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Introduction

Code-switching (CS) is the phenomenon by which multilingual speakers switch back and forth between
their common languages in written or spoken communication. CS is pervasive in conversational
communications across multilingual communities. Processing CS speech efficiently poses a great variety
of challenges to Speech Processing algorithms: speech recognition and synthesis, language modeling,
dialogue systems and chatbots, speech analyzers, and many others. In this workshop, we aim to create a
space for speech researchers interested in discussing all these challenges and identifying a path forward
in this research area.The workshop program includes papers discussing code-switching analysis from
multilingual corpora, language identification and code-switching detection from voice utterances, design
of code-switched voice services, and different aspects of code-switched speech recognition.

Another component of the workshop is the Shared Task on Code-switched Spoken Language
Identification (LID) of CS Data. The shared task focused on three language pairs (Gujarati-English,
Telugu-English and Tamil-English), and consisted of two subtasks: utterance-level identification of
monolingual vs. code-switched utterances and frame-level identification of language in a code-switched
utterance. A total of five teams submitted their system’s output: five for the first subtask, and two for the
second. All shared task systems will be presented during the workshop.

We would like to thank all authors who submitted their contributions to this workshop and all shared
task participants for taking on the challenge. We received a total of 19 regular workshop submissions
of which we accepted 14 for publication, all of them as workshop talks. We also thank the program
committee members for their help in providing meaningful reviews. Lastly, we thank the Interspeech
2020 organizers for the opportunity to put together this workshop, Microsoft for their tech support and
Speech Ocean for generously sharing their data for the Shared Task.

See you all remotely, at WSTCSMC 2020!
Workshop co-chairs,

Kalika Bali

Alan W. Black
Rupesh Kumar Mehta
Sunayana Sitaram
Thamar Solorio
Victor Soto

Emre Yilmaz
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Speech

Leijing Hou*, Ying Liu*, Yingying Gao, Junlan Feng
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Abstract

In this paper, we are motivated to systematically study the code-
switching behavior with a large Mandarin-English speech cor-
pus. Our analysis is organized hierarchically into three levels:
phonemes, words and context of the code-switched segments.
On each level, we investigate the characteristics of the distribu-
tion, pronunciation, syntax, and semantics of CS segments. We
run quantitive evaluation to measure how these factors influence
CS and reveal certain commonalities. The findings in this study
are complementary to direct CS modeling and can be used to
further guide the enhancement of acoustic and language model
design.

Index Terms:code-switching, characteristics at code-switching
points

1. Introduction

Code-switching(CS) denotes a shift from one language to an-
other within an utterance or a discourse. With rapid progress
of globalization, this phenomenon occurs increasingly frequent
in our daily life. It poses extra challenges to automantic speech
recognition(ASR), since most off-the-shelf ASR systems today
are monolingual and cannot handle code-switched speech well.

Substantial research efforts recently have been made to
bridge this gap from system integration, pronunciation, lan-
guage, and acoustic modeling perspectives. [1] proposes to run
multiple ASR engines in parallel with an language identifi-
cation(LID) system and compositionally uses scores from all
these systems to decode CS speech. [2] uses a English speech
recogniser and a Malay recogniser in the first pass and rescored
the produced hypothesis to get the final result without a LID
system. The choice of phone set for CS ASR is important
too. [3] applied International Phonetic Alphabet(IPA), Bhat-
tacharya distance and discriminative training to combine phone
sets for Mandarin-English. [4] describes similar approaches to
combine phone sets for Hindi-English speech recogniser. For
language modeling, there is sure more text data comparing to
speech especially on social media sites. However the patterns of
them found online is very different from speech in real life. [5]
proposes to apply Bert and GAN models to generate CS data,
which is then to augment the monolingual corpus to retrain the
language model for ASR. [6] obtains the best result by training
a RNN LM with interleaved monolingual data in English and
Spanish followed by CS data. For acoustic modelling, [7] de-
velops a cross-lingual phonetic acoustic model for Cantonese-
English speech. More recently, researchers have explored end-
to-end acoustic modeling for CS speech. [8] trained a CTC-
based model using monolingual data and fine-tune with CS data
for Mandarin-English speech. [9] uses transfer learning from
monolingual models.

The above efforts all obtain promising results to lower CS

speech word error rate. However, the gap is still substantial.
In this paper, we are motivated to systematically study the na-
ture and types of the CS phenomena in speech. We believe this
line of study is complementary and helpful to direct acoustic,
language, and pronunciation modelling for CS ASR.

As we all observe, CS in general is not a simple and random
activity. There are certain underlying linguistic structures and
tendencies that are accepted as appropriate. A few studies in the
past have explored various aspects of CS. Kraus et al. investi-
gated textural features that trigger CS with the SEAME [10]
data corpus [11]. Their study shows CS segments are most
often triggered by determiners in Mandarin and switched by
nouns in English. Preeti et al. studies the lexical and prosodic
cues for CS with a Hindi-English code-switching corpus [12].
Heike et al. explores Brown word clusters, open class words
and clusters of open class word embeddings with a Mandarin-
English code-switching corpus [13]. [14] reveals that examples
of highly-switched speech are primarily composed of frequent
spans of short length, reflecting the bursty nature of switch-
ing and the lower span entropy of frequent CS. [15] discov-
ers two constraints of CS by quantitative analysis: Free Mor-
pheme Constraint and Equivalence Constraint that function si-
multaneously. The Free Morpheme constraint specifies that it
is possible to switch between full sentences as well as any con-
stituent within the sentence if a free morpheme is present in
a constituent. The Equivalence Constraint specifies that lan-
guage switches generally occur at points where there is no vio-
lation of syntactic rules of the participating languages. Most of
these analyses conducted are based on a relatively small corpus.
Some focused on finding a general underlying regularity of CS.
Some are more into one or two very specifics of CS.

In this paper, we conduct our study on a large CS Mandarin-
English speech corpus made by DataTang with around 630K
utterances that has recently become available. We propose to
systematically analyze CS on three levels : Phoneme, Word,
and Context of the CS segments. We target our efforts to an-
swer the following questions: 1) How does the pronunciation of
an English word or the comprised phonemes influence the way
it is code-switched into Mandarin? 2)What types of words and
phrases are more likely to be switched in? 3)What is the gener-
ality of the context surrounding these CS segments? 4)Sugges-
tion for ASR given these studies?

The rest of the paper is organized as follows. Section 2 de-
scribes the DataTang corpus. Section 3 elaborate on our analy-
sis. We discuss our observations and reflections in Section 3. In
Section 4, we conclude our study.

2. The Corpus

The Datatang Mandarin-English CS corpus consists of 1030
hours of audio data and 629,946 corresponding transcriptions.



The audio data were recorded from Mandarin speakers who
have learned English as a second language for more than ten
years. The recordings take place in natural situation and are
switched spontaneously between Chinese and English. The
corpus contains 24,958 unique English words, 46,000 unique
Chinese words and totally 6.7 million tokens. Code-mixing
Index(CMI) is adopted to evaluate the CS degree of the cor-
pus [16]. The average CMI(Cj.g4)of the corpus is 16.55. And
the average number of CS points per utterance FP,,4 is 1.67.
The average length of per utterance is 10.66 in Chinese charac-
ters or English words. Examples in this corpus are provided in
Table 1.

Table 1: Code-switching sentence examples in DataTang cor-
pus.

ID Transcriptions

trans1 53l (especially) fit(match) F& [ (my) college bag
trans2  fE(at) gold coast ffJ(#auxiliary word) — Hif(one-day tour)
trans3 M (ah) time cures everything & [fJ(really) 1R (very) 3% 4f(good)
transd BN T (became) iX(this) [E 5 ) (country’s) E IF (real)

7 X _Fff)(meaningful) global citizen

3. Our Analysis

In this section, we elaborate on our analysis of CS on three lev-
els: phoneme, word and context of the CS segments.

3.1. Phoneme

The investigation on phoneme aims at answering the first ques-
tion presented at the end of Introduction —from the pronuncia-
tion perspective. First, we look into the distribution of English
phonemes in Mandarin-English CS segments and English alone.
Second, we study how pronunciations of English and Mandarin
phonemes and their differences influence CS behavior.

