voice_cmu_us_awb_arctic_cg)

128

Chapter 13. Statistical Parametric Synthesis

...
festival> (SayText "This is a little example.")

The voice can be packaged for distribution by the command

./bin/do_clustergen festvox_dist

This will generation festvox_cmu_us_awb_arctic_cg.tar.gzwhich will be quite
small compared to a clunit voice made with the same databases. Because only the pa-
rameters are kept (in fact only means and standard deviations of clusters of of param-
eters) which do not include residual or excitation information the result is something
orders of magnitude smaller that a full unit selection voices.

There two other options in the clustergen voice build. These involve modeling tra-
jectories rather than individual vectors. They give objectively better results (though
marginal subjectively better results for the voices we have tested). Instead of the line

./bin/do_clustergen cluster

You can run

./bin/do_clustergen trajectory

or the slightly better

./bin/do_clustergen trajectory_ola

These two options may run after the simple version of the voice.

You can test your voice with held out data, if you did this in the above step that
created etc/txt.done.data.test You can run

$FESTVOXDIR/src/clustergen/cg_test resynth cgp

NOTE: This no longer works automatically, as you need static mceps and ccoefs for
this to work. This will create parameter files (and waveform files) in test/cgp. The
output of the cg_test is also four measures the mean difference for all features in the
parameter vector, for F0 alone, for all but F0, and MCD (mel ceprstral distortion).

Making it better:Mixed excitation and Random Forests
Given the base form of a clustergen voice, you can make better, both in using better
signal parameterization, and/or better machine learning techniques. There is actu-
ally a large number of options available here, many of which are experimental, and
some are dependent on the particualr voice (and the quality of the recordings) and
some are just experimental, and don’t actually making it better.

Adding parallel as the first argument to do_clustergenwill make the script us all
processors on the current machines. This will typically make builds much faster.

On important technique is mixed-excitation, this provides a better model for the ex-
citation of the spectral signal. This can be used by first generating the the mixed-
excitation strengths. You must have NITECH’s SPTK3.6 (or later) installed to do this.

export SPTKDIR=/usr/local/SPTK
./bin/do_clustergen parallel str_sptk

129

Chapter 13. Statistical Parametric Synthesis

Then you need to combine these extra (5 coefficients per frame) to the standard
combined coefficients.

./bin/do_clustergen parallel combine_coeffs_me

Then you need to set the lisp variable in festvox/clustergen.scm to use mixed
excitation

(set! cg:mixed_excitation t)

Then you can cluster the new set of parameters

./bin/do_clustergen parallel cluster etc/txt.done.data.train

You can generate an MCD for the text set with

./bin/do_clustergen cg_test resynth cgp etc/txt.done.data.test

We also support using random forests to get a better use of the limited data in a voice.
We have scripts to build random forests, by randomly varying which features to use,
for spectrum and duration prediction. We also include scripts to subselect the from
the set of models generated to find an almost optimal set. This is best shown in the
script build_cg_rfs_voice this somewhat ambitious script does a full build (with
mixed excitation, move label and random forests), as well as build flite versions of the
voice on the way.We have used this script for the released version of voices in festival
2.4 (and flite 2.0). We have used this for arctic type voices, large 20 hour voices and a
large number of other language voices, both with crafted language components and
grapheme based versions.

130

Chapter 14. Labeling Speech

In the early days of concatenative speech synthesis every recorded prompt had to be
hand labeled. Although a significant task, very skilled and mind bogglingly tedious
it was a feasible task to attempt when databases were relatively and the time to build
a voice was measure in years. With the increase in size of database and the demand
for much faster turnaround we have moved away from hand labeling to automatic
labeling.

In this section we will only touch the the aspects of whatwe need labeled in recorded
data but discuss what techniques are available for how to label it. As discussed before
phonemes are a useful but incomplete inventory of units that should be identified but
other aspects of lexical stress, prosody, allophonic variations etc are certainly worthy
of consideration.

In labeling recorded prompts for synthesis we rely heavily on the work that has been
done in the speech recognition community. For synthesis we do, however, have dif-
ferent goals. In ASR (automatic speech recognition) we are trying to find the most
likely set of phones that are in a given acoustic observation. In synthesis labeling,
however we know the sequence of phones spoken, assuming the voice talent spoke
the prompt properly, and wish to find out where those phones are in the signal. We
care, very deeply, about the boundaries of segments, while ASR can be achieve ade-
quately performance by only concerning itself with the centers, and hence has rightly
been optimized for that.

* AWB: that point deserves more discussion, though maybe not here
.

There are other distinctions from the ASR task, in synthesis labeled we are concerned
with a singled speaker, that is, if the synthesizer is going to work well, very carefully
performed and consistently recorded. This does make things easier for the labeling
task. However in synthesize labeling we are also concerned about prosody, and spec-
tral variation, much more than in ASR.

We discuss two specific techniques for labeling record prompts here, which each have
their advantages and limitations. Procedures running these are discussed at the end
of each section.

The first technique uses dynamic time warping alignment techniques to find the phone
boundaries in a recorded prompt by align it against a synthesized utterance where
the phone boundary are know. This is computationally easier than second technique
and works well for small databases which do not have full phonetic coverage.

The second technique uses Baum-Welch training to build complete ASR acoustic mod-
els from the the database. This takes sometime, but if the database is phonetically
balanced, as should be the case in databases designed for speech synthesis voices,
can work well. Also this technique can work well on databases in languages that do
not yet have a synthesizer, hence making the dynamic time warping technique hard
without cross-language phone mapping techniques.

Labeling with Dynamic Time Warping
DTW (dynamic time warping) is a technique for aligning some new recording with
some known one. This technique was used in early speech recognition systems which
had limit vocabularies as it requires a acoustic signal for each word/phrase to be
recognized. This technique is sometime still used in matching two audio signal in
command and control situations, for example in some cell-phone for voice dialing.

What is important in DTW alignment is that it can deal with signals that have vary-
ing durations. The idea has been around for many years, though its application to
labeling in synthesis is relative new. The work here is based on the detail published
in [malfrere].

131

Chapter 14. Labeling Speech

Comparing raw acoustic score is unlikely to given god results so comparisons are
done in then spectral domain. Following ASR techniques we will use Mel Frequency
Cepstral Coefficients to represent the signal, and also following ASR we will in-
clude delta MFCCs (the different between the current MFCC vector and the previous
MFCC vector). However for the DTW algorithm the content of the vectors is some-
what irrelevant, and are merely treated as vectors.

The next stage is define a distance function between two vectors, conventionally we
use Euclidean Distance defined as

root (sumof(i-n) (v0i - v1i)^2

Weights could be considered too.

The search itself is best picture as a large matrix. The algorithm then searches for
the best path through the matrix. At each node it finds the distance between the two
current vectors and sums it with the smallest of three potential previous states. That
is one of i-1,j, i,j-1, or i-1,j-1. If two signals were identical the best path would be the
diagonal through the matrix, if one part of the signal is shorter or longer than the
corresponding one horizontal or vertical parts will have less cost.

matrix diagram (more than one)

* AWB: describe the make_labs stuff and cross-language phone mapping

Labeling with Full Acoustic Models
This is old -- we recommend using the builtin HMM labeller ehmm as it is more tar-
geting towards festvox voice builds, and doesn’t require other code to be installed.

A second method for labeling is also available. Here we train full acoustic HMM
models on the recorded data. We build a database specific speech recognition en-
gine and use that engine to label the data. As this method can work from recorded
prompts plus orthography (and amethod to produce phone strings from that orthog-
raphy), this works well when you have no synthesizer to bootstrap from. However
such training requires that the database has a suitable number of examples of tri-
phones in it. Here we have an advantage. As the requirements for a speech synthesis
data, that it is has a good distribution of phonemes, is the same as that require for
acoustic modeling, a good speech synthesis databases should produce a good acous-
tic model for labeling. Although there is no neatly defined definition of what "good"
is, we can say that you probably need at least 400 utterances, and at least 15,000 seg-
ments. 400 sentences all starting with "The time is now, ..." probably wont do.

Other large database synthesis techniques use the same basic techniques to not just
label the database but define the units to be selected. [Donovan95] and others label
there data with an acoustic model build (with Baum-Welch training) and use the de-
fined HMM states (typically 3-5 per phoneme) as the units for selecting. [Tokuda9?]
actually use the state models themselves to generate the units, but again use the same
basic techniques for labeling.

For training we use Carnegie Mellon University’s SphinxTrain and Sphinx speech
recognition system. There are other accessible training systems out there, HTK be-
ing the most famous, but SphinxTrain is the one we are most familiar with, and we
have some control over its updates so can better ensure it remains appropriate for
our synthesis labeling task. As voice building is complex, acoustic model building is
similarly so. SphinxTrain has been reliably used to labeling hundreds of databases
in many different languages but making it utterly robust against unseen data is very
hard so although we have tried to minimize the chance of things going wrong (in
non-obvious ways), we will not be surprised that when you try this processing on
some new database there may be some problems.

132

Chapter 14. Labeling Speech

SphinxTrain (and sphinx) have a number of restrictions which we need to keep in
mind when labeling a set of prompts. These a re code limitations, and may be fixed
in future versions of SphinxTrain/Sphinx. For the most part the are not actually seri-
ous restrictions, just minor prompts that the setup scripts need to work around. The
scripts cater for these limitations, and mostly will all go unseen by the user, unless of
course something goes wrong.

Specifically, sphinx folds case on all phoneme names, so the scripts ensure that phone
names are distinct irrespective of upper and lower case. This is done by prepending
"CAP" in front of upper case phone names. Secondly there can only be up to 255
phones. This is likely only to be problem when SphinxTrain phones are made more
elaborate than simple phones, so mostly wont be a problem. The third noted problem
is limitation on the length and complexity of utterances. The transcript files has a line
length limit as does the lexicon. For "nice" utterances this is never a problem but for
some of our databases especially those with paragraph length utterances, the training
and/or the labeling itself fails.

Sphinx2 is a real-time speech recognition system made available under a free
software license. It is available from http://cmusphinx.org. The source is available
from http://sourceforge.net/projects/cmusphinx/. For these tests we used version
sphinx2-0.4.tar.gz. SphinxTrain is a set of programs and scripts that allow
the building of acoustic models for Sphinx2 (and Sphinx3). You can download
SphinxTrain from http://sourceforge.net/projects/cmusphinx/3. Note that Sphinx2
must be compiled and installed while SphinxTrain can run in place. On many
systems steps like these should give you working versions.

tar zxvf sphinx2-0.4.tar.gz
mkdir sphinx2-runtime
export SPHINX2DIR=‘pwd‘/sphinx2-runtime
cd sphinx2 ./configure --prefix=$SPHINX2DIR
make
make install
cd ..
tar zxvf SphinxTrain-0.9.1-beta.tar.gz
cd SphinxTrain
./configure
make
export SPHINXTRAINDIR=‘pwd‘/SphinxTrain

Now that we have sphinx2 and SphinxTrain installed we can prepare our FestVox
voice for training. Before starting the training process you must create utterance files
for each of the prompts. This can be done with the conventional festival script.

festival -b festvox/build_clunits.scm ’(build_prompts "etc/txt.done.data")’

This generates label files in prompt-lab/ and waveform files in prompt-wav/
which technically are not needed for this labeling process. Utterances are saved
in prompt-utt/. At first it was thought that the prompt file etc/txt.done.data
would be sufficient but the synthesis process is likely to resolve pronunciations in
context, though post-lexical rules etc, that would make naive conversion of the
words in the prompt list to phone lists wrong in general so the transcription for
SphinxTrain is generated from the utterances themselves which ensures that they
resulting labels can be trivially mapped back after labeling. Thus the word names
generate by in this process are somewhat arbitrary though often human readable.
The word names are the word themselves plus a number (to ensure uniqueness
in pronunciations). Only "nice" words are printed as is, i.e. those containing only
alphabetic characters, others are mapped to the word "w" with an appropriate
number following. Thus hyphenated, quoted, etc words will not cause a problem for
the SphinxTrain code.