3.1.1. Distribution

To compare the phoneme distribution, we choose to use the
Carnegie Mellon University(CMU) Pronouncing Dictionary
[17], which includes 134,000 words, as the English lexicon dic-
tionary. We use the Google Books N-grams [18] as our source
to obtain the frequency of phonemes in English corpus. We
train a phoneme-level language model with the CS segments in
our corpus and the probability of uni-gram is used as the occur-
rence frequency. In our analysis, 39 English phones are con-
sidered disregarding the stress variations. Figure 1 illustrates
the distribution of these 39 uni-phones and their bi-grams in our
CS corpus and in Google books. The y-axis represents the log-
arithmic frequency of uni-phone and bi-phone sequences. As
we observe, there is no apparent difference on overall tendency
between CS and English alone.

We move on to study the specific phonemes. We divide the
39 phones into four bins as shown in Figure 2, respectively cor-
responding to top frequent phonemes (top 50%) in both CS and
native English corpus (@)1 quadrant), CS top 50%-Native bot-
tom 50%((Q2 quadrant), CS bottom 50%-Native bottom 50%
(Q3 quadrant) and CS bottom 50%-Native top 50% (Q4 quad-
rant). The majority of phones, 31 out of 39 phones, fall into
Q1, @3, which means their popularity are similar in CS and in
English. However, there are 8 phonemes in Q2 and Q4. For
instance, DH(0) is popular in English words such as rhythm
and gather, however is not as frequent in Mandarin-English CS

speech. One possible reason is that pronunciation ‘0’ is rela-
tively hard for Mandarin speakers to pronounce.
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Figure 1: Distribution of uni-phone and bi-phone in English
and CS.

3.1.2. Pronunciation

In this section, we propose to investigate if pronunciation dif-
ference between English and Mandarin phones has an effect on
CS behavior. We use 66 Mandarin phonemes without regard-
ing to tones of Mandarin in our study. We employ two methods
to measure the similarity between phones. First, we use IPA
phone mapping [19] to determine similar phone pairs in two lan-
guages. Second, we adopt a data-driven clustering method pro-
posed in [20-23] on the audio recordings to find the phone pairs
with shortest Bhattacharyya distance, which is a distance mea-
sure between two multivariate Gaussian distributions. Figure
2 left highlights 16 English phones that has mappings in Man-
darin according to IPA. 12 of them resides in top right quadrant.
Figure 2 right highlights English phones with similar Mandarin
counterparts according to Bhattacharyya distance. This analysis
shows a mixed story.

cs Cs

Q, Q,

AV, B Y E AY','BEY,'F' | 'AAY'AHY 'EHY'NY, DY,

‘T,'s', '™, 'ER', 'K, 'P'

native native

'SHL Y, 'OV, 'AQ,
'CH', 'TH", 'HH', 'G',

W OW, ‘NG, DHY, UW V7 o, v
AW, ZH', 'UH', UH
Q; Q Q,

Figure 2: Four quadrants distribution of 39 English phones, in
which the left highlights the phones that has mappings in Man-
darin according to IPA, and the right highlights the phones with
similar Mandarin counterparts according to Bhattacharyya dis-
tance.

()1 quadrant in Figure 2 shows the frequently appeared
phones both in CS and English, most English phones have
completely same phonetic pronunciation with Mandarin ones
in IPA. And the clustered similar phone pairs share 9 phones
with the IPA ones. For @3, the clustering mapping has many
phone-pairs. It maybe because of the limited using of the words
containing them both in native English and CS scenes. This
limited observation shows pronunciation similarity aligns posi-
tively with the frequency of CS.

3.2. Word

In this section, we conduct our analysis of CS on the word level.
There are a few of aspects we look into: distribution of code-
switched English words, the complexity of them in terms of



their pronunciations, as well as syntactic and semantic com-
monalities they share.

3.2.1. Distribution

In order to measure the variation in word distribution, we first
extract embedded English words in our corpus as CS words and
words in the CMU dictionary as native English words. Word
frequency is obtained from Google Books and numeric conver-
sion in logarithmic is been done due to the huge span of fre-
quency values. Figure 3 shows the boxplot of word distribution.
The y-axis represents the logarithmic frequency. It can be seen
that frequency of CS words is less spread. Furthermore, the
range value of native words’ log-frequency is 3.77 £ 2.69 and
median is 4.01. As for CS words, the range value is 4.95+2.05
and with median of 5.25. The commonly embedded words in
CS are high-frequency ones used by native English speakers.

10 10
Z 8 ! 8 T
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| .
1
0

native English words code-switching English words

Figure 3: Boxplots for (a) word frequency of native English
words, (b) word frequency of code-switching words.

3.2.2. Pronunciation

Our heuristic hypothesis is that if a popular English noun or
verb phrase can be pronounced at much lower cost comparing
to their counterparts in Mandarin, then it is more likely to be
embedded. For example, /BM consists of 3 syllables and can
be easily uttered by native Chinese. Its translation & & & F At
2 /> 3] includes 8 syllables with tones. IBM is way more fre-
quently used than its translation in Mandarin conversations. We
measure the relative pronunciation complexity by the number
of syllables involved on both sides. The ratio between E & 7
FIALES 2> 8] and IBM is 8:3. The average ratio of the embed-
ded CS segments in our corpus is 1.5. For the 50 most frequent
CS English words, the ratio is 1.7. While for the 50 most fre-
quent words in Google Books, the ratio is 1.5. This to some
extent matches our hypothesis. The average number of sylla-
bles in CS English words is 2.18. The story is similar with the
number of phonemes. 91.78% of the CS words consists of 2 to
7 phonemes (above 90%). And CS words with 3 to 6 phonemes
are about 73.91%. The odd to have a CS word with more than
11 phonemes is about 0.61% .

3.2.3. POS of CS Words

Secondly, we implement a Part of Speech(POS) analysis on the
code-mixed utterances to find out what type of words in terms
of POS are more likely to be embedded. Since each CS sentence
involves more than one language, we use the Stanford log-linear
POS tagger for Chinese and English separately as described
in [24], and the tags are derived from the Penn Treebank POS
tag set for Chinese and English respectively [25], [26]. Fur-
thermore, we compare the distribution of POS tags between the

embedded English words in CS corpus and the ones in mono-
lingual English corpus to figure out how much the POS dis-
tribution is impacted by the syntactic rule from the embedded
language and how much is caused by the CS phenomenon. The
Wiki news corpus [27] is downloaded and used as the mono-
lingual corpus. Table 2 shows the top 5 POS tags of English
words in CS corpus and Wiki corpus. We can see the most com-
mon POS tags in CS corpus are nouns(NN and NNS), which is
close to half, followed by adjectives(JJ), and the percentage of
other POS tags is relatively low. In the Wiki corpus, the percent-
age of ranking in the top five is relatively balanced, and the most
common POS tag is proper nouns(NNP). This may be deter-
mined by the explanatory function of Wiki corpus to some ex-
tend. We have enough reason to consider that the proper nouns
are also a large type to be switched, since most of them do not
have corresponding translations in Mandarin. Here the NNP for
CS corpus is not in the top 5 might be related with the design
of the corpus which wants to cover the contents from different
fields. Nevertheless, the chi-square test is carried out and the
result shows that the distribution of POS tags in the CS corpus
and Wiki corpus is significantly different(pValue <0.001).

Table 2: Top 5 English POS tags in CS corpus and mono-lingual
Wiki corpus.

CS segments Wiki corpus
Tag  proportion | Tag  proportion

NN 48.65% NNP 16.88%

1] 12.80% NN 14.95%
NNS 11.91% IN 14.30%
VB 2.84% DT 11.56%
IN 2.46% 1 6.90%

3.2.4. Semantic Clustering

We are motivated to find out what types of words are more likely
to be embedded in terms of their meaning. We extract word
embeddings directly from the Bidirectional Encoder Represen-
tations from Transformers (Bert) basic model [28] for all CS
words in our corpus. They are clustered via a simple K-Means
procedure into 10 bins. For visualization, we apply t-distributed
Stochastic Neighbor Embedding (t-SNE) project word vectors
into 2 dimensions. To assist observation, inflected forms of a
given word are considered as the same word. The top 100 fre-
quent CS words respectively for Noun are shown in Figure 4.
For an example, we can observe that nouns related to food in-
cluding chicken, cream, salad, pizza, cake, cheese are among
top ones. Other top clusters are related to music in purple,
weather in yellow, etc. Top clusters for verbs and adjectives
are quite different related to fravel and feeling.