133

Chapter 14. Labeling Speech

After the prompt utterances are generated we can setup the SphinxTrain directory
st/. All processing and output files are done within that directory until the file con-
version of labels back into the voice’s own phone set and put in lab/. Note this
process takes a long time, at least several hours and possible several days if you
have a particularly slow machine or particularly large database. Also this may re-
quire around a half a gigabyte of space.

The script ./bin/sphinxtrain does the work of converting the FestVox database
into a form suitable for SphinxTrain. In all there are 6 steps: setup, building files, con-
verting waveforms, the training itself, alignment and conversion of label files back
into FestVox format. The training stage itself consist of 11 parts and by far takes the
most time.

This script requires the environment variables SPHINXTRAINDIR and SPHINX2DIR to
be set point to compiled versions of SphinxTrain and Sphinx2 respectively, as shown
above.

The first step is to set up the sub-directory st/ where the training will take place.

./bin/sphinxtrain setup

The training database name will be taken from your etc/voice.defs, if you don’t
have one of those use

$FESTVOXDIR/src/general/guess_voice_defs

The next stage is to convert the database prompt list into a transcription file suitable
for SphinxTrain,; construct a lexicon, and phone file etc. All of the generate files will
be put in st/etc/. Note because of various limitations in Sphinx2 and SphinxTrain,
the lexicon (.dic), and transcription (.transcription)will not havewhat youmight
thing are sensible values. The word names are take from the utts if they consist of
only upper and lower case characters. A number is added to make them unique.
Also if another work exists with the same pronunciation but different word it may
be assigned a differ name fromwhat you expect. The word names in the SphinxTrain
files are only there to help debugging and are really referring to specific instances
of words in the utterance (to ensure the pronunciations are preserved with respect
to homograph disambiguation and post lexical rules. If people complain about these
being confusing I will make all words simple "w" followed by a number.

./bin/sphinxtrain files

The next stage is to generate the mfcc’s for SphinxTrain unfortunately these must be
in a different format from the mfcc’s used in FestVox, also SphinxTrain only supports
raw headered files, andNIST header files, so we copy the waveform files in wav/ into
the st/wav/ directory converting them to NIST headers

./bin/sphinxtrain feats

Nowwe can start the training itself. This consists of eleven stages each which will be
run automatically.

• Module 0 checks the basic files for training. There should be no errors at this stage
• Module 1 builds the vector quantization parameters.
• Module 2 builds context-independent phone models. This runs Baum-Welch over
the data building context-independent HMM phone models. This runs for several
passes until convergences (somewhere between 4 and 15 passes). There may be

134

Chapter 14. Labeling Speech

some errors on some files (especially long, or badly transcribed ones), but a small
number of errors here (with the identified file being "ignored" should be ok.

• Module 3 makes the untied model definition.
• Module 4 builds context dependent models.
• Module 5a builds trees for asking questions for tied-states.
• Module 5b builds trees. One for each state in eachHMM. This part takes the longest
time.

• Module 6 prunes trees.
• Module 7 retrain context dependent models with tied states.
• Module 8 deleted interpolation
• Module 9 convert the generated models to Sphinx2 format

All of the above stages should be run together with the command as

./bin/sphinxtrain train

Once trained we can use these models to align the labels against the recorded
prompts.

./bin/sphinxtrain align

Some utterances may fail to be labeled at this point, either because they are too
long, or their orthography does not match the acoustics. There is not simple solu-
tion for this at present. For some you wimple not get a label file, and you can either
label the utterance by hand, exclude if from the data, or split it into a smaller file.
Other times Sphinx2 will crash and you’ll need to remove the utterances from the
st/etc/*.align and st/etc/*.ctl and run the script ./bin/sphinx_lab by hand.

The final stage is to take the output from the alignment and convert the labels back
into their FestVox format. If everything worked to this stage, this final stage should
be uneventful.

./bin/sphinxtrain labs

There should be a set of reasonable phone labels in prompt-lab/. These can the be
merged into the original utterances with the command

festival -b festvox/build_clunits.scm ’(build_utts "etc/txt.done.data")’

Prosodic Labeling
FO, Accents, Phrases etc.

Notes
1. http://cmusphinx.org

2. http://sourceforge.net/projects/cmusphinx/

3. http://www.speech.cs.cmu.edu/SphinxTrain/

135

Chapter 14. Labeling Speech

136

Chapter 15. Evaluation and Improvements

This chapter discusses evaluation of speech synthesis voices and provides a detailed
procedure to allow diagnostic testing of new voices.

Evaluation
Now that you have built your voice, how can you tell if it works, and how can you
find out what you need to make it better. This chapter deals with some issues of eval-
uating a voice in Festival. Some of the points here also apply to testing and improving
existing voices too.

The evaluation of speech synthesis is notoriously hard. Evaluation in speech recogni-
tion was the major factor in making general speech recognition work. Rigourous tests
on well defined data made the evaluation of different techniques possible. Though
in spite of its success the strict evaluation criteria as used in speech recognition can
cloud the ultimate goal. It is important always to remember that tests are there to
evaluate a systems performance rather than become the task itself. Just as techniques
can overtrain on data it is possible to over train on the test data and/or methodology
too thus loosing the generality and purpose of the evaluation.

In speech recognition a simple (though naive) measure of phones or words correct
gives a reasonable indicator of how well a speech recognition system works. In syn-
thesis this a lot harder. Aword can havemultiple pronunciations, so it is much harder
to automatically test if a synthesizer’s phoneme accuracy, besides much of the qual-
ity is not just in if it is correct but if it "sounds good". This is effectly the crux of the
matter. The only real synthesis evaluation technique is having a human listen to the
result. Humans individually are not very reliably testers of systems, but humans in
general are. However it is usually not feasible to have testers listen to large amounts
of synthetic speech and return a general goodness score. More specific tests are re-
quired.

Although listening tests are the ultimate, because they are expensive in resources
(undergraduates are not willing to listing to bad synthesis all day for free), and the
design of listening tests is a non-trivial task, there are a number of more general tests
which can be run at less expenses and can help greatly.

It is common that a new voice in Festival (or any other speech synthesis systems), has
limitations and it is wise to test what the limitations are and decide if such limitations
are acceptable or not. This depends a lot on what you wish to use your voice for. For
example if the voice a Scottish English voice to be primarily used as the output of
a Chinese speech tranlation system, the vocabulary is constained by the translation
system itself so a large lexicon is probably not much of an issue, but the vocabulary
will include many anglosized (calenodianized ?) versions of Chinese names, which
are not common in standard English so letter-to-sound rules should be made more
sensitive for that input. If the system is to be used to read address lists, it should be
able to tokenize names and address appropriately, and if it is to be used in a dialogue
system the intonation model should be able to deal with questions and continuations
properly. Optimizing your voices for the most common task, and minimizing the
errors is what evaluation is for.

Does it work at all?
It is very easy to build a voice and get it to say a few phrases and think that the job
is done. As you build the voice it is worth testing each part as you built it to en-
sure it basically performs as expected. But once its all together more general tests are
needed. Before you submit it to any formal tests that you will use for benchmarking
and grading progrees in the voice, more basic tests should be carried out.

137

Chapter 15. Evaluation and Improvements

In fact it is stating such initial tests more concretely. Every we have ever built has
always had a number mistakes in it that can be trivially fixed. Such as the mfccs
were not generated after fixing the pitchmarks. Therefore you syould go through
each stage of the build procedure and ensure it really did do what you though it
should do, especially if you are totally convinced that section worked perfectly.

Try to find around 100-500 sentences to play through it. It is amazing home many
general problems are thrown up when you extend your test set. The next stage is
to play so real text. That may be news text from the web, output from your speech
translation system, or some email. Initially it is worth just synthesizing the whole set
without even listening to it. Problems in analysis and missing diphones etc may be
shown up just in the processing of the text. Then you want to listen to the output and
identify problems. This make take some amount of investigation. What you want to
do is identify where the problem is, is it bad tex analysis, bad lexical entry, a prosody
problem, or a waveform synthesis problem. You may need to synthesizes parts of the
text in isolation (e.g. using the Festival function SayText and look at the structure of
the utterance generated, e.g. using the function utt.features. For example to see
what words have been identified from the text analysis

(utt.features utt1 ’Word ’(name))

Or to see the phones generated

(utt.features utt1 ’Segment ’(name))

Thus you can view selected parts of an utterance and find out if it is being created
as you intended. For some things a graphical display of the utterance may help.

Once you identify where the problem is you need to decide how to fix it (or if it is
worth fixing). The problem may be a number of different places:

• Phonetic error: the acoustics of a unit doesn’t match the label. This may be because
the speaker said the wrong word/phoneme or the labeller had the wrong. Or pos-
sible some other acoustic variant that has not been considered

• Lexical error: the word is pronounced with the wrong string of
phonemes/stress/tone. Either the lexical entry is wrong or the letter to sound
rules are not doing ht right thing. Or there are multiple valid pronunciations for
that word (homographs) and the wrong one is selectec because the homograph
disambiguation is wrong, or there is not a disambiguator.

• Text error: the text analysis doesn’t deal properly with the word. It may be that
a punctuation system is spoken (or not spoken) as expected, titles, symbols, com-
pounds etc aren’t dealt with properly

• Some other error: some error that is not one of the above. As you progress in cor-
rection and tuningm errors in the category will grow and you must find some way
to avoid such errors.

Before rushing out and getting one hundred people to listen to your new synthetic
voice, it is worth doing significant internal testing and evaluation, informally to find
errors and test them. Remember the purpose of evaluation in this case is to find errors
and fix them.We are not, at least not at this stage, evaluating the voices on an abstract
scale, where unseen test data, and blind testing is important.

Formal Evaluation Tests
Once you yourself and your immediate colleages have tests the voice you will want
more formal evaluation metrics. Again we are looking at diagnositic evluation, com-
parative eveluation between different commercial synthesizers is quite a different
task.

138

Chapter 15. Evaluation and Improvements

In our English checks we used Wall Street Journal and Time magazine articles
(around 10 millions words in total). Many unusual words apear only in one article
(e.g proper names) which are less important to add to the lexicon, but unusual
words that appear across articales are more likely to appear again so should be
added.

Be aware that using data will cause your coverage to be biased towards that type
of data. Our databases are mostly collected in the early 90s and hence have good
coverage for the Gulf War, and the changes in Eastern Europe but our ten million
words have no occurences of the words “Sojourner” or “Lewinski” whcih only appear
in stories later in the decade.

A script is provided in src/general/find_unknownswhich will analyze given text
to find which words do not appear in the current lexicon. You should use the -eval
option to specify the selection of your voice. Note this checks to see which words
are not in the lexicon itself, it replaces what ever letter-to-sound/ unknown word
function you specified and saves any words for which that function is called in the
given output file. For example

find_unknowns -eval ’(voice_ked_diphone)’ -output cmudict.unknown \
wsj/wsj-raw/00/*

Normally you would run this over your database then cummulate the unknown
words, then rerun the unknown words synthesizing each and listening to them to
evaluate if your LTS system produces reasonable results. Fur those words which do
have acceptable pronunciations add them to your lexicon.

Sematically unpredictable sentences
One technique that has been used to evaluation speech synthesis quality is testing
against semantically unpredictable sentences.

%%%%%%%%%%%%%%%%%%%%%%
Discussion to be added
%%%%%%%%%%%%%%%%%%%%%%

Debugging voices

139

Chapter 15. Evaluation and Improvements

140

Chapter 16. Markup

SABLE, JSML, VoiceXML, Docbook, tts_modes

141

Chapter 16. Markup

142

Chapter 17. Concept-to-speech

Dialog systems, speech-to-speech translation, getting more that just text.

143

Chapter 17. Concept-to-speech

144

Chapter 18. Deployment

client/server access, footprint, scaling up, backoff strategies, signal commpression.

145

Chapter 18. Deployment

146

Chapter 19. Grapheme-based Synthesizer

General Grapheme-based Voices
This might be one of the easier ways to build a synthesizer in a language for which
you do not have many resources. In many cases the techniques described here will
do well enough to provide an understandable useable synthesizer. You will need
audio, and orthography for your language though not anything else. The techniques
described in this chapter will provide generic phonetic support, but not require the
construction of an explicit lexicon (though you could add explicit lexical entries for
some words if you desire).