3.3. Context

In this section, we examine the context of CS, especially the
factors to trigger CS including primary categories of the pro-
ceeding words, the syntactic structure of the sentence, and the
relative position that CS appears.

3.3.1. Triggering Words

POS tags are the primary categories of words according to their
function in a sentence. Chinese Penn Treeback POS tag set is
substantially from English. A brief description can be found
in [29]. Table 3 lists the top 5 frequent parts of speech for the
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Figure 4: Semantic clusters for top 100 embedded nouns.

words proceeding CS. BA is a tag mainly for Chinese charac-
ter 42, which plays a syntactic role to emphasize the following
noun or pronoun as the main objective of an action. Coordi-
nating conjunction and Measure words are usually followed by
a noun or pronoun. In our CS corpus, these words have high
chance to trigger CS . For instance, 38.92% of BA words are
followed by CS. The last column shows the probability for other
top frequent tags. This result echos our above conclusion that
Nouns are the top category to be code-switched. In addition,
Adverbial particle is also quite common in front of CS, which
is in concert with the observation that Adjective and Verbs are
the second and third tags only to Nouns. SB and DEV words
are very likely leading to CS verbs or adjectives.

Table 3: Top 5 Chinese POS tags for the words triggering CS.

Chinese  Description Chance To
Pos Tag Trigger CS
BA Preposition to emphasize ~ 38.92%
CC Coordinating conjunction  34.87%
SB Passive indicator 32.58%
M Measure word 28.04%
DEV Adverbial particle 25.39%

3.3.2. Parsing Structure

We parse the CS sentences to capture if there is general global
syntactic rules that may influence CS. The Stanford Parser is
adopted as described in [30]. We list the top 5 syntactic rela-
tionships between the CS segments and their contexts in Table
4. We can observe that most major dependencies between CS
and the context are Noun Compound Modifier, Direct Object,
Dependent and Adjectival Modifier. These observations are ex-
pected considering the results of the POS analysis on the CS
segments or the words triggering them. CS follows certain con-
straints of syntactic dependency from the matrix language, in
accord with the Matrix Language Frame(MLF) theory to a cer-

tain degree [31]. Table 4 shows the specific frequency and the
percentage that they are related to CS.

Table 4: Top5 syntactic dependencies between CS segments and
their contexts.

Syntactic Role  Description Chance of CS
nmod noun compound modifier ~ 58.76%
dobj direct object 50.47%
dep dependent 43.24%
amod adjectival modifier 41.65%
cc coordination 36.94%

3.3.3. CS Position

Additionally, we check where CS tends to appear in an utter-
ance. The starting position of a CS segment is normalized by the
length of the sentence. The relative position, ranging from 0.0
to 1.0, are divided into three bins: (0.0,0.3],(0.3,0.7],(0.7,1.0],
which approximately represent the head, the body and the tail
of a sentence. Overall in our CS corpus, 20.81% of the chance
CS appears in the head, 43.18% in the body and 36.00% in the
tail.

4. Discussion

We all know people don’t code-switch randomly. The under-
lying constraints are multi-facts in multi-layers. We design our
analysis in a hierarchical way for three levels: phonemes, words
and context to specifically quantify how much they co-relate
with CS. Our analysis results on each layer is obtained with a
specific Mandarin-English corpus: DataTang. It would be very
interesting to extend these experiments to other CS corpus for
Mandarin-English and other CS langague pairs. It is one of the
directions we will continue our research on. We hope our pro-
posed analysis framework can be used systematically analyze
CS behavior in more languages.

Specific results that we provide in each section can poten-
tially help algorithm and system design to cope with CS. We
reviewed some of these previous work in Introduction section.
These metrics we proposed on three layers can be used as fea-
tures to enhance CS data generation, CS language model ad-
justment, CS naturalness evaluation as well as end-to-end CS
speech ASR.

5. Conclusion

This work present a systematic analysis for the characteristics
of CS on three levels: phoneme, word and context. We look
into distribution and pronunciation of phonemes. We highlight
which English phonemes are more frequently embedded into
Mandarin and how pronunciation difference on phoneme level
influences the CS behavior. The overall distribution is plotted
and don’t show overall difference. For the word level, we inves-
tigate four aspects, overall distribution, pronunciation, syntactic
role and semantics. We run comparison study comparing CS
and mono-lingual English. Our experimental results have ad-
dressed our motivating questions posed in Introduction. For the
context level, we study how positions of CS, triggering words
as well as the sentence parsing structure affects CS. Our analy-
sis code and the obtained results will be open-sourced once the
paper gets accepted.
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Abstract

In multilingual communities, code-switching is a common
phenomenon and is predominant in most of the low resource
languages as well. Many of the Indic languages fall under the
category of low resource languages. Malayalam is a Dravidian
language and is the official language of the Indian state
Kerala. High literacy rate and media exposure in the state of
Kerala makes Malayalam-English a good fit for code-switched
speech research. This paper reports the first stage development
of code-switched speech corpus for Malayalam-English using
a dual stage approach. The speech corpus contains 20 hours of
conversational speech from 42 speakers. The database has
inter-sentential, intra-sentential and intra-word  code-
switching. Along with the description of the database creation,
annotation scheme and analysis of the database is presented in
this paper. The corpus will serve as a data resource for our
ASR and speech synthesis research in code-switching.

Index Terms: code-switching, speech corpus, database
development, low resource languages, Malayalam

1. Introduction

Multilingual speakers are those who can use more than one
language and outnumber monolingual speakers [1]. The
primary language acquired and used during childhood is
commonly known as the mother tongue. Factors like
education, technology, migration for job, cultural openness,
and interaction for commercial, scientific and technological
purposes can contribute to the need of communicating in more
than one language and create bilingualism or multilingualism.
Code-switching is the use of more than one language by a
speaker within a conversation or utterance. Previous research
has shown that there is an increase in percentage of speakers
around the world with code-switching in speech [2]. In most
of the cases, code-switching can be seen as mixing of
language elements of non-native language in the native
language. Code-switching is often considered as speaker
dependent and occurs within utterance positions where the
syntactic rules of the native language are not violated [3].
There are common code-switching patterns shared among
speakers as well [4].

India is the world’s second largest country in terms of number
of languages [5]. Hindi and English are the official languages
of the country by its constitution [6]. The increased use of
media like TV channels, Radio and IT enabled technologies in
this modern globalized society motivates the use of English
language in daily life. Kerala is a state in south India with a
population of more than 35 million. Malayalam is the native
language of more than 96% people in Kerala. Malayalam is a
Dravidian language and is indigenous to the Indian sub-
continent [7]. Kerala state ranks highest in literacy rate [8] and

majority of the people in the state have school level or higher
level education. Malayalam and English are the official
languages of the state Kerala. English is taught in school
starting from the primary classes itself, thus giving exposure
to English language from a very early school age. This
exposure to English language and media exposure can be
considered as one of the major factors for high levels of
Malayalam-English code-switching.

Due to the increase in the presence of code-switching in the
conversational speech, Malayalam-English is a good fit for
code-switched speech corpus development and research. To
the best of our knowledge, we could not find any Malayalam-
English code-switched speech corpus. This paper describes
our two stage approach used for speech corpus development as
part of our ongoing speech research. The analysis done on the
speech data collected in stage two is also presented.

2. Related Work

Previous researches have shown good progress in the
processing of code-switching data in the text form. Earlier
there were only few formal frameworks to analyze code-
switched text [9] and now there are works on code-switched
data done in a large scale. Due to the influence of social
media, we get larger text corpora of multilingual nature and
advances in research help us have better language
identification [10] and prediction of code-switch points [11].
Most of the research studies focus on text rather than speech
corpus. Difficulty in database collection for code-switched
speech and lack of efficient multiple language identification
systems could be considered as one of the major factors for
fewer works in code-switched speech. Most studies in code-
switched speech corpus are limited to certain language pairs
and led to improvement of code-switch language modeling
[12] and code-switch automatic speech recognition (ASR)
system developments [13] in those language pairs. There is a
survey [14] on different language pairs in which code-
switched speech corpus is developed.