The techniques described here are unlikely to be better than techniques that require
more language support (such as phoneme sets, lexicons and higher level knowledge
of the language) so we will also assume that the data you have is not the best, and
will address some issues in improving the quality of your data.

As always, high quality recording of large phonetically balanced corpora by a good
consistent speaker will always be best. In our experience anything less that 30 min-
utes of actual speech (ignoring silence) will likely not give a good result. Where pos-
sible the data must be recorded using the same channel. Mixed-channel recordings
typically give much poorer results, e.g. multiple sessions, multiple room acoustics
are likely to degrade quality.

We break this chapter down into core (clustergen) building, and then discuss some
further techniques that might be relevant to your particular language and how you
might improve them.

As with all parts of festvox: you must set the following enviroment variables to
where you have installed versions of the Edinburgh Speech Tools, the FestVox distri-
bution and NITECH’s SPTK

export ESTDIR=/home/awb/projects/speech_tools
export FESTVOXDIR=/home/awb/projects/festvox
export SPTKDIR=/home/awb/projects/SPTK

We will use Thai as the example language.

mkdir cmu_thai_am
cd cmu_thai_am
$FESTVOXDIR/src/clustergen/setup_cg cmu thai am

This will set up a base voice (that is incomplete, as the phoneme definition is miss-
ing). We will generate the appropriate additional information from the language data
you have collected.

We assume that you have already prepared a list of utterances and recorded them.
See Chapter 9 for instructions on designing a corpus. We also assume that you have
a prompt file is the txt.done.data format (with Thai encoded as unicode).

cp -p WHATEVER/txt.done.data etc/
cp -p WHATEVER/wav/*.wav recording/

Assuming the recordings might not be as good as the could be you can power
normalize them.

./bin/get_wavs recording/*.wav

147

Chapter 19. Grapheme-based Synthesizer

Also synthesis builds (especially labeling) work best if there is only a limited amount
of leading and trailing silence. We can do this by

./bin/prune_silence wav/*.wav

This uses F0 extraction to estimate where the speech starts and ends. This typically
works well, but you should listen to the results to ensure it does the right thing. The
original unpruned files are saved in unpruned/. A third pre-pocessing option is to
shorted intrasentence silences, this is only desirable in non-ideal recorded data, but
it can help labeling.

./bin/prune_middle_silence wav/*.wav

Note if you do not require these three stages, you can put your wavefiles directly
into wav/

Now we can complete the voice templates, using the information in the
etc/txt.done.data prompt list.

$FESTVOXDIR/src/grapheme/make_cg_grapheme

This analyzes all the (unicode) characters in the prompt list and builds a mapping
from the UNITRAN list of characters to phonemes. This updates the templates in
festvox/ to prove a complete voice for that language. Note that this only provides
a default pronunciation for characters in the language, this certainly isn’t suitable
for numbers symbols etc, nor will it deal well with languages with more opaque
writting systems (e.g. (English and Chinese). But for many languages it gives a very
good starting position.

Note it only deals with characters in your prompt list. So you should ensure you have
character coverage in your prompt list.

Now you can build a voice as before. Firsty build the prompts and label the data.

./bin/do_build build_prompts etc/txt.done.data

./bin/do_build label etc/txt.done.data

./bin/do_clustergen parallel build_utts etc/txt.done.data

./bin/do_clustergen generate_statename

./bin/do_clustergen generate_filters

Then do feature extraction

./bin/do_clustergen parallel f0_v_sptk

./bin/do_clustergen parallel mcep_sptk

./bin/do_clustergen parallel combine_coeffs_v

Build the models

./bin/traintest etc/txt.done.data

./bin/do_clustergen parallel cluster etc/txt.done.data.train

./bin/do_clustergen dur etc/txt.done.data.train

And generate some test examples, the first to giveMCD and F0D objectivemeasures,
the second to generate standard tts output

./bin/do_clustergen cg_test resynth cgp etc/txt.done.data.test

./bin/do_clustergen cg_test tts tts etc/txt.done.data.test

148

Chapter 19. Grapheme-based Synthesizer

Note that for grapheme voices you can build with the random forest techniques, and
it should work, though you should only try that after confirming a base build works
and that there are no prompts that cannot be processed properly.

Building Indic voices
Languages of the Indian subcontinent have millions of speakers, but do not have
a lot of resources and data. Some of the linguistic phenomena that occur in Indic
languages include schwa deletion in Indo-Aryan languages, voicing rules in Tamil,
stress patterns etc. We have a common Indic front end for building voices in these
languages, with support for many of these phenomena.

Currently, we have explicit support for Hindi, Bengali, Kannada, Tamil, Telugu and
Gujarati. Rajasthani and Assamese are also included and they use the same rules as
Hindi and Bengali respectively although this may not be completely accurate.

This chapter describes how to build an Indic voice for the languages that are sup-
ported explicitly in Festvox and also how to add support for a new Indic language.
We will use Hindi as the example language for this tutorial.

Part 1: Building voices that have explicit support (Hindi, Bengali, Kannada, Tamil,
Telugu, Gujarati, Rajasthani, Assamese)

As with all parts of festvox: you must set the following enviroment variables to
where you have installed versions of the Edinburgh Speech Tools, the FestVox distri-
bution and NITECH’s SPTK

export ESTDIR=/home/awb/projects/speech_tools
export FESTVOXDIR=/home/awb/projects/festvox
export SPTKDIR=/home/awb/projects/SPTK

mkdir cmu_indic_ss
cd cmu_indic_ss
$FESTVOXDIR/src/clustergen/setup_cg cmu indic ss

This will set up a base Indic voice. The file that is Indic-voice specific is
festvox/indic_lexicon.scm in the voice directory. The default language in the Indic
lexicon is Hindi. You should change this to the language that you are working with
so that the right language-specific rules are used.

(defvar lex:language ’Hindi)

We assume that you have already prepared a list of utterances and recorded them.
See Chapter 9 for instructions on designing a corpus. We also assume that you have
a prompt file is the txt.done.data format (with your Indic prompts encoded as uni-
code).

cp -p WHATEVER/txt.done.data etc/
cp -p WHATEVER/wav/*.wav recording/

Assuming the recordings might not be as good as the could be you can power
normalize them.

./bin/get_wavs recording/*.wav

149

Chapter 19. Grapheme-based Synthesizer

Also synthesis builds (especially labeling) work best if there is only a limited amount
of leading and trailing silence. We can do this by

./bin/prune_silence wav/*.wav

This uses F0 extraction to estimate where the speech starts and ends. This typically
works well, but you should listen to the results to ensure it does the right thing. The
original unpruned files are saved in unpruned/. A third pre-pocessing option is to
shorted intrasentence silences, this is only desirable in non-ideal recorded data, but
it can help labeling.

./bin/prune_middle_silence wav/*.wav

Note if you do not require these three stages, you can put your wavefiles directly
into wav/

Now you can build a voice as before. Firsty build the prompts and label the data.

./bin/do_build build_prompts etc/txt.done.data

./bin/do_build label etc/txt.done.data

./bin/do_clustergen parallel build_utts etc/txt.done.data

./bin/do_clustergen generate_statename

./bin/do_clustergen generate_filters

Then do feature extraction

./bin/do_clustergen parallel f0_v_sptk

./bin/do_clustergen parallel mcep_sptk

./bin/do_clustergen parallel combine_coeffs_v

Build the models

./bin/traintest etc/txt.done.data

./bin/do_clustergen parallel cluster etc/txt.done.data.train

./bin/do_clustergen dur etc/txt.done.data.train

And generate some test examples, the first to giveMCD and F0D objectivemeasures,
the second to generate standard tts output

./bin/do_clustergen cg_test resynth cgp etc/txt.done.data.test

./bin/do_clustergen cg_test tts tts etc/txt.done.data.test

Creating support for new Indic languages
If you have a language that is not included in the set of languages with explicit
support, you can add support quite easily. First, set up an Indic voice as described
above and also complete steps till prune_silence with your wav files. There are three
files in the festvox folder in the voice directory that you need to pay attention to:
indic_lexicon.scm, indic_utf8_ord_map.scm and unicode_sampa_map_new.scm.

As the names suggest, the indic_lexicon file is the one where many language-specific
rules are specified. We will come back to this file later. The indic_utf8_ord_map is a
mapping from the Unicode characters in the language to the corresponding ordinals.
You will need to create this mapping for your language and add it to this file. You
can use something like the ord() function in Python to generate this.

150

Chapter 19. Grapheme-based Synthesizer

Next, we need to map the characters in your language to the phonemes they corre-
spond to. This is done in the unicode_sampa_map_new file. You need to map the list
of ordinals that you generated earlier to SAMPA phones and add it to this file.

Lastly, you should now add language specific rules to the indic_lexicon file. First,
change the name of the language which is by default Hindi. We will assume that our
new language is called AnotherLang, and it has Tamil’s voicing rules and Bengali’s
final schwa deletion rules.

(defvar lex:language ’AnotherLang)

(define (delete_final_schwa)
"(delete_final_schwa)
Returns t if final schwa is deleted in the current language"
(member lex:language ’(Hindi Gujarati Rajasthani Bengali Assamese AnotherLang)))

(if (eq lex:language ’Tamil)
(set! phones (tamil_voicing_postfixes phones)))

(if (eq lex:language ’AnotherLang)
(set! phones (tamil_voicing_postfixes phones)))

Next, you need to define ranges of characters in your language that fall into cate-
gories like independent vowels, consonants, nukta etc. Once again, you will use the
ordinals that you mapped for this. See the section of the file that begins with

(set! indic_char_type_ranges

You can also add support for saying English words that appear in your Indic lan-
guage document. You can do this by mapping the SAMPA phonemes in your lan-
guage to English phonemes. See the section of the file that begins with

;;; CMU SAMPA Comments

Make other language-specific changes as shown above. Then, you can continue as
usual from the build_prompts step to build your voice. If the build_prompts step has
errors it means that some characters are probably missing from your mapping.

151

Chapter 19. Grapheme-based Synthesizer

152

Chapter 20. A Japanese Diphone Voice

In this chapter we work through a full example of creating a voice given that most
of the basic construction work (model building) has been done. Pariticularly this dis-
cusses the scheme files, and conventions for keeping a voices together and how you
can go about packaging it for general use.

Ultimately a voice in Festival will consist of a diphone database, a lexicon (and lts
rules) and a number of scheme files that offer the complete voice. When people other
than the developer of a voice wish to use your newly developed voice it is only that
small set of files that are required and need to be distributed (freely or otherwise).
By convention we have distributed diphone group files, a single file holding the in-
dex, and diphone data itself, and a set scheme files that describe the voice (and its
necessary models).

Basic skeleton files are included in the festvox distribution. If you are unsure how
to go about building the basic files it is recommended you follow this schema and
modify these to your particular needs.

By convention a voice name consist of an institution name (like cmu, cstr, etc), if you
don’t have an insitution just use net. Second you need to identify the language, there
is an ISO two letter standard for it fails to distinguish dialects (such as US and UK En-
glish) so it need not be strictly followed. However a short identifier for the language
is probably prefered. Third you identify the speaker, we have typically used three
letter initials which are the initials of the person speaker but any name is reasonable.
If you are going to build a US or UK English voice you should look Chapter 21.

The basic processes you will need to address

• construct basic template files

• generate phoneset definition

• generate diphone schema file

• generate prompts

• record speaker

• label nonsense words

• extract picthmarks and LPC coeffcient

• test phone synthesis

• add lexicon/LTS support

• add tokenization

• add prosody (phrasing, durations and intonation)

• test and evaluate voice

• package for distribution

As with all parts of festvox: you must set the following enviroment variables to
where you have installed versions of the Edinburgh Speech Tools and the festvox
distribution

export ESTDIR=/home/awb/projects/speech_tools
export FESTVOXDIR=/home/awb/projects/festvox

In this example we will build a Japanese voice based on awb (a gaijin). First create a
directory to hold the voice.