Some of the major non-Indic language pairs in which studies
were done include Cantonese — English [15], Mandarin —
English [16] and Spanish-English [17]. A two method
approach [18] was used to create Chinese-English code-
switched dataset. First method was to collect text database
from the websites and used a machine translation system in
the second method. Code-switching due to insertion of English
words was frequent in code-switched language-balanced
speech corpora containing English-isiZulu, English-isiXhosa,
English-Setswana and English-Sesotho language pairs [19].

A method used for Japanese-English code-switching speech
corpus development [20] was by utilizing Japanese and
English TTS systems. A Swiss accented bilingual French-
German speech database was created [21] that contain
accented speech and dialects.



Some of the code-switched speech corpus in Indic languages
includes Hindi — English [22], Tamil-English, Telugu-English,
and Gujarati-English [14]. However, to the best of our
knowledge, the number of databases for code-switching in
Indic languages is limited.

Some speech corpora are created by manually interconnecting
mono-lingual segments, whereas most of the remaining
databases are created by making the speakers read the scripts
given to them. A system was developed for automatic
detection of language boundaries in code mixed texts found in
social media by taking English — Hindi and English — Bengali
Facebook messages [23].

In an interview conducted for 9 University students whose
native language was Hindi and they used English as much as
they used their native language [22], it was found that all the
students did intra-sentential code-switching. 33% of words
were English words. Another database for code switched
speech of crowd workers was created using HALEF system
for Hindi — English and English — Spanish with more than 700
dialogs. The system was designed to create mainly intra-
sentential code-switched speech between the workers and the
machine [24]. There is also another ongoing effort in
developing Hindi-English speech corpus [25]. A study showed
increase in the code switching behavior of aphasics [26] when
compared to the neurologically normal Malayalam — English
bilingual speakers. There was no much difference in the
quality of code-switch when compared to those code-switches
in normal subjects.

A phonetically balanced speech corpus for Hindi-English read
data [27] was created by selecting sentences that contained
triphones lower in frequency than a predefined threshold.

One of the primary requirements in any speech research
especially like ASR is the availability of database. There is an
increasing trend for code-switching among bilingual speakers.
Malayalam-English being a language pair with high level of
code-switching, the development of speech corpus can
contribute to the code-switched speech research. To the best
of our knowledge, there is no code-switched speech corpus
available for Malayalam-English code-switched speech.

3. Corpus design methodology

Malayalam being a low resourced language, corpus
development for code-switched speech is done using an
approach which ensures maximum code-switching in the
minimum collected data. A two stage approach is used for the
corpus development. In both the stages, speech data was
collected and analyzed. The primary aim of speech data
collected in stage one is to help in identifying the nature of
speakers for stage two data collection so that we get stage two
speech corpus with maximum code-switching. Stage one
informs the speech data collection in stage two.

3.1. Stage One

Stage one of data collection was done to identify the extent
and nature of code-switching among the different category of
speakers. The analysis results are used to identify the type of
speakers for stage two, so that the speech corpus contains
maximum code-switching. In stage one, speech data was
collected through conversation, interview and questionnaire.
The topics of speech were random daily situations and current
trends, and this ensures that the code-switched data collected
is natural as much as possible. A total of 60 speakers with
Malayalam as native language was part of stage one of corpus

development. Speakers belong to the age group of 18-60 and
60% of the speakers were male. Speakers are fluent in
Malayalam and English speaking fluency varied from low to
very high. Figure 1 shows the contribution of each component
in stage 1 data collection. The interviews and observations
were maximum of 5 minutes in length. The observation was
done by recording the natural conversation between two
people.

A=Interview
B=Observation
C=Questionnaire

Figure 1: Distribution of each type of data collection method
The analysis results of stage one data collection shows that the
Malayalam-English code-switched speech data collected
contain inter-sentential code-switching, intra-sentential code-
switching as well as intra-word code-switching. Other than
borrowed words, many tend to always use certain English
words such as ‘school, newspaper, barber’ instead of their
corresponding Malayalam word. Also, it is to be noted that
this data was from natural environment with varied
environmental settings and was only used for the purpose of
optimal speaker identification for stage two. Only basic
transcription was done manually in English script with
markers for code-switching.

Table 1: Amount of code-switch events for different groups

Group1 | Group2 | Group3 | Group4
R.=1) R.=2) R.=3) R.=4)
Inter- 45% 36% 31% 28%
sentential
Intra- 32% 28% 22% 18%
sentential
Intra-word | 2% 4% 3% 2%

To identify a subset of participants who do maximum code-
switching, we analyzed the amount of code-switch events with
regard to four speaker parameters - Time spent outside the
state where speaker was born (Group 1), English language
used at work (Group 2), English language used at home
(Group 3) and Educational background (Group 4). Group 1 is
the group of speakers who spent minimum of 5 years outside
the state where the speaker was born. Group 4 consists of
speakers who have minimum graduation level education and
their medium of education was English. Table 1 shows the
percentage of code-switching in the collected data. While
grouping, only one parameter was considered at a time and
there are utterances without code-switching. There are
speakers who are part of more than one group. We also found
that some of the common factors which affected this code-
switching are ease of substitution, influence of technology and
emotional expression.
A confidence score index was developed to identify whether a
new speaker selected randomly can contribute significantly for
the code-switched speech corpus development, once we know
the background parameters of the speaker. The speakers with
maximum confidence score among the available ones can be
selected for speech corpus development.
Each of the parameters is given ranks (R;) 1 to 4 as shown in
Table 1. For a speaker k, the confidence score CSy is
calculated as below:

CSk =2 (CR /R" )



where R, is the rank of the parameter and Cy is the extent of
code switching in that category for speaker k. Every speaker
will have a maximum score of 1 for each parameter. For
example, if a speaker has never stayed outside the native state,
Cy for that parameter is zero. A speaker spending 5 years or
more outside the native state will have Cy as 1. The same
formula can also be extended for separately calculating the
confidence score for inter-sentential as well as intra-sentential
code switching.

Also, it was noted that the nature and type of code-switching
done by the speakers with confidence score less than one was
to a large extend the subset of those with confidence score
more than one. This further ensures the speaker selection
using the developed confidence score to have lesser bias.

3.2. Stage two

In stage two, the Malayalam English code-switched speech
corpus is created. The category of speakers was selected
considering the analysis results from stage one. The speakers
selected for stage two have a minimum confidence score of
1.25. 42 speakers were part of stage two data collection. All
the speakers selected for stage two have minimum high school
level education and Malayalam is their first language. The
speakers are in the age group of 18-60 and 55% of the
speakers are male. The recordings were interviews and of
general topics. The questions were related to current trends,
background of the speaker as well as their profession. For this
purpose, a professional interviewer was engaged who can
conduct conversations and interviews of different topics
depending on the speaker. This will help in ensuring the
response to be natural as much as possible.
Table 2: Types of code-switching

Type Example
Inter-sentential aMe0 QIS eHOSOIM @M.
I Love my city. (My house is in
Kerala. I love my city)
amoM  emMeel cinema  &6rme).
(I saw a movie yesterday)
Intra-word (English- | directormien
Malayalam) (Director’s)

Intra-word GBS

(Malayalam-English) | (kids)

The speech was recorded at 44.1kHz sampling rate and 16 bit
resolution. The UTF-8 code orthographic transcription is used
for both English and Malayalam script. In stage two of data
collection, a total of 20 hours of speech data is obtained from
42 speakers. Table 2 show the types of code-switching found
in the speech data collected during stage one. It was found that
English-Malayalam intra-word code-switching is predominant
when compared to Malayalam-English intra-word code-
switching. In addition to this, data was also collected from
social media using python script and Twitter API. We
collected 20,000 words from Twitter which contains intra-
word code-switching and slang words. The script obtained was
in English. This ensures to have maximum number of code-
switched words in the database.