153

Chapter 20. A Japanese Diphone Voice

mkdir ~/data/cmu_ja_awb_diphone
cd ~/data/cmu_ja_awb_diphone

You will need in the regions of 500M of space to build a voice. Actually for Japanese
its probably considerably less, but you must be aware that voice building does re-
quire disk space.

Construct the basic directory structure and skeleton files with the command

$FESTVOXDIR/src/diphones/setup_diphone cmu ja awb

The three arguments are, institution, language and speaker name.

The next stage is define the phoneset in festvox/cmu_ja_phones.scm. In many
cases the phoneset for a language has been defined, and it is wise to follow
convention when it exists. Note that the default phonetic features in the skeleton file
may need to be modified for other languages. For Japanese, there are standards
and here we use a set similar to the ATR phoneset used by many in Japan for
speech processing. (This file is included, but not automatically installed, in
$FESTVOXDIR/src/vox_diphone/japanese

Now you must write the code that generates the diphone schema file. You can look
at the examples in festvox/src/diphones/*_schema.scm. This stage is actually
the first difficult part, getting thsi right can be tricky. Finding all possible phone-
phone in a language isn’t as easy as it seems (especially as many possible ones don’t
actually exist). The file festvox/ja_schema.scm is created providing the function
diphone-gen-list which returns a list of nonsense words, each consisting of a list
of, list of diphones and a list of phones in the nonsense word. For example

festival> (diphone-gen-list)
((("k-a" "a-k") (pau t a k a k a pau))
(("g-a" "a-g") (pau t a g a g a pau))
(("h-a" "a-h") (pau t a h a h a pau))
(("p-a" "a-p") (pau t a p a p a pau))
(("b-a" "a-b") (pau t a b a b a pau))
(("m-a" "a-m") (pau t a m a m a pau))
(("n-a" "a-n") (pau t a n a n a pau))
...)

In addition to generating the diphone schema the ja_schema.scm also should
provied the functions Diphone_Prompt_Setup, which is called before generating the
prompts, and Diphone_Prompt_Word, which is called before waveform synthesis of
each nonsense word.

Diphone_Prompt_Setup, should be used to select a speaker to generate the prompts.
Note even though you may not use the prompts when recording they are necessary
for labeling the spoken speech, so you still need to generate them. If you haeva syn-
thesizer already int eh language use ti to generate the prompts (assuming you can get
it to generate from phone lists also generate label files). Often the MBROLA project
already has a waveform synthesizer for the language so you can use that. In this case
we are going to use a US English voice (kal_diphone) to generate the prompts. For
Japanese that’s probably ok as the Japanese phoneset is (mostly) a subset of the En-
glish phoneset, though using the generated prompts to prompt the user is probably
not a good idea.

The second function Diphone_Prompt_Word, is used tomap the Japanese phone set to
the US English phone set so that waveform synthesis will work. In this case a simple
map of Japanese phone to one or more English phones is given and the code simple
changes the phone name in the segment relation (and adds a new new segment in
the multi-phone case).

Now we can generate the diphone schema list.

154

Chapter 20. A Japanese Diphone Voice

festival -b festvox/diphlist.scm festvox/ja_schema.scm \
’(diphone-gen-schema "ja" "etc/jadiph.list")’

Its is worth checking etc/jadiph.list by hand to you are sure it contains all the
diphone you wish to use.

The diphone schema file, in this case etc/jadiph.list, is a fundamentally key file
for almost all the following scripts. Even if you generate the diphone list by some
method other than described above, you should generate a schema list in exactly this
format so that everything esle will work, modifying the other scripts for some other
format is almost certainly a waste of your time.

The schema file has the following format

(ja_0001 "pau t a k a k a pau" ("k-a" "a-k"))
(ja_0002 "pau t a g a g a pau" ("g-a" "a-g"))
(ja_0003 "pau t a h a h a pau" ("h-a" "a-h"))
(ja_0004 "pau t a p a p a pau" ("p-a" "a-p"))
(ja_0005 "pau t a b a b a pau" ("b-a" "a-b"))
(ja_0006 "pau t a m a m a pau" ("m-a" "a-m"))
(ja_0007 "pau t a n a n a pau" ("n-a" "a-n"))
(ja_0008 "pau t a r a r a pau" ("r-a" "a-r"))
(ja_0009 "pau t a t a t a pau" ("t-a" "a-t"))
...

In this case it has 297 nonsense words.

Next we can generate the prompts and their label files with the following command
The to synthesize the prompts

festival -b festvox/diphlist.scm festvox/ja_schema.scm \
’(diphone-gen-waves "prompt-wav" "prompt-lab" "etc/jadiph.list")’

Occasionally when you are building the prompts some diphones requested in the
prompt voice don’t actually exists (especially when you are doing cross-language
prompting). Thus the generated prompt has some default diphone (typically silence-
silence added). This is mostly ok, as long as its not happening multiple times in the
same nonsence word. The speaker just should be aware that some prompts aren’t
actually correct (which of course is going to be true for all prompts in the cross-
language prompting case).

The stage is to record the prompts. See the Section called Recording under Unix in Chapter 4
for details on how to do this under Unix (and in fact other techniques too). This can
done with the command

bin/prompt_them etc/jadiph.list

Depending on whether you want the prompts actually to be played or not, you can
edit bin/prompt_them to comment out the playing of the prompts.

Note a third argument can be given to state which nonse word to begin prompting
from. This if you have already recorded the first 100 you can continue with

bin/prompt_them etc/jadiph.list 101

The recorded prompts can the be labeled by

bin/make_labs prompt-wav/*.wav

And the diphone index may be built by

155

Chapter 20. A Japanese Diphone Voice

bin/make_diph_index etc/awbdiph.list dic/awbdiph.est

If no EGG signal has been collected you can extract the pitchmarks by

bin/make_pm_wave wav/*.wav

If you do have an EGG signal then use the following instead

bin/make_pm lar/*.lar

A program to move the predicted pitchmarks to the nearest peak in the waveform
is also provided. This is almost always a good idea, even for EGG extracted pitch
marks

bin/make_pm_fix pm/*.pm

Getting good pitchmarks is important to the quality of the synthesis, see
the Section called Extracting pitchmarks from waveforms in Chapter 4 for more
discussion.

Because there is often a power mismatch through a set of diphone we provided a
simple method for finding what general power difference exist between files. This
finds the mean power for each vowel in each file and calculates a factor with respect
to the overal mean vowel power. A table of power modifiers for each file can be
calculated by

bin/find_powerfactors lab/*.lab

The factors cacluated by this are saved in etc/powfacts.

Then build the pitch-synchronous LPC coefficients, which used the power factors if
they’ve been calculated.

bin/make_lpc wav/*.wav

This should get you to the stage where you can test the basic waveform synthesizer.
There is still much to do but initial tests (and correction of labeling errors etc) can
start now. Start festival as

festival festvox/cmu_ja_awb_diphone.scm "(voice_cmu_ja_awb_diphone)"

and then enter string of phones

festival> (SayPhones ’(pau k o N n i ch i w a pau))

In addition to the waveform generate part you must also provide text analysis for
your language. Here, for the sake of simplicity we assume that the Japanese is pro-
vided in romanized form with spaces between each word. This is of course not the
case for normal Japanese (andwe areworking on a proper Japanese front end). But at
present this shows the general idea. Thus we edit festvox/cmu_ja_token.scm and
add (simple) support for numbers.

As the relationship between romaji (romanized Japanese) and phones is almost trivial
we write a set of letter-to-sound rules, by hand that expand words into their phones.
This is added to festvox/cmu_ja_lex.scm.

156

Chapter 20. A Japanese Diphone Voice

For the time being we just use the default intonation model, though simple rule drive
improvements are possible. See festvox/cmu_ja_awb_int.scm. For duration, we
add a mean value for each phone in the phoneset to fextvox/cmu_ja_awb_dur.scm.

These three japanese specific files are included in the distribution in
festvox/src/vox_diphone/japanese/.

Now we have a basic synthesizer, although there is much to do, we can now type
(romanized) text to it.

festival festvox/cmu_ja_awb_diphone.scm "(voice_cmu_ja_awb_diphone)"
...
festival> (SayText "boku wa gaijin da yo.")

The next part is to test and improve these various initial subsystems, lexicons, text
analysis prosody, and correct waveform synthesis problem. This is ane endless task
but you should spend significantly more time on it that we have done for this exam-
ple.

Once you are happy with the completed voice you can package it for distribution.
The first stage is to generate a group file for the diphone database. This extracts the
subparts of the nonsense words and puts them into a single file offering something
smaller and quicker to access. The groupfile can be built as follows.

festival festvox/cmu_ja_awb_diphone.scm "(voice_cmu_ja_awb_diphone)"
...
festival (us_make_group_file "group/awblpc.group" nil)
...

The us_ in the function names stands for UniSyn (the unit concatenation subsystem
in Festival) and nothing to do with US English.

To test this edit festvox/cmu_ja_awb_diphone.scm and change the choice of
databases used from separate to grouped. This is done by commenting out the line
(around line 81)

(set! cmu_ja_awb_db_name (us_diphone_init cmu_ja_awb_lpc_sep))

and uncommented the line (around line 84)

(set! cmu_ja_awb_db_name (us_diphone_init cmu_ja_awb_lpc_group))

The next stage is to integrate this new voice so that festival may find it automati-
cally. To do this you should add a symbolic link from the voice directory of Festival’s
English voices to the directory containing the new voice. Frist cd to festival’s voice
directory (this will vary depending on where your version of festival is installed)

cd /home/awb/projects/festival/lib/voices/japanese/

creating the language directory if it does not already exists. Add a symbolic link
back to where your voice was built

ln -s /home/awb/data/cmu_ja_awb_diphone

Now this new voice will be available for anyone runing that version festival started
from any directory, without the need for any explicit arguments

festival
...
festival> (voice_cmu_ja_awb_diphone)

157

Chapter 20. A Japanese Diphone Voice

...
festival> (SayText "ohayo gozaimasu.")
...

The final stage is to generate a distribution file so the voice may be installed on
other’s festival installations. Before you do this you must add a file COPYING to the
directory you built the diphone database in. This should state the terms and condi-
tions in which people may use, distribute and modify the voice.

Generate the distribution tarfile in the directory above the festival installation (the
one where festival/ and speech_tools/ directory is).

cd /home/awb/projects/
tar zcvf festvox_cmu_ja_awb_lpc.tar.gz \
festival/lib/voices/japanese/cmu_ja_awb_diphone/festvox/*.scm \
festival/lib/voices/japanese/cmu_ja_awb_diphone/COPYING \
festival/lib/voices/japanese/cmu_ja_awb_diphone/group/awblpc.group

The completed files from building this crude Japanese example are available at
http://festvox.org/examples/cmu_ja_awb_diphone/.

Notes
1. http://festvox.org/examples/cmu_ja_awb_diphone/

158

Chapter 21. US/UK English Diphone Synthesizer

When building a new diphone based voice for a supported language, such as English,
the upper parts of the systems can mostly be taken from existing voices, thus making
the building task simpler. Of course, things can still go wrong, and its worth checking
everything at each stage. This section gives the basic walkthrough for building a new
US English voice. Support for building UK (southern, RP dialect) is also provided this
way. For building non-US/UK synthesizers see Chapter 20 for a similar walkthrough
but also covering the full text, lexicona nd prosody issues which we can subsume in
this example.

Recording a whole diphone set usually takes a number of hours, if everything goes
to plan. Construction of the voice after recording may take another couple of hours,
though much of this is CPU bound. Then hand-correction may take at least another
few hours (depending on the quality). Thus if all goes well it is possible to construct a
new voice in a day’s work though usually something goes wrong and it takes longer.
The more time you spend making sure the data is correctly aligned and labeled, the
better the results will be. While something can be made quickly, it can take much
longer to do it very well.

For those of you who have ignored the rest of this document and are just hoping to
get by by reading this, good luck. It may be possible to do that, but considering the
time you’ll need to invest to build a voice, being familar with the comments, at least
in the rest of this chapter, may be well worth the time invested.

The tasks you will need to do are:

• construct basic template files

• generate prompts

• record nonsense words

• autolabel nonsense words

• generate diphone index

• generate pitchmarks and LPC coefficients

• Test, and hand fix diphones

• Build diphone group files and distribution

As with all parts of festvox, you must set the following environment variables to
where you have installed versions of the Edinburgh Speech Tools and the festvox
distribution

export ESTDIR=/home/awb/projects/speech_tools
export FESTVOXDIR=/home/awb/projects/festvox

The next stage is to select a directory to build the voice. You will need in the order
of 500M of diskspace to do this, it could be done in less, but its better to have enough
to start with. Make a new directory and cd into it

mkdir ~/data/cmu_us_awb_diphone
cd ~/data/cmu_us_awb_diphone

By convention, the directory is named for the institution, the language (here, us
English) and the speaker (awb, who actually speaks with a Scottish accent). Although
it can be fixed later, the directory name is used when festival searches for available
voices, so it is good to follow this convention.

Build the basic directory structure

159

Chapter 21. US/UK English Diphone Synthesizer

$FESTVOXDIR/src/diphones/setup_diphone cmu us awb

the arguments to setup_diphone are, the institution building the voice, the lan-
guage, and the name of the speaker. If you don’t have a institution we recommend
you use net. There is an ISO standard for language names, though unfortunately it
doesn’t allow distinction between US and UK English, so in general we recommend
you use the two letter form, though for US English use us and UK English use uk.
The speaker name may or may nor be there actual name.

The setup script builds the basic directory structure and copies in various skeleton
files. For languages us and uk it copies in files with much of the details filled in for
those languages, for other languages the skeleton files are much more skeletal.

For constructing a us voice you must have the following installed in your version of
festival

festvox_kallpc16k
festlex_POSLEX
festlex_CMU

And for a UK voice you need

festvox_rablpc16k
festlex_POSLEX
festlex_OALD

At run-time the two appropriate festlex packages (POSLEX + dialect specific lexicon)
will be required but not the existing kal/rab voices.

To generate the nonsense word list

festival -b festvox/diphlist.scm festvox/us_schema.scm \
’(diphone-gen-schema "us" "etc/usdiph.list")’

We use a synthesized voice to build waveforms of the prompts, both for
actual prompting and for alignment. If you want to change the prompt voice
(e.g. to a female) edit festvox/us_schema.scm. Near the end of the file is
the function Diphone_Prompt_Setup. By default (for US English) the voice
(voice_kal_diphone) is called. Change that, and the F0 value in the following line,
if appropriate, to the voice use wish to follow.

Then to synthesize the prompts

festival -b festvox/diphlist.scm festvox/us_schema.scm \
’(diphone-gen-waves "prompt-wav" "prompt-lab" "etc/usdiph.list")’

Now record the prompts. Care should be taken to set up the recording environment
so it is best. Note all power levels so that if more than one session is required you can
continue and still get the same recording quality. Given the length of the US English
list, its unlikely a person can say allow of these in one sitting without taking breaks
at least, so ensuring the environment can be duplicated is important, even if it’s only
after a good stretch and a drink of water.

bin/prompt_them etc/usdiph.list

Note a third argument can be given to state which nonse word to begin prompting
from. This if you have already recorded the first 100 you can continue with

bin/prompt_them etc/usdiph.list 101

160

Chapter 21. US/UK English Diphone Synthesizer

See the Section called US phoneset in Chapter 31 for notes on pronunciation (or
the Section called UK phoneset in Chapter 31 for the UK version).

The recorded prompts can the be labeled by

bin/make_labs prompt-wav/*.wav

Its is always worthwhile correcting the autolabeling. Use

emulabel etc/emu_lab

and select FILE OPEN from the top menu bar and the place the other dialog box and
clink inside it and hit return. A list of all label files will be given. Double-click on each
of these to see the labels, spectragram and waveform. (** reference to "How to correct
labels" required **).

Once the diphone labels have been corrected, the diphone index may be built by

bin/make_diph_index etc/usdiph.list dic/awbdiph.est

If no EGG signal has been collected you can extract the pitchmarks by (though read
the Section called Extracting pitchmarks from waveforms in Chapter 4 to ensure you are
getting the best exteraction).

bin/make_pm_wave wav/*.wav

If you do have an EGG signal then use the following instead

bin/make_pm lar/*.lar

A program to move the predicted pitchmarks to the nearest peak in the waveform
is also provided. This is almost always a good idea, even for EGG extracted pitch
marks

bin/make_pm_fix pm/*.pm

Getting good pitchmarks is important to the quality of the synthesis, see
the Section called Extracting pitchmarks from waveforms in Chapter 4 for more
discussion.

Because there is often a power mismatch through a set of diphone we provided a
simple method for finding what general power difference exist between files. This
finds the mean power for each vowel in each file and calculates a factor with respect
to the overall mean vowel power. A table of power modifiers for each file can be
calculated by

bin/find_powerfactors lab/*.lab

The factors calculated by this are saved in etc/powfacts.

Then build the pitch-synchronous LPC coefficients, which use the power factors if
they’ve been calculated.

bin/make_lpc wav/*.wav

Now the database is ready for its initial tests.

161

Chapter 21. US/UK English Diphone Synthesizer

festival festvox/cmu_us_awb_diphone.scm ’(voice_cmu_us_awb_diphone)’

When there has been no hand correction of the labels this stage may fail with di-
phones not having proper start, mid and end values. This happens when the auto-
matic labeled has position two labels at the same point. For each diphone that has
a problem find out which file it comes from (grep for it in dic/awbdiph.est and
use emulabel to change the labeling to as its correct. For example suppose "ah-m" is
wrong you’ll find is comes from us_0314. Thus type

emulabel etc/emu_lab us_0314

After correcting labels you must re-run the make_diph_index command. You
should also re-run the find_powerfacts stage and make_lpc stages as these too
depend on the labels, but this takes longer to run and perhaps that need only be
done when you’ve corrected many labels.

To test the voice’s basic functionality with

festival> (SayPhones ’(pau hh ax l ow pau))

festival> (intro)

As the autolabeling is unlikely to work completely you should listen to a number of
examples to find out what diphones have gone wrong.

Finally, once you have corrected the errors (did we mention you need to check and
correct the errors?), you can build a final voice suitable for distribution. First you
need to create a group file which contains only the subparts of spoken words which
contain the diphones.

festival festvox/cmu_us_awb_diphone.scm ’(voice_cmu_us_awb_diphone)’
...
festival (us_make_group_file "group/awblpc.group" nil)
...

The us_ in this function name confusingly stands for UniSyn (the unit concatenation
subsystem in Festival) and nothing to do with US English.

To test this edit festvox/cmu_us_awb_diphone.scm and change the choice of
databases used from separate to grouped. This is done by commenting out the line
(around line 81)

(set! cmu_us_awb_db_name (us_diphone_init cmu_us_awb_lpc_sep))

and uncommented the line (around line 84)

(set! cmu_us_awb_db_name (us_diphone_init cmu_us_awb_lpc_group))

The next stage is to integrate this new voice so that festival can find it automatically.
To do this, you should add a symbolic link from the voice directory of Festival’s
English voices to the directory containing the new voice. First cd to festival’s voice
directory (this will vary depending on where you installed festival)

cd /home/awb/projects/festival/lib/voices/english/

add a symbolic link back to where your voice was built

ln -s /home/awb/data/cmu_us_awb_diphone

Now this new voice will be available for anyone runing that version festival (started
from any directory)

162

Chapter 21. US/UK English Diphone Synthesizer

festival
...
festival> (voice_cmu_us_awb_diphone)
...
festival> (intro)
...

The final stage is to generate a distribution file so the voice may be installed on
other’s festival installations. Before you do this you must add a file COPYING to the
directory you built the diphone database in. This should state the terms and condi-
tions in which people may use, distribute and modify the voice.

Generate the distribution tarfile in the directory above the festival installation (the
one where festival/ and speech_tools/ directory is).

cd /home/awb/projects/
tar zcvf festvox_cmu_us_awb_lpc.tar.gz \
festival/lib/voices/english/cmu_us_awb_diphone/festvox/*.scm \
festival/lib/voices/english/cmu_us_awb_diphone/COPYING \
festival/lib/voices/english/cmu_us_awb_diphone/group/awblpc.group

The complete files from building an example US voice based on the KAL recordings
is available at http://festvox.org/examples/cmu_us_kal_diphone/.

Notes
1. http://festvox.org/examples/cmu_us_kal_diphone/

163

Chapter 21. US/UK English Diphone Synthesizer

164

Chapter 22. ldom full example

domain analysis, prompt designing build/walkthrough and debugging. weather or
stocks or such like.

165

Chapter 22. ldom full example

166

Chapter 23. Non-english ldom example

Cross linguistic build with minimal local language support.

167

Chapter 23. Non-english ldom example

168

Chapter 24. Concluding remarks and future

Where will it all lead to.

169

Chapter 24. Concluding remarks and future

170

Chapter 25. Festival Details

This chapter offers descriptions of various Festival internals including APIs.

171

Chapter 25. Festival Details

172

Chapter 26. Festival’s Scheme Programming Language

This chapter acts as a reference guide for the particular dialect of the Scheme pro-
gramming language used in the Festival Speech Synthesis systems. The Scheme pro-
gramming language is a dialect of Lisp designed to be more consistent. It was chosen
for the basic scripting language in Festival because:

• it is a very easy language for machines to parse and interpret, thus the foot print
for the interpreter proper is very small

• it offers garbage collection making managing objects safe and easy.

• it offers a general consistent datastructure for representing parameters, rules etc.

• it was familiar to the authors

• its is suitable for use as an embedded system

Having a scripting language in Festival is actually one of the fundamental properties
that makes Festival a useful system. The fact that new voices and languages in many
cases can be added without changing the underlying C++ code makes the system
mouch more powerful and accessible than a more monolithic system that requires
recompilation for any parameter changes. As there is sometimes confusionwe should
make it clear that Festival contains its own Scheme interpreter as part of the system.
Festival can be view as a Scheme interpreter that has had basic addition to its function
to include modules that can do speech synthesis, no external Scheme interperter is
required to use Festival.

The actual interpreter used in Festival is based on George Carret’s SIOD, "Scheme
in one Defun". But this has been substantially enhanced from its small elegant begin-
nings into something that might be better called "Scheme in one directory". Although
there is a standard for Scheme the version in Festival does not fully follow it, for both
good and bad reasons. Thus finding in order for people to be able to program in Fes-
tival’s Scheme we provide this chapter to list the core type, functions, etc and some
examples.We do not pretend to be teaching programming here but aswe knowmany
people who are interested in building voices are not primarily programmers, some
guidance on the language and its usage will make the simple programming that is
required in building voices, more accessible.

For reference the Scheme Revised Revised Revised report describes the standard def-
inition [srrrr90]. For a good introduction to programming in general that happens to
use Scheme as its example language we recommend [abelson85]. Also for those who
are unfamiliar with the use of Lisp-like scripting languages we recommend a close
look as GNU Emacswhich uses Lisp as its underlying scripting language, knowledge
of the internals of Emacs did to some extent influence the scripting language design
of Festival.

Overview
"Lots of brackets" is what comes to most people’s minds when considering Lisp and
its various derivatives such as Scheme. At the start this can seem daunting and it is
true that parenthesis errors can cuase problems. But with an editor that does proper
bracket matching, brackets can actually be helpful in code structure rather than a
hindrance.

The fundamental structure is the s-expression. It consists of an atom, or a list of s-
expressions. This simply defined recursive structure allows complex structures to
easily be specified. For example

3
(1 2 3)
(a (b c) d)

173

Chapter 26. Festival’s Scheme Programming Language

((a b) (d e))

Unlike other programming languages Scheme’s data and code are in the same for-
mat, s-expressions. Thus s-expression are evaluated, recursively.

Symbols:

are treated as variables and evaluated return their currently set value.

Strings and numbers:

evalutate to themselves.