Intra-sentential

3.3. Transcription and Annotation

The speech data was manually transcribed into utterances by
engaging three bilingual transcribers who are fluent in English
as well as Malayalam. The file format of transcription is
compatible for ASR system development. Each utterance has a
file ID, speaker ID, utterance ID, start time and stop time.

Each speaker data was typically 25 to 35 minutes speech in
length. The software audacity was used for labeling the
utterances. Figure 2 shows a sample utterance which contains
Malayalam, English-Malayalam intra-word code-switching
and English parts. Exam-inte, meaning ‘of exam’ is an
example of English-Malayalam intra-word code-switched

W-Gop—rp

Mg [EM] o oMlg 5TELg

Figure 2: Example of a typical code-switched utterance with
notation M for Malayalam and E for English

Malayalam words are transcribed in Malayalam script and
English words are transcribed in English script. The English
and Malayalam part of intra-word code-switched words are
transcribed in their respective scripts. Out of vocabulary words
are transcribed in English script. Accent category is also
marked during transcription. Each speech data took a
transcription rate of 30 to 40 times the real time (xRT) and
validation effort of 10xRT. Each transcription is verified twice
for timing errors, typo errors, language boundary errors as
well as code-switch specific transcription error in each
language.

Annotation scheme

The annotation process includes marking of language
boundaries and code-switching boundaries. In the annotation
scheme, each speaker is given a speaker ID. The ID starts with
either ‘F* or ‘M’ for speaker gender and a three-digit speaker
number. At the moment, manual annotation is done with
utterance time stamps marked. Each transcription was first
verified by the same transcriber who did the transcription and
then it was verified manually by another transcriber.
Transcribers were given a set of guidelines. Like, during the
process of transcription, initial transcription was done in
English script since it will make the initial process faster.
Later, Malayalam words and Malayalam part of the intra-word
code-switched words are manually transliterated with the help
of an online transliteration tool. Words like borrowed words,
names of person and place are transcribed in English script.

Table 3: Transcription errors and agreement

Error Agreement
Kanam (#Mo) and Kanam | Transcribe kanam (¢80Mo)
(0Mo) as Kaanam (C-V-V)
Manju (2602)) and Manju | Transcribe manju (26010))
(0ero1)) as manjju
map (@9a]) and map Trascribe map (Q]Ogj) as
(@0q]) mapp
Manam (@Mo) and manam | Transcribe manam (@6mMo)
(m6mo) as manlam

One of the major errors that was encountered during
transcription is during conversion of Malayalam words from
English script to Malayalam script. For example, the
Malayalam word “&»0Rlo (kaalam)” in the initial English
script can be kaalam (&>0£10) or kalam (d»2lo) where both
MOPlo and HRlo are valid dictionary words. Another
situation is where we do not have exact transliteration in
English script. (@ (IPA:Ja) and oY (IPA:sa) have same
transliteration “sha” in English. In such case, oY is
represented as shla. These words were verified again. Some



of the cases are shown in Table 3 and inter-transcriber
agreement was made to avoid similar errors in future
transcription.

During transcription, sentence and word boundaries are
marked. Apart from this, prosodic annotation like pause
duration is also marked with custom labels given to the
transcriber. Interruptions or pauses include pauses within
words and between words. The pause can be short pause or
long pause and these are separately marked. At this stage, only
three common accents are considered and they are south
Kerala accent (SK), central Kerala accent (CK) and
Malabar/North Kerala accent (NK). This is the first level of
annotation and we expect to add more specifiers like tags for
parts of speech (POS) and emotions as the speech research
progresses.

4. Analysis of the corpus

Analysis was done on the Malayalam-English speech corpus
collected during stage two of our corpus development. The
utterances contain English words, Malayalam words and intra-
word code-switched words.

Table 4: Statistics of speech corpus

Total number of utterances 22640
English words 32%
Malayalam words 66%
Intra-word code-switched words 2%
40% /\
> / N
0% T T T T )
<1 1-2 2-3 3-4 Over 4 sec
Figure 3: Distribution of utterance length
Table 4 shows the total number of utterances and the

distribution of different types of words in the speech data. It is
seen that two third of the total number of words are
Malayalam words. Utterances were of different lengths as
shown in Figure 3 and most number of utterances was of
average length 3 seconds.

14%
12% A
10% -
8% A
6% -
4% -
2%
0% -

a i n k uwv a t ¢t j 1

Figure 4: Frequency of Malayalam phonemes

Phoneme analysis was done on the phonetic dictionary
obtained using the developed code-switched grapheme to
phoneme system [28]. The data taken for this analysis is the
transcript of the speech corpus. Neither Malayalam nor
English are phonetic subset of each other. However there are
total of 25 overlapping phonemes. Figure 4 and Figure 5
shows the ten most frequent Malayalam phonemes and
English phonemes respectively, found in the database

10

collected in stage two. Among these prominent phonemes, it
can be seen that there are 3 overlapping phonemes (i, , /) as
well.

10%
8% A
6%
4% -
2% -
0% -

At n s 1 1 k 1 i d

Figure 5: Frequency of English phonemes

As shown in Table 5, it is observed that, English-Malayalam
intra-word code-switching is very predominant when
compared to Malayalam-English code-switched words.
English Malayalam intra-word code-switched  words
contribute to the 95% of the total number of code-switched
words.

Table 5: Intra-word code-switching

Example Percentage
M-E #nslesuds (children) 5%
E-M directormien (Director’s) | 95%

Table 6 shows the different types of utterances in the speech
corpora. Non-word utterances are those which include speech
elements like sigh, laugh, um etc. It is seen that intra-sentential
code-switched utterances appear almost three times more often
of that of utterances with only English words. This is due to
the usage of many common words and phrases directly from
English even though it might have a corresponding word or
phrase in Malayalam.

Table 6: Types of utterances

Utterances with only Malayalam words 21%
Non-word utterances 6%
Utterances with only English words 17%
Utterances with at least one intra-sentential | 47%
code-switch

Utterances with at least one intra-word code- | 6%
switch

Utterances with at least one intra-sentential | 3%
code-switch as well as intra-word code-switch

5. Conclusion

A Malayalam-English code-switched speech corpus is
developed using a two stage approach. Primary analysis was
done on the stage one data to identify the type of speaker who
can contribute with maximum code-switched speech data.
Depending on this analysis, a method of confidence score to
choose the optimal speaker for a practical type of data
collection has been presented. Using the information obtained
from stage one and confidence score, speakers were selected
for stage two of corpus development. Transcription and basic
annotation process is presented. The speech corpus contains
inter-sentential ~ code-switching,  intra-sentential  code-
switching and intra-word code-switching. Primary analysis
like type of utterances, distribution of utterance length and
frequency of phonemes was done on the speech corpus
developed. We expect to use this speech corpus as the primary
dataset for our ongoing speech research.
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Abstract

Forced alignment methods have recently seen great progress
in the fields of acoustic-phonetics studies of low-resource lan-
guages. Code-mixed speech however, presents complex chal-
lenges to forced-alignment techniques, because of the longer
phonemic inventory of bilingual speakers, the nature of ac-
cented speech, and the confounding interaction of two lan-
guages at a frame level. In this paper, we use the Montreal
Forced Aligner to annotate the Phonetically Balanced Code-
Mixed read-speech corpus (7.4 hours; 113 speakers) in 3 dif-
ferent training environments (code-mixed, Hindi and English).
Additionally, we present an analysis of alignment errors using
phonological and data-driven features using Random Forest and
Linear mixed effects models. We find that contextual influ-
ence of neighbouring phonemes influences the error in align-
ment most significantly, when compared against any other fea-
tures. Many of the alignment errors by phonological features
can be explained by their acoustic distinctiveness. Additionally,
the amount of training data by phone type also contributed to
lowering their respective error rates.

Index Terms: code-mixing, code-switching, forced alignment,
error analysis, speech recognition

1. Introduction

Forced alignment techniques have become increasingly popular
in the analysis and description of speech data. After success-
ful performance of forced aligners on large scale monolingual
speech resources [1, 2, 3], a variety of non-traditional speech
resources [4, 5, 6] have also been explored in the past decade.
However, code-mixed speech may present a challenge for auto-
matic speech alignment, given the complex interaction of two
languages at the frame level within the same utterance.