Lists:

The eachmember of the list is evaluated and the first item in the list is treated as a
function and applied using the remainer of the list as arguments to the function.

Thus the s-expression

(+ 1 2)

when evaluated will return 3 as the symbol + is bound to a function that adds it
arguments.

Variablesmay be set using the set! function which takes a variable name and a value
as arguments

(set! a 3)

The set! function is unusual in that it does not evaluate its first argument. If it did
you have to explcitly quote it or set some other variable to have a value of a to get
the desired effect.

quoting, define

Data Types
There a number of basic data types in this Scheme, new ones may also be added but
only through C++ functions. This basic types are

Symbols:

symbols atoms starting with an alphabetic character. Unlike numbers and
strings, they may be used as variables. Examples are

a bcd f6 myfunc
plus cond

Symbols may be created from strings by using the function intern

Numbers:

In this version of scheme all numbers are doubles, there is no distinction between
floats, doubles and ints. Examples are

1
1.4
3.14
345
3456756.4345476

Numbers evaluate to themselves, that is the value of the atom 2 is the number
2.

174

Chapter 26. Festival’s Scheme Programming Language

Strings:

Strings are bounded by the double quote characters ". For example

"a"
"abc"
"This is a string"

Strings evaluate to themselves. They may be converted to symbols with the
function intern. If they are strings of characaters that represent numbers you
can convert a string to a number with the function parse-number. For example

(intern "abc") => abc
(parse-number "3.14") => 3.14

Although you can make symbols from numbers you should not do that.

Double quotes may be specified within a string by escaping it with a backslash.
Backslashes therefore also require an escape backslash. That is, "ab\"c" contains
four characters, a, b, " and c. "ab\\c" also contains four characters, a, b, \ and
c. And "ab\\\"c" contains five characters a, b, \, " and c.

Lists or Cons

Lists start with a left parenthesis and end with a right parenthesis with zero or
more s-expression between them. For example

(a b c)
()
(b (b d) e)
((the boy) saw (the girl (in (the park))))

Lists can be made by various functions most notably cons and list. cons
returns a list whose first item is the first item in the list, standardly called its car,
and whose remainder, standardly called its cdr, is the second argument of cons.

(cons ’a ’(b c)) => (a b c)
(cons ’(a b) ’(c d)) => ((a b) c d)

Functions:

Functions may be applied explicity bu the function apply or more normally as
when the appear as the first item in a list to be evaluated. The normal way to
define function is using the define function. For example

(define (ftoc temp)
(/ (* (- temp 32) 5) 9))

This binds the function to the variable ftoc. Functions can also be defined
anonymously which sometimes is convinient.

(lambda (temp)
(/ (* (- temp 32) 5) 9))

returns a function.

Others:

other internal types are support by Festival’s scheme including some inportant
object types use for synthesis such as utterances, waveforms, items etc. The are
normally printed as in the form

#<Utterance 6234>
#%lt;Wave 1294>

The rpint form is a convinience form only. Enter that string of characters will
not allow a reference to that object. The number is unique to that object instance

175

Chapter 26. Festival’s Scheme Programming Language

(it is actually the internal address of the object), and can be used visually to note
if objects are the same or not.

Functions
This section lists the basic functions in Festival’s Scheme. It doesn’t list them all (see
the Festival manual for that) but does highlight the key functions that you should
normally use.

Core functions
These functions are the basic functions used in Scheme. These include the structural
functions for setting variables, conditionals. loops, etc.

(set! SYMBOL VALUE)

Sets SYMBOL to VALUE. SYMBOL is not evaluated, while VALUE is. Example

(set! a 3)
(set! pi 3.14)
(set! fruit ’(apples pears bananas))
(set! fruit2 fruit)

(define (FUNCNAME ARG0 ARG1 ...) . BODY)

define a function called FUNCNAMEwith specified arguments and body.

(define (myadd a b) (+ a b))
(define (factorial a)
(cond
((< a 2) 1)
(t (* a (factorial (- a 1))))))

(if TEST TRUECASE [FALSECASE])

If the value of TEST is non-nil, evaluate TRUECASE and return value else if present
evaluate FALSECASE if present and return value, else return nil.

(if (string-equal v "apples")
(format t "It’s an apple\n")
(format t "It’s not an apple\n"))

(if (member v ’(apples pears bananas))
(begin
(format t "It’s a fruit (%s)\n" v)
’fruit)

’notfruit)

(cond (TEST0 . BODY) (TEST1 . BODY) ...)

A multiple if statement. Evaluates each TEST until a non-nil test is found then
evalues each of the expressions in that BODY return the value of the last one.

(cond
((string-equal v "apple")
’ringo)
((string-equal v "plum")
’ume)

176

Chapter 26. Festival’s Scheme Programming Language

((string-equal v "peach")
’momo)
(t
’kudamono)

(begin . BODY)

This evaluates each s-expression in BODY and returns the value of the last s-
expression in the list. This is useful for case where only one s-expression is ex-
pected but you need to call a number of functions, notably the if function.

(if (string-equal v "pear")
(begin
(format t "assuming it’s a asian pear\n")
’nashi)

’kudamono)

(or . DISJ)

evalutate each disjunct until one is non-nil and return that value.

(or (string-equal v "tortoise")
(string-equal v "turtle"))

(or (string-equal v "pear")
(string-equal v "apple")
(< num_fruits 6))

(and . CONJ)

evalutate each conjunct until one is nil and return that value or return the value
of the last conjunct.

(and (< num_fruits 10)
(> num_fruits 3))

(and (string-equal v "pear")
(< num_fruits 6)
(or (string-equal day "Tuesday")

(string-equal day "Wednesday")))

List functions

(car EXPR)

returns the "car" of EXPR, for a list this is the first item, for an atom or the empty
list this is defined to be nil.

(car ’(a b)) => a
(car ’((a b) c d)) => (a b)
(car ’(a (b c) d)) => a
(car nil) => nil
(car ’a) => nil

177

Chapter 26. Festival’s Scheme Programming Language

(cdr EXPR)

returns the "cdr" of EXPR, for a list this is the rest of the list, for an atom or the
empty list this is defined to be nil.

(cdr ’(a b)) => (b)
(cdr ’((a b) c d)) => (c d)
(cdr ’(a)) => nil
(cdr ’(a (b c))) => ((b c))
(cdr nil) => nil
(cdr ’a) => nil

(cons EXPR0 EXPR2)

build a new list whose "car" is EXPR0 and whose "cdr" is EXPR1.

(cons ’a ’(b c)) => (a b c)
(cons ’a ()) => (a)
(cons ’(a b) ’(c d) => ’((a b) c d))
(cons () ’(a) => ’(nil a))
(cons ’a ’b => (a . b))
(cons nil nil) => (nil)

(list . BODY)

Form a list from each of the arguments

(list ’a ’b ’c) => (a b c)
(list ’(a b) ’c ’d) => ((a b) c d)
(list nil ’(a b) ’(a b)) => (nil (a b) (a b))

(append . BODY)

Join each of the arguments (lists) into a single list

(append ’(a b) ’(c d)) => (a b c d)
(append ’(a b) ’((c d)) ’(e f)) => (a b (c d) e f)
(append nil nil) => nil
(append ’(a b)) => (a b))
(append ’a ’b) => error

(nth N LIST)

Return Nth member of list, the first item is the 0th member.

(nth 0 ’(a b c)) => a
(nth 2 ’(a b c)) => c
(nth 3 ’(a b c)) => nil

(nth_cdr N LIST)

Return Nth cdr list, the first cdr is the 0th member, which is the list itself.

(nth 0 ’(a b c)) => (a b c)
(nth 2 ’(a b c)) => (c)
(nth 1 ’(a b c)) => (b c)
(nth 3 ’(a b c)) => nil

178

Chapter 26. Festival’s Scheme Programming Language

(last LIST)

The last cdr of a list, traditionally this function has always been called last
rather last_cdr

(last ’(a b c)) => (c)
(last ’(a b (c d))) => ((c d))

(reverse LIST)

Return the list in reverse order

(reverse ’(a b c)) => (c b a)
(reverse ’(a)) => (a)
(reverse ’(a b (c d))) => ((c d) b a)

(member ITEM LIST)

Returns the cdr in LIST whose car is ITEM or nil if it found

(member ’b ’(a b c)) => (b c)
(member ’c ’(a b c)) => (c)
(member ’d ’(a b c)) => nil
(member ’b ’(a b c b)) => (b c b)

Note that member uses eq to test equality, hence this does not work for strings.
You should use member_string if the list contains strings.

(assoc ITEM ALIST)

a-list are a standard list format for representing feature value pairs. An a-list is
basically a list of pairs of name and value, although the name may be any lisp
item it is usually an symbol. A typlical a-list is

((name AH)
(duration 0.095)
(vowel +)
(occurs ("file01" "file04" "file07" "file24"))
)

assoc is a function that allows you to look up values in an a-list

(assoc ’name ’((name AH) (duration 0.95))) => (name AH)
(assoc ’duration ’((name AH) (duration 0.95))) => (duration 0.95)
(assoc ’vowel ’((name AH) (duration 0.95))) => nil

Note that assoc uses eq to test equality, hence this does not work names that
are strings. You should use assoc_string if the a-list uses strings for names.

Arithmetic functions
+ - * / exp log sqrt < > <= >= =

I/O functions
File names in Festival use the Unix convention of using "/" as the directory separator.
However under other operating systems, such as Windows, the "/" will be appropri-
ately mapped into backslash as required. For most cases you do not need to worry
about this and if you use forward slash all the time ti will work.

179

Chapter 26. Festival’s Scheme Programming Language

(format FD FORMATSTRING . ARGS)

The format function is a little unusually in Lisp. It basically follows the printf
command in C, or more closely follows the format function in Emacs lisp. It is
desgined to print out infomation that is not necessarily to be read in by Lisp (un-
like pprint, print and printfp). FD is a file descriptor as created by fopen, and
the result is printed to that. Also two special values are allows there. t causes the
output to be sent to standard out (which is usually the terminal). nil causes the
output to be written to a string and returned by the function. Also the variable
stderr is set to a file descriptor for standard error output.

The format string closely follows the format used in C’s printf functions. It is
actually interpreted by those functions in its implementation. format supports
the following directives

%d

Print as integer

%d

Print as integer in hexadecimal

%f

Print as float

%s

Convert item to string

%%

A percent character

%g

Print as double

%c

Print number as character

%l

Print as Lisp object

In addition directive sizes are supported, including (zero or space) padding, and
widths. Explicitly specified sizes as arguments as in %*s are not supported, nor
is %p for pointers.

The %s directive will try to convert the corresponding lisp argument to a string
before passing it to the low level print function. Thus list will be printed to
strings, and numbers also coverted. This form will loose the distinction between
lisp symbols and lisp strings as the quote will not be present in the %s form. In
general %s should be used for getting nice human output and not for machine
readable output as it is a lossy print form.

In contrast %l is designed to reserve the Lisp forms so they can be more easily
read, quotes will appear and escapes for embedded quote will be treated prop-
erly.

(format t "duration %0.3f\n" 0.12345) => duration 0.123
(format t "num %d\n" 23) => num 23
(format t "num %04d\n" 23) => num 0023

180

Chapter 26. Festival’s Scheme Programming Language

(pprintf SEXP [FD])

Pretty print give expression to standard out (or FD if specified). Pretty printing
is a technique that inserts newlines in the printout and indentation to make the
lisp expression easier to read.

(fopen FILENAMEMODE)

This creates a file description, which can be used in the various I/O functions. It
closely follows C stdio fopen function. The mode may be

"r"

to open the file for reading

"w"

to open the file for writing

"a"

to open the file at the end for writing (so-called, append).

"b"

File I/O in binary (for OS’s that make the distinction),

Or any combination of these.

(fclose FD)

Close a file descriptor as created by fopen.