Code-mixed speech is frequently observed in bilingual and
multilingual communities all across the world. Speakers ex-
hibit alternation either within the utterance (code-mixing) or at
a clausal or phrasal level (code-switching). In light of its rel-
evance and complexity, techniques on processing [7, 8, 9, 10]
code-mixed speech have actively been explored in the past few
years. Until a few years ago, prevalent practices in the do-
main have included two-pass approaches; first detecting lan-
guage and then recognizing using appropriate acoustic models.
At the same time, adapting monolingual speech resources have
also seen active investment [11, 12]. More recently, dedicated
neural network architectures [13, 14, 8], augmentation of exist-
ing datasets [10] and several fine-grained problems [15, 16] in
speech recognition are being unearthed, underscoring the rele-
vance of these studies even further.

*authors of equal contribution

pgogoi@ufl.edu,
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With the rise in computational speech processing, theoret-
ical questions surrounding this phenomena may also arise, as
would a discussion on their tools and techniques. In this paper,
we present a step in this direction. We compare the performance
of Montreal Forced Aligner [1] against gold-standard annota-
tions over isolated English words from the Phonetically Bal-
anced Code Mixed corpus of Hindi-English read speech [17].
‘We present results in three word-level training environments; a)
with pooled Hindi and English data, b) with monolingual Hindi
data, and c) within corpus monolingual English data. Finally,
using Random Forests and Linear Mixed Effects models, we
present an analysis of forced alignment errors, against a set of
phonological and data-driven predictors.

The organization of the paper is as follows: Section 2 de-
scribes the acoustic data, the pronunciation lexicon, and the
gold-standard annotation procedure. Section 3 details the ex-
perimental procedure, with descriptions of the training datasets
for alignment, and the analytical models for evaluation. Section
4 discusses the results of the analysis, and presents comparison
between each type of experiment over different models. Section
5 concludes the paper.

2. Data
2.1. Acoustic data

The Phonetically Balanced Code Mixed (PBCM) corpus [17]
contains 6,941' phonetically balanced sentences, recorded at
[IIT-Hyderabad. Sentences for this corpus were compiled us-
ing an optimal selection procedure from selected sections of a
prominent Hindi newspaper, Dainik Bhaskar. The speech data
for this corpus was recorded by 113 native Hindi speakers (58
male, and 55 female), all of whom were fluent in English.

Hindi | English
word (types) 4790 3754
word (tokens) 54961 18839
phoneme (types) 73 52
phoneme (tokens) | 194672 97137

Table 1: Distribution of Hindi-English words and phonemes in

the PBCM corpus.
2.2. Pronunciation data

The PBCM corpus was originally transcribed using the Wx
notation [18], which is a popular transcription metric for In-
dian languages, especially for NLP and related purposes. For
conducting acoustic-phonetic studies however, we compared
the pronunciations generated by Espeak, Epitran and Wx. We

'more phonetically balanced sentences were added after the original

publication, which reports 6,126 utterances



found Espeak (http://espeak.sourceforge.net/) to be the best pro-
nunciation scheme, particularly for cases where pronunciation
was not predictable by orthography. Some errors, however, still
persisted. Errors of nasalization and syllabification (irregular
schwa insertion) were corrected through a combination of man-
ual edits and phonological rules that ensured homorganic nasal-
consonant clusters.

These corrections could still not accommodate the speaker-
specific variation between the /dg-z/ and /p"-f/ contexts, which
were not always distinct in the orthography. Manual inspection
revealed very little speaker variation in the /p"-f/ context, with
most speakers preferring the /t/ variant. But for the /&-z/ con-
text, speakers were found to compensate for the orthographic in-
consistency, resulting in variant pronunciations of the d5 words.
To overcome the problem of lesser represented phonemes, boot-
strapping techniques are prevalent in the forced alignment liter-
ature [5, 6, 19, 20, 21]. In such models, target phonemes in
the lexicon are mapped to more frequent and closely resem-
bling phonemes. Therefore, we decided to create several boot-
strapped versions of each of the variants (in /&-z/ and /p"-f/)
lexicon, and allowed the Montreal Forced Aligner [1] to pick
the most appropriate variant. The pronunciation selected by the
best performing bootstrapping model was chosen to be listed in
the lexicon. Thus, we created a variant free lexicon where the
/p"-f/ variation was mapped entirely to /f/ and each pronuncia-
tion of the /&/ words were given a unique identity.

2.3. Gold-standard alignment data

After the development of a variant-free lexicon, each word in
the dataset was manually given a) Hindi, b) English and c) part-
Hindi tags, by two Hindi speakers (one fluent, one native). Part-
Hindi tags referred to switches between Hindi and English at a
morphological level [22] (e.g, amerik-i, for American). Such
words were removed from the analysis. Among the English
words, 10% of the words were selected for gold-standard an-
notation. To maintain consistent speaker variation, 6 sentences
from each speaker’s set of sentences were chosen. Word and
phoneme level boundaries for each of these words were manu-
ally annotated and cross-evaluated by the two Hindi speakers.
Forced alignment results obtained from each training environ-
ment (discussed Section 3.1) will be analyzed against the words
in this dataset.

3. Experimental setup

This section describes the experimental procedure for the anal-
ysis of force aligned English words. First, we discuss the 3
training environments using each of which, the isolated English
words were aligned. We then introduce the phonological and
data driven features that were used as predictors for the evalua-
tion of the forced alignment.

3.1. Acoustic models

As a preliminary step, the complete PBCM corpus was used
as training as well as alignment data. This initial alignment
resulted in word and phoneme boundaries for every sentence
in the corpus. Using this dataset, and the TextGridTools [23]
package, we separated the data into word level chunks. Subsets
of this data were created in the following way:

¢ Code-mixed Words (CoM-W): All the extracted words
from the aligned sentences were used as training envi-
ronment for this experiment. This included Hindi words,
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English words, as well as those English words that car-
ried Hindi inflection (for example: “amerik-i”’). The pur-
pose of this sub-experiment was to maximize coverage
for each phoneme within the training dataset, and pool
Hindi and English word-level data for the alignment.

¢ Hindi Words (Hin-W) From the aforementioned word-
level dataset, monolingual Hindi words were separated
and a new dataset was created. The purpose of this
sub-experiment was to assess the reliability of forced
alignment in absence of any English data. This type of
setup also probes the question of the accuracy of align-
ment when all the phonemes are well represented, but the
phonotactic information of English words is withdrawn.

¢ English Words: In the same vein as the previous setup
(Hin-W), monolingual English words separated from the
CoM-W dataset, and an English-only model was created.
The purpose of this setup was to evaluate the role of
monolingual English data in identical training and align-
ment environments.

Each of these datasets was then sent to align the isolated En-
glish words dataset (Eng-W trained and aligned on itself), us-
ing the speaker-adapted triphone model. From the obtained
forced alignment timestamps, Midpoint (the central timestamp
between left and right boundary) for each phoneme were ex-
tracted. Similarly, this Midpoint value was extracted for the
gold-standard annotations as well. The absolute difference be-
tween the Gold-standard Midpoint and the Forced-Aligner Mid-
point will serve as the main dependent variable for each of the
subsequent analyses.

3.2. Predictors

In this subsection, we discuss each of the features (both phono-
logical, and data-driven) that were used as predictors to evaluate
the accuracy of the forced alignment. To consistently maintain
the number of features per phoneme, all phonemes in the corpus
were uniquely specified for each of these features.

3.2.1. Consonant-specific feature set

The following set of features were specified for each consonant
in the inventory:

e Manner of articulation

* Place of articulation

* Voicing type
Existing literature on error evaluation of speech recognition
models and forced aligners have shown that some of these
features are recognised better than others [24], [6]. Mel-
frequency cepstral coefficients (MFCCs) are the standard acous-
tic speech signal representations in speech recognition, and in-
deed in forced alignment models. [24] compared that the perfor-
mance of an MFCC-based recognition system with an articula-
tory based system trained on German speech, some articulatory
features were suboptimally encoded by MFCCs, such as labial,
coronal, dental, palatal, velar, fricative, —round, high, back and
—voice. Similarly, [6] finds that a cross-lingual forced alignment
of non-English speech using English models performed bet-
ter on natural classes of stops, fricatives, nasals and affricates.
These results supported our motivation for separating our con-
sonants and vowels into sets of natural classes of place, manner
and voicing features. In general acoustic terms, consonant spe-
cific features, fricatives and stops were hypothesized to be well
aligned given their prominent acoustic characteristics. For in-
stance, the boundaries of fricatives are marked by a section of



Code-mixed aligner -- Cons.