(read)

Read next s-expression from standard in

(readfp FD)

Read next s-expression from given file descriptor FD. On end of file it returns
an sexpression eq to the value returned by the function (eof_val). A typical
example use of these functions is

(let ((ifd (fopen infile "r"))
(ofd (fopen outfile "w"))
(word))

(while (not (equal? (set! word (readfp ifd)) (eof-val)))
(format ofd "%l\n" (lex.lookup word nil)))

(fclose ifd)
(fclose ofd)))

(load FILENAME [NOEVAL])

Load in the s-expressions in FILENAME. If NOEVAL is unspecified the s-expressions
are evaluated as they are read. If NOEVAL is specified and non-nil, loadwill return
all s-expressions in the file un-evaluated in a single list.

String functions
As in many other languages, Scheme has a distinction between strings and
symbols. String evaluate to themselves and cannot be assigned other values,
symbols of the print name are equal? while strings of teh same name aren’t
necessarily.

181

Chapter 26. Festival’s Scheme Programming Language

In Festival’s Scheme, strings are eight bit clean and designed to hold strings of text
and characters in what ever language is being synthesized. Strings are always treats
as string of 8 bit characters even though some language may interpret these are 16-bit
characters. Symbols, in general, should not contain 8bit characters.

(string-equal STR1 STR2)

Finds the string of STR1 and STR2 and returns t if these are equal, and nil other-
wise. Symbol names and numbers are mapped to string, though you should be
aware that the mapping of a number to a string may not always produce what
you hope for. A number 0may or may not be mapped to "0" or maybe to "0.0"
such that you should not dependent on the mapping. You can use format to
map a number ot a string in an explicit manner. It is however safe to pass sym-
bol names to string-equal. In most cases string-equal is the right function to
use rather than equal?which is must stricter about its definition of equality.

(string-equal "hello" "hello") => t
(string-equal "hello" "Hello") => false
(string-equal "hello" ’hello) => t

(string-append . ARGS)

For each argument coerce it to a string, and return the concatenation of all argu-
ments.

(string-append "abc" "def") => "abcdef"
(string-append "/usr/local/" "bin/" "festival") => "/usr/local/bin/festival"
(string-append "/usr/local/" t ’hello) => "/usr/local/thello"
(string-append "abc") => "abc"
(string-append) => ""

(member_string STR LIST)

returns nil if no member of LIST is string-equal to STR, otherwise it returns t.
Again, this is often the safe way to check membership of a list as this will work
properly if STR or the members of LIST are symbols or strings.

(member_string "a" ’("b" "a" "c")) => t
(member_string "d" ’("b" "a" "c")) => nil
(member_string "d" ’(a b c d)) => t
(member_string ’a ’("b" "a" "c")) => t

(string-before STR SUBSTR)

Returns the initial prefix of STR up to the first occurrence of SUBSTR in STR. If
SUBSTR doesn’t exist within STR the empty string is returned.

(string-before "abcd" "c") => "ab"
(string-before "bin/make_labs" "/") => "bin"
(string-before "usr/local/bin/make_labs" "/") => "usr"
(string-before "make_labs" "/") => ""

(string-after STR SUBSTR)

Returns the longest suffix of STR after the first occurrence of SUBSTR in STR. If
SUBSTR doesn’t exist within STR the empty string is returned.

(string-after "abcd" "c") => "d"
(string-after "bin/make_labs" "/") => "make_labs"

182

Chapter 26. Festival’s Scheme Programming Language

(string-after "usr/bin/make_labs" "/") => "bin/make_labs"
(string-after "make_labs" "/") => ""

(length STR)

Returns the lengh of given string (or list). Length does not coerce its argument
into a string, hence given a symbol as argument is an error.

(length "") => 0
(length "abc") => 3
(length ’abc) -> SIOD ERROR
(length ’(a b c)) -> 3

(symbolexplode SYMBOL)

returns a list of single character strings for each character in SYMBOL}’ print
name. This will also work on strings.

(symbolexplode ’abc) => ("a" "b" "c")
(symbolexplode ’hello) => ("h" "e" "l" "l" "o")

(intern STR)

Convert a string into a symbol with the same print name.

(string-matches STR REGEX)

Returns t if STR matches REGEX regular expression. Regular expressions are de-
scribed more fully below.

(string-matches "abc" "a.*") => t
(string-matches "hello" "[Hh]ello") => t

System functions
In order to interact more easily with the underlying operating system, Festival
Scheme includes a number of basic function that allow Scheme programs to make
use of the operating system functions.

(system COMMAND)

Evaluates the command with the Unix shell (or equivalent). Its not clear how this
should (or does0 work on other operating systems so it should be used sparingly
if the code is to be portable.

(system "ls") => lists files in current directory.
(system (format nil "cat %s" filename))

(get_url URL OFILE)

Copies contents of URL into OFILE. It support file: and http: prefixes, but
current does not support the ftp: protocol.

(get_url "http://www.festvox.org/index.html" "festvox.html")

183

Chapter 26. Festival’s Scheme Programming Language

(setenv NAME VALUE)

Set environment variable NAME to VALUEwhich should be strings

(setenv "DISPLAY" "nara.mt.cs.cmu.edu:0.0")

(getenv NAME)

Get value of environment variable NAME.

(getenv "DISPLAY")

(getpid)

The process id, as a number. This is useful when creating files that need to be
unique for the festival instance.

(set! bbbfile (format nil "/tmp/stuff.%05d" (getpid)))

(cd DIRECTORY)

Change directory.

(cd "/tmp")

(pwd)

return a string which is a pathname to the current working directory.

Utterance Functions
%%%%%Utterance construction and access functions

Synthesis Functions
%%%%% Synthesis specific functions

Debugging and Help
%%%%% backtrace, debugging, advise etc.

Adding new C++ functions to Scheme
Brief decsription of C++ interface.

184

Chapter 26. Festival’s Scheme Programming Language

Regular Expressions
Regular expressions are fundamentally useful in any text processing language. This is
also true in Festival’s Scheme. The function string-matches and a number of other
places (notably CART trees) allow th eunse of regular expressions to matche strings.

Wewill not go into the formal aspects of regular expressions but just give enough dis-
cussion to help you use them here. See [regexbook] for probablay more information
than you’ll ever need.

Each implementation of regex’s may be slightly different hence here we will lay out
the full syntaxt and semantics of the our regex patterns. This is not an arbitrary selec-
tion, when Festival was first developed we use the GNU libg++ Regex class but for
portability to non-GNU systems we had replace that with our own impelementation
based on Henry Spencer regex code (which is at the core of many regex libraries).

In general all character match themselves except for the following which (can) have
special interpretations

. * + ? [] - () | ^ $ \

If these are preceded by a backslash then they no longer will have special interpre-
tation.

.

Matches any character.

(string-matches "abc" "a.c") => t
(string-matches "acc" "a.c") => t

*

Matches zero or more occurrences of the preceding item in the regex

(string-matches "aaaac" "a*c") => t
(string-matches "c" "a*c") => t
(string-matches "anythingc" ".*c") => t
(string-matches "canythingatallc" "c.*c") => t

+

Matches one or more occurrences of the preceding item in the regex

(string-matches "aaaac" "a+c") => t
(string-matches "c" "a*c") => nil
(string-matches "anythingc" ".+c") => t
(string-matches "c" ".+c") => nil
(string-matches "canythingatallc" "c.+c") => t
(string-matches "cc" "c.+c") => nil

?

Matches zero or one occurrences of the preceding item. This is it makes the pre-
ceding item optional.

(string-matches "abc" "ab?c") => t
(string-matches "ac" "ab?c") => t

185

Chapter 26. Festival’s Scheme Programming Language

[]

can defined a set of characters. This can also be used to defined a range. For
example [aeiou] is and lower case vowel, [a-z] is an lower case letter from a
thru z. [a-zA-Z] is any character upper or lower case.

If the ^ is specifed first it negates the class, thus [^a-z] matches anything but a
lower case character.

\(\)

Allow sections to be formed to allow other operators to affect them. For exam-
ple the * applies to the previous item thus to match zero more occurrences of
somethign longer than a single character

(string-matches "helloworld" "hello\\(there\\)*world") => t
(string-matches "hellothereworld" "hello\\(there\\)*world") => t
(string-matches "hellotherethereworld" "hello\\(there\\)*world") => t

Note that you need two backslashes, one to escape the other backslashes

\|

Or operator. Allows choice of two alternatives

(string-matches "hellofishworld" "hello\\(fish\\|chips\\)world") => t
(string-matches "hellochipsworld" "hello\\(fish\\|chips\\)world") => t

Note that you need two backslashes, one to escape the other backslashes

Some Examples
%%%%% some typical example code usage

186

Chapter 27. Edinburgh Speech Tools

Details of wagon, ch_wave, ngram etc stuff.

Edinburgh Speech Tools1

Notes
1. http://festvox.org/docs/speech_tools-1.2.0/book1.htm

187

Chapter 27. Edinburgh Speech Tools

188

Chapter 28. Machine Learning

decision trees, OLS< SVD, and pointers to Tom’s book.

189

Chapter 28. Machine Learning

190

Chapter 29. Resources

In this chapter we will try to list some of the important resources available that you
may needwhen building a voice in Festival. This list cannot be complete and compre-
hensive but we will to give references to meta-resources as well as direct references
to information code, data that may be of use to you.

This document itself will be updated occasionally and it is worth checking to ensure
that you have the latest copy.

Updates, new databases, new language support etc will happen intermittently, new
voices will be released which may help you develop your own new voices.

http://festvox.org

has been set up as a resource center for voices in Festival offering databases, exam-
ples and repository for voice distribution. Checking that site regularly is a good thing
to do.

Specifically

http://festvox.org/examples/cmu_us_kal_diphone/

Offers a complete example US English diphone databes as built using the walk-
though in Chapter 21. The originally recorded diphone databases is also avail-
able as is, at http://festvox.org/databases/cmu_us_kal_diphone/.

http://festvox.org/examples/cmu_time_awb_ldom/

Offers a complete example limited domain synthesis database as build using the
walkthroughs in Chapter 5.

Other databases, lexicons etc will be installed on festvox.org as they become avail-
able.

There is also a mailing-list festvox-talk@festvox.org for discussing aspects of
building voices. See http://festvox.org/maillist.html for details of joining it and the
archive of messages already sent. Also, while traffic is low, feel free to mail the au-
thors awb@cs.cmu.edu or lenzo@cs.cmu.edu and we will try to help where we can.

Festival resources
The Festival home page http://www.cstr.ed.ac.uk/projects/festival/ It is updated
regularly as new developments happen.

The Festival Speech Synthesis System code and the Edinburgh Speech Tools library
and related programs are available from

ftp://ftp.cstr.ed.ac.uk/pub/festival/

or in the US at

http://www.festvox.org/festival/downloads.html

Note that precompiled versions of the system are also available from that site,
though at time of writing only Linux binaries are available.

Festival comes with its ownmanual and html, postscript andGNU info format. It and
a less comprehensive Speech Tools manual are pre-built in festdoc-1.4.1.tar.gz.
The manuals are also available on line at

http://www.festvox.org/docs/manual-1.4.2/festival_toc.html
http://www.festvox.org/docs/speech_tools-1.2.0/book1.htm10

191

Chapter 29. Resources

You will likely need to reference these manuals often.

It will also be useful to have access to other voices development in Festival as seeing
how others solve problems may make things clearer.

In addition to Festival itself a number of other projects throughout the world use
Festival and have also released resources. The “Related Projects” links give urls to
other organizations which you may find useful.

It is worth mentioning Oregon Graduate Institute here who have done a lot of work
with the system and release other voices for it (US English andMexican Spanish). See
http://cslu.cse.ogi.edu/tts/ for more details.

A second project worth mention, is the MBROLA project [dutoit96]
http://tcts.fpms.ac.be/synthesis/mbrola.html, they offer a waveform synthesis
technique [dutoit93] and a number of diphone database for lots of different
languages. MBROLA itself doesn’t offer a front end, just phone, duration and F0
target to waveform synthesis. (However the do offer a full French TTS system too.)
Their diphone databases complement Festival well and a number of projects use
MBROLA databases for their waveform synthesis and Festival as the front end. If
you lack resources to record and build diphone databases this is a good place to
check for existing diphone databases for languages. Most of their databases have
some use/distribution restrictions but they usually allow any non-commercial use.