Right Context - > Left Context =
Left Context - o .
Right Context -
Place - .
Manner -
Manner - o
Eng. Phone Freq. -
Voicing - °
PI -
Hindi Phone Freq. = ° ace
Eng. Phone Freq. - ° Voicing =

000 003 006  0.09

Permutation predictor importance
(mean decrease in AUC)

0.00

English aligner -- Cons.

0.03

Permutation predictor importance
(mean decrease in AUC)

Hindi aligner -- Cons.
(] Right Context - .
[ Left Context - .
Manner - o
Voicing - °
Place - .

Hindi Phone Freq. - .

000 002 004 006 0.08

Permutation predictor importance
(mean decrease in AUC)

006  0.09

Figure 1: Variance importance for predicting Errorconsonant Using consonant specific features across the CoM-W, Hin-W and Eng-W

training environments

Code-mixed aligner -- Vowels

Right Context - ° Right Context -
Height - o .
Height -
Hindi Phone Freq. - .
Backness -
Length - e
Length -
Backness - .
Left Context - . Eng. Phone Freq. -
Eng. Phone Freq.- | Left Context - | ®
000 002 004 006 0.00

Permutation predictor importance
(mean decrease in AUC)

English aligner -- Vowels

0.02
Permutation predictor importance
(mean decrease in AUC)

Hindi aligner -- Vowels

L] Right Context - °

° Height - ]

Backness - o

Length - .

Left Context - .

Hindi Phone Freq. - °

0.00 0.02 0.04
Permutation predictor importance
(mean decrease in AUC)

0.04 0.06
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training environments

noise and those of stops are marked by a clear burst in most
cases, suggesting better alignments, while approximants poorly
s0, given their dynamic transitions into adjacent vowels.

3.2.2. Vowel-specific feature set

The following set of features were specified for each vowel in
the inventory:

* Vowel height

* Vowel frontness/backness

* Vowel length
Among these, height and backness were expected to influence
the alignment quality more significantly, especially with high
and back vowels given the findings by [24].

3.2.3. Data driven feature set

The following set of features were specified for each phoneme
in the inventory, regardless of its segment type (consonant or
vowel). However, the phone frequency are relevant only selec-
tively for particular training environments. For example, the
frequency of English phone is not relevant for training environ-
ments with Hindi monolingual words.

* Right boundary

¢ Left boundary

* Phone frequency in Hindi Words

* Phone frequency in English Words
Here, the right and left boundary indicated whether the target
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phone is surrounded by a vowel, a consonant or is a boundary
phone. Due to coarticulatory effects, and the triphone modeling
inherent in the Montreal Forced Aligner, the influence of the
neighbouring environment was hypothesized to be strong on the
alignment quality. Similarly, it was important to analyze the
error in terms of the frequency of the phone in the Training
environment.

3.3. Statistical models

This subsection gives an overview of the statistical models de-
veloped for use in the later part of the analysis. We use two
statistical models: Random Forests, and Linear mixed effects
model to analyze the Error under each training environments.

3.3.1. Random forest

Random forests have emerged as powerful tools in estimating
the importance of individual features in the prediction of a
dependent variable. To minimize the effect of speaker variation
on alignment errors, the predicted variable Error was passed
through a per speaker z-score normalization. Then, using the
Party package [25, 26] in R, a random forest model was used to
analyze Error for each of the vowel and consonant type. The
entire set of relevant features in each case was used as predictor
variables for each type of segment (vowel or consonant) and
experiment. Therefore, for example:



Erroryowel ~ Height + Backness + Roundedness
+ Left.Context + Right.Context
+ Eng.Ph.Freq+ Hin.Ph.Freq
+ Length

Here, equation 1 represents the model equation for Error in
vowels in the CoM-W context. All the vowel specific features
have been specified in the model, in addition to the global fea-
tures. Their individual influence is described in the Results sec-
tion, and can be seen in Figure 2.

3.3.2. Linear mixed effects model

Random forest and linear mixed effects models are comple-
mentary statistical methods [27]. While random forest will
provide the overall importance of the variables of interest
(factorial or continuous), mixed-effects model will be used to
highlight how these variables affect the amount of alignment
errors, while being able to capture random-effect factors such
as the speakers and words in the sample. The model structure
will be largely the same as 3.3.1 but with the addition of
by-speaker and by-word random intercepts.

Erroryower ~ Height + Backness + Roundedness
+ Left.Context + RightContext
+ Eng.Ph.Freq+ Hin.Ph.Freq
+ Length + (1|Speaker)
+ (1|Word)

4. Results

This section presents the results obtained from comparing the
Error computed using the absolute difference in Midpoints per
phoneme, from the gold-standard annotations and the forced-
aligned annotations. Error thus obtained will be modeled as
a predicted variable using RandomForest and Linear Mixed Ef-
fects modeling. RandomForest and will be presented for vowels
and consonants separately.

4.1. Descriptive Statistics

Table 2 displays the error tolerance levels (in msec) for each
of the training environments (CoM-W, Hin-W and Eng-W).
This means that, when trained on code-mixed word level data,
52.58% phoneme boundaries matched gold-standard annota-
tions within <10 ms. A comparison across rows (different train-
ing models) shows that CoM-W was the best performing model,
with the greatest coverage of phonemes in the <10 ms range.

Table 2: Comparison of tolerance (in msec) of the three models

Tolerance (msec)

<10 <20 <30 <40 <50
CoM-W 5258 83.00 9454 97.33 98.94
HIN-W  50.75 80.37 92.56 96.14 98.16
ENG-W 51.89 8271 94.12 9727 98.86

4.2. Random Forest

Figures 1 and 2 display the relative importance of each feature
for predicting error. The deviance from the red axis indicates
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the relative strength of each feature in predicting the error in
alignment. Across all the training environments (CoM-W, Hin-
W, Eng-W), the Right Context and the Left Context appear to be
a lot more influential in the error prediction, compared with the
phonological features of the target phone. This reflects the na-
ture of consonants being encoded partly in surrounding phones
especially vowels, e.g. stops. Since about a third (34%) of con-
sonants in the corpus are stop consonants, which rely on transi-
tional cues, it is possible that co-articulation may be governing
this observation. Consistent patterns like these are not quite
so clear among other features. The representation of the target
phone in the training corpus is significant, but once again, does
not influence the error as much. This indicates that simply in-
creasing the individual presence of a phoneme may not be help-
ful enough, unless its supporting context is present. The vocalic
context appears to be largely influenced by its Right boundaries,
but not as much as by its left boundaries. This suggests that
the vowels are better supported by their left boundaries, likely
from an onset consonant, compared to a coda consonant, a well-
established phonetic universal. Let us explore these effects in a
more granular fashion in the next subsection.

4.3. Linear Mixed-Effects Regression

Using the ImerTest [28] package in R, we predicted the Er-
ror variable using fully specified models for vowels and con-
sonants separately. Similar to the observations obtained in Ran-
dom Forest model, we found a significant effect of surrounding
phones (p < 0.001) on the alignment error in the consonantal
context. For each of the training environments, non-boundary
phones have higher error than boundary phones. Reverse trends
were observed in [6], where non-boundary phones showed bet-
ter alignment. However, the comparison with our results is not
straightforward: because the analysis in [6] was conducted us-
ing monophone based aligners (HMAlign and P2FA), and Mon-
treal Forced Align is a speaker-adapted triphone acoustic model.
Through our LMER analysis, we found increased error for con-
sonants due to both their left and right context, but for vow-
els, but b) vowels appear to be influenced largely by their Right
boundaries across all training environments. While the case for
consonants is not so clear, there is evidence that the onset (left
boundary) cues for the vowel are perceptually more significant,
than offset (right boundary) cues [29]. The presence of aspira-
tion causes the formant transitions to be more stable across the
initial and steady-state portion of the vowels [30, 31], perceptu-
ally supporting the recognition of the vowel.