General speech resources
The network is a vast resource of information but it is not always easy to find what
you are looking for.

Indexes to speech related information are available. The comp.speech frequently
asked questions maintain by Andrew Hunt, is an excellent constantly updated list of
information and resrouces available for speech recognition and synthesis. It is avail-
able in html format from

Australia: http://www.speech.su.oz.au/comp.speech/
UK: http://svr-www.eng.cam.ac.uk/comp.speech/
Japan: http://www.itl.atr.co.jp/comp.speech/
USA: http://www.speech.cs.cmu.edu/comp.speech/

The Linguistics Data Consortium (LDC), although expensive, offers many speech
resources including lexicons and databases suitable for synthesis work. There web
page is http://www.ldc.upenn.edu A similar organization is the European Language
Resources Association http://www.icp.grenet.fr/ELRA/home.html which is based
in Europe. Both these home pages have links to other potential resources.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
to be added:
recording and EGG information
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Notes
1. http://festvox.org

2. http://festvox.org/examples/cmu_us_kal_diphone/

3. http://festvox.org/databases/cmu_us_kal_diphone/

4. http://festvox.org/examples/cmu_time_awb_ldom/

192

Chapter 29. Resources

5. http://festvox.org/maillist.html

6. http://www.cstr.ed.ac.uk/projects/festival/

7. ftp://ftp.cstr.ed.ac.uk/pub/festival/

8. http://www.festvox.org/festival/downloads.html

9. http://www.festvox.org/docs/manual-1.4.2/festival_toc.html

10. http://www.festvox.org/docs/speech_tools-1.2.0/book1.html

11. http://cslu.cse.ogi.edu/tts/

12. http://tcts.fpms.ac.be/synthesis/mbrola.html

13. http://www.speech.su.oz.au/comp.speech/

14. http://svr-www.eng.cam.ac.uk/comp.speech/

15. http://www.itl.atr.co.jp/comp.speech/

16. http://www.speech.cs.cmu.edu/comp.speech/

17. http://www.ldc.upenn.edu

18. http://www.icp.grenet.fr/ELRA/home.html

193

Chapter 29. Resources

194

Chapter 30. Tools Installation

This chapter describes the installation method for Festival, the Festvox voice build-
ing tools and related system as used throughout this book. Binary distributions are
included for standard systems, but full source is also provided as are instrction on
installation.

These tools are included on the CD as distributed with the book, though all parts
(and possible later releases of them) are also available from http://festvox.org.

Notes
1. http://festvox.org

195

Chapter 30. Tools Installation

196

Chapter 31. English phone lists

Relating phonemes to sounds is not obvious as people think. Even when one is fami-
lar with phone sets its easy to makemistakes when reading lists of phones alone. This
is particularly true in reading diphone nonsense words. The table provided here are
intended for both the experienced and inexperienced reader of phones, to help you
decide on the pronunciation.

These tables are not supposed to be a substitute for a good phonetics course, they are
intended to give people a basic idea of the pronunciation of the phone sets used in
the particaulr examples in this document. Many simplifying assumptions have been
made, and often aren’t even mentioned. To the phoneticians out there I apologise, as
much as the assumptions are wrong we are here listing atomic discrete phones which
we have found useful in building practical systems, even though better sets probably
exist.

US phoneset
Inspite of everyone telling you that there is one and only one US phoneset, when it
comes to actually using one you quickly discover there are actually many standard
one used by lots of different pieces of software, often the difference betwen them is
trivial (e.g. case folding) but computers being fundamentally dumb can’t take these
trivial differences into account. Here we list the radio phoneset which is used by stan-
dard US voices in festival. The definition is in festival/lib/radio_phones.scm.
This list was based on those phones that appear in the Boston University FM radio
corpus with minor modifications. The list here is exactly those phones which appear
in the diphone nonses words as used in the example explained in Chapter 21.

aa

fAther, wAshington

ae

fAt, bAd

ah

bUt, hUsh

ao

lAWn, dOOr, mAll

aw

hOW, sOUth, brOWser

ax

About, cAnoe

ay

hIde, bIble

eh

gEt, fEAther

el

tabLE, usabLE

197

Chapter 31. English phone lists

em

systEM, communisM

en

beatEN

er

fERtile, sEARch, makER

ey

gAte, Ate

ih

bIt, shIp

iy

bEAt, shEEp

ow

lOne, nOse

oy

tOY, OYster

uh

fUll, wOOd

uw

fOOl, fOOd

b

Book, aBrupt

ch

CHart, larCH

d

Done, baD

dh

THat, faTHer

f

Fat, lauGH

g

Good, biGGer

hh

Hello, loopHole

jh

diGit, Jack

198

Chapter 31. English phone lists

k

Camera, jaCK, Kill

l

Late, fuLL

m

Man, gaMe

n

maN, New

ng

baNG, sittiNG

p

Pat, camPer

r

Reason, caR,

s

Sit, maSS

sh

SHip, claSH

t

Tap, baT

th

THeatre, baTH

v

Various, haVe

w

Water, cobWeb

y

Yellow, Yacht

z

Zero, quiZ, boyS

zh

viSion, caSual

pau

short silence

In addition to the phone sthemselves the nonsense word generated by the diphone
schema also have some other notations to denote different type of phone.

199

Chapter 31. English phone lists

The use of - (hyphen) in the nonsense word itself is used to denot an explicit syllable
boundary. Thus pau t aa n - k aa pau is used to state that the word should be
pronounced as tan ka rather than tank ah. Where no explicit syllable boundary
is given the pronunciation should be pronounce naturally without any boundary
(which is probably too underspecified in some cases).

The use of _ (underscore) in phone names is used to denote consonant clusters. That
is t_-_r is the /tr/ as found in trip not that in cat run.

UK phoneset
This phoneset developed at CSTR a number of years ago is for Southern UK English
(RP, "received pronunciation"). Its definition is in festival/lib/mrpa_phones.scm.

uh

cUp, dOne

e

bEt, chEck

a

cAt, mAtch

o

cOttage, hOt

i

bIt, shIp

u

pUll, fOOt, bOOk

ii

bEAt, shEEp

uu

pOOl, bOOt

oo

AUthor, cOURt

aa

ARt, hEARt

@@

sEARch, bURn

ai

bIte, mIght, lIke

ei

Ate, mAIl

200

Chapter 31. English phone lists

oi

tOY, OYster

au

sOUth, hOW

ou

hOle, cOAt

e@

AIR, bARE, chAIR

i@

EAR, bEER

u@

sUre, jUry

@

About, arlAs, equipmEnt

p

Pat, camPer

t

Tap, baT

k

Camera, jaCK, Kill

b

Book, aBrupt

d

Done, baD

g

Good, biGGer

s

Sit, maSS

z

Zero, quiZ, boyS

sh

SHip, claSH

zh

viSion, caSual

f

Fat, lauGH

201

Chapter 31. English phone lists

v

Various, haVe

th

THeatre, baTH

dh

THat, faTHer

ch

CHart, larCH

jh

diGit, Jack

h

Hello, loopHole

m

Man, gaMe

n

maN, New

ng

baNG, sittiNG

l

Late, bLack

y

Yellow, Yacht

r

Reason, caReer,

w

Water, cobWeb

#

short silence

In addition to the phone sthemselves the nonsense word generated by the diphone
schema also have some other notations to denote different type of phone.

The use of - (hyphen) in the nonsense word itself is used to denot an explicit syllable
boundary. Thus pau t aa n - k aa pau is used to state that the word should be
pronounced as tan ka rather than tank ah. Where no explicit syllable boundary
is given the pronunciation should be pronounce naturally without any boundary
(which is probably too underspecified in some cases).

The use of _ (underscore) in phone names is used to denote consonant clusters. That
is t_-_r is the /tr/ as found in trip not that in cat run.

202

	Building Synthetic Voices
	Table of Contents
	Chapter 1. Overview of Speech Synthesis
	History
	Uses of Speech Synthesis
	General Anatomy of a Synthesizer
	Text
	Lexicons
	Prosody
	Waveform generation

	Chapter 2. Speech Science
	Chapter 3. A Practical Speech Synthesis System
	Basic Use
	Utterance structure
	Modules
	Utterance access
	Features as pathnames
	Access idioms

	Utterance building
	Extracting features from utterances

	Chapter 4. Basic Requirements
	Hardware/software requirements
	Voice in a new language
	Voice in an existing language
	Selecting a speaker
	Who owns a voice
	Recording under Unix
	Extracting pitchmarks from waveforms

	Chapter 5. Limited domain synthesis
	designing the prompts
	customizing the synthesizer front end
	autolabeling issues
	unit size and type
	using limited domain synthesizers
	Telling the time
	Designing the prompts
	Recording the prompts
	Autolabeling the prompts
	Extracting pitchmarks and building LPC coefficients
	Building a clunit based synthesizer from the utterances
	Testing and tuning

	Making it better

	Chapter 6. Text analysis
	Nonstandard words analysis
	Token to word rules
	Number pronunciation
	Multitoken numbers
	Declensions

	Homograph disambiguation
	TTS modes
	Markup modes

	Chapter 7. Lexicons
	Word pronunciations
	Lexicons and addenda
	Out of vocabulary words
	Building lettertosound rules by hand
	Building lettertosound rules automatically
	Postlexical rules
	Building lexicons for new languages

	Chapter 8. Building prosodic models
	Phrasing
	Accent/Boundary Assignment
	F0 Generation
	F0 by rule
	F0 by linear regression
	Tilt modeling

	Duration
	Prosody Research
	Prosody Walkthrough
	Design database
	Setup directory structure
	Synthesizing prompts
	Recording the prompts
	Phonetically label prompts
	Extract pitchmarks and F0
	Build utterance structures
	Duration models
	F0 contour models

	Chapter 9. Corpus development
	NonLatinscript languages

	Chapter 10. Waveform Synthesis
	Chapter 11. Diphone databases
	Diphone introduction
	Defining a diphone list
	Synthesizing prompts

	Recording the diphones
	Labeling the diphones
	Extracting the pitchmarks
	Building LPC parameters
	Defining a diphone voice
	Checking and correcting diphones
	Diphone check list

	Chapter 12. Unit selection databases
	Cluster unit selection
	Choosing the right unit type
	Collecting databases for unit selection
	Preliminaries
	Building utterance structures for unit selection
	Making cepstrum parameter files
	Building the clusters

	Building a Unit Selection Cluster Voice
	Diphones from general databases

	Chapter 13. Statistical Parametric Synthesis
	Building a CLUSTERGEN Statistical Parametric Synthesizer
	Making it better:Mixed excitation and Random Forests

	Chapter 14. Labeling Speech
	Labeling with Dynamic Time Warping
	Labeling with Full Acoustic Models
	Prosodic Labeling

	Chapter 15. Evaluation and Improvements
	Evaluation
	Does it work at all?
	Formal Evaluation Tests
	Sematically unpredictable sentences

	Debugging voices

	Chapter 16. Markup
	Chapter 17. Concepttospeech
	Chapter 18. Deployment
	Chapter 19. Graphemebased Synthesizer
	General Graphemebased Voices
	Building Indic voices
	Creating support for new Indic languages

	Chapter 20. A Japanese Diphone Voice
	Chapter 21. US/UK English Diphone Synthesizer
	Chapter 22. ldom full example
	Chapter 23. Nonenglish ldom example
	Chapter 24. Concluding remarks and future
	Chapter 25. Festival Details
	Chapter 26. Festival's Scheme Programming Language
	Overview
	Data Types
	Functions
	Core functions
	List functions
	Arithmetic functions
	I/O functions
	String functions
	System functions
	Utterance Functions
	Synthesis Functions

	Debugging and Help
	Adding new C++ functions to Scheme
	Regular Expressions
	Some Examples

	Chapter 27. Edinburgh Speech Tools
	Chapter 28. Machine Learning
	Chapter 29. Resources
	Festival resources
	General speech resources

	Chapter 30. Tools Installation
	Chapter 31. English phone lists
	US phoneset
	UK phoneset