5. Conclusion

In this paper, we conducted forced alignment on code-mixed
speech from the PBCM Hindi-English read speech corpus. We
created 3 types of acoustic models, code-mixed words (CoM-
W), Hindi words (Hin-W) and English words (Eng-W) from
the PBCM corpus. A variant-free Hindi-accented lexicon used
was consistent across all the training datasets. We found that
despite having only half the number of phonemes in the training
corpus, the monolingual English word model performs better
than the monolingual Hindi word model. This suggests that
despite having increased phoneme representation, we may not
achieve better alignment quality, if phonotactic information is
absent. Similarly, in the RandomForest and linear mixed effect
model analysis, we found that contextual information was most
significant in influencing the errors of alignment.
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Abstract

Tremendous progress in speech and language processing has
brought language technologies closer to daily human life. Voice
technology has the potential to act as a horizontal enabling layer
across all aspects of digitization. It is especially beneficial to ru-
ral communities in scenarios like a pandemic. In this work! we
present our initial exploratory work towards one such direction
- building voice enabled banking services for multilingual so-
cieties. Speech interaction for typical banking transactions in
multilingual communities involves the presence of filled pauses
and is characterized by Code Mixing. Code Mixing is a phe-
nomenon where lexical items from one language are embedded
in the utterance of another. Therefore speech systems deployed
for banking applications should be able to process such content.
In our work we investigate various training strategies for build-
ing speech based intent recognition systems. We present our
results using a Naive Bayes classifier on approximate acoustic
phone units using the Allosaurus library [1].

1. Data Collection Tool

We have created a dataset of multilingual queries using a
dummy banking app [2]. It involves a two stage setup. In
the first stage, speech data is crowdsourced from fluent Hindi
speakers. Each speaker plays the role of a ‘user’ and interacts
with the automated banking system. This resulted in 100+ task-
based dialogs in Hinglish, with five distinct intents. In the sec-
ond stage, each speaker is asked to acoustically translate their
interaction into another language. This way, we obtain pseudo
parallel data in two languages from the same speaker. We be-
lieve that creating a pseudo parallel dataset will allow us to
design semi supervised approaches in the future. Our dataset
currently has speech data from six Indian languages - Hindi,
Marathi, Gujarati, Punjabi, Telugu and Bhojpuri.

2. Methodology and Results

We chose spoken intent classification as the first task. For this
task, we have 25 utterances containing speech samples of 11
people, out of which 4 were female. We have 5 intents in the
dataset - Send Money (11 utterances), Check Balance (9 ut-
terances), Check Last Transaction (3 utterances), Withdraw
Money and Deposit Money (1 utterance each) .

We first convert audio into phones using the Allosaurus
library[1]. These phones are then used for intent classification.
We employ Naive Bayes’ Classifier with add-1 smoothing and
absolute discounting. We use cross validation where we leave
out 2 audio samples for testing. The intents Withdraw Money
and Deposit Money were not used for testing as we only have

IThis is an extended abstract.
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H Model  # Unique N-grams  Test Accuracy H
Unigram 38 0.56
Bigram 292 0.48
Trigram 543 0.17

Table 1: N-gram classification accuracy with Add-1 smoothing

H Model Delta Test Accuracy H
Unigram 5 0.69
Bigram 1 0.61
Trigram 1 0.30

Combination (5,1, 1) 0.83

Table 2: Classification accuracy with Absolute Discounting

one sample for both, but are included in the training set. Thus
the testing is only done for three intents, but an intent could be
classified into any of the 5 classes. The results for Naive Bayes
Classifier for add-1 smoothing are shown in Table 1.

It can be observed that the accuracy decreases with increas-
ing N for the different N-gram models. We hypothesize that this
happens due to the relatively small size of the dataset in our ini-
tial exploratory work. We posit the distribution characteristics
to be more uniform across N-grams in our future experiments
with full dataset.

Further we have also performed absolute discounting with
different delta values for each of the Ngram models. The test
accuracies improved significantly. We also combined unigram,
bigram and trigram models with equal weights with their re-
spective best performing delta values, which gave us the best
result as shown in Table 2.

3. Conclusion

In this paper, we present our initial exploration towards acoustic
intent classification using a Naive Bayes classifier on approxi-
mate acoustic phone units. Our results indicate that our system
can be employed to build real life banking applications in mul-
tilingual scenarios.

4. References
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1. Abstract

Code-switching is the intertwined usage of multiple languages
in an utterance or conversation, and is commonly seen in in-
formal conversations among polyglots. Natural Language In-
ference (NLI) is the task of detecting whether a premise entails
a hypothesis, or contradicts it. The performance of Machine
Learning models on NLI provides an indication of their ability
to understand natural language. Unsupervised pre-trained trans-
former models have advanced the state of the art in NLI and var-
ious other Natural Language Understanding (NLU) tasks in re-
cent years. Our work focuses on various techniques that extend
the capability of popular transformer models trained on mono-
lingual text to detect entailment in code-switched settings.

For our task, we utilize the dataset introduced by [1], which
leverages Bollywood movie scripts containing code-switched
Hindi-English (Hinglish) text. Although this data is textual, it
is written to be performed as speech. Premises are in the form
of multiple utterances from a conversation, with each utterance
preceded by the name of the speaker. The creation of hypothe-
ses based on dialogue-like premises transforms the task from
one of textual entailment to one of conversational entailment.
The dataset contains 2,240 labelled premise-hypothesis pairs,
with an 80:20 train-test split. As there is large variance in the
training examples, we employ cross-validation with 8 splits to
better understand the performance of the models.

We present a comparison of linguistic, data augmentation
and architecture based approaches to conversational entailment
in code-switched text. The rest of this abstract outlines our
methodology, results and analysis.

Transformer [2] based models such as BERT [3] and
RoBERTa [4], pre-trained on large monolingual corpora, have
advanced the state of the art on the SNLI [5] and MultiNLI [6]
datasets. We fine-tune BERTgase and mBERT for the sentence-
pair classification task, and these models serve as points of com-
parison for our other approaches. We observe that the perfor-
mance of BERTgasg is comparable to that of mBERT despite
the large difference in the magnitude of Hindi text used for pre-
training the two models. Additionally, we fine-tune mBERT for
masked language modeling on code-switched Hinglish text, and
obtain mod-mBERT as described in [7].

Due to the limited amount of code-switched NLI data avail-
able for fine-tuning, we augment the dataset with monolingual
examples from the SNLI [5], XNLI [8] and MPE [9] datasets.
Romanized transliterations of Hindi sentence-pairs from the
XNLI dataset provide additional NLI data in Romanized Hindi
while SNLI examples do the same in English. We observe that
the addition of this external data results in an improvement in
performance over the baseline. We further investigate the im-
pact of different data selection strategies by varying the amount

*Equal contribution

sharanyc@cs.cmu.edu,
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of data used for augmentation and combining data from multi-
ple external sources.

mBERT is pre-trained on monolingual Hindi data in the De-
vanagari script. However, the majority of Hindi words in the
code-switched dataset are out of vocabulary since they are in
Romanized form. To better leverage mBERT’s knowledge of
Hindi, we detect and transliterate Hindi tokens to Devanagari,
and use this modified version of the dataset for fine-tuning. We
also provide a comparison of various strategies for obtaining
monolingual translations of the data in the absence of a transla-
tion model trained on a large parallel corpus of code-switched
and monolingual data. We find that errors in language identifi-
cation and transliteration propagate to the translations, deterring
the performance. However, augmenting the original data with
the translations obtained, reduces the impact of these errors.

An analysis of the dataset shows that a number of instances
require the model to have an understanding of the speaker of
each turn in the conversation. Unexpectedly, we find that re-
moving the speaker names from the dataset does not cause a
significant drop in the accuracy of predictions. We believe
this indicates that BERT models could benefit from reinforc-
ing speaker information. To this end, we augment the existing
dataset with examples which differ only in the names of the
speakers. In order to tackle instances where the hypothesis is
constructed by swapping roles [1], we add contradiction and en-
tailment examples to the dataset by varying the speaker names.
Many of these modifications better the accuracy of the models.

Apart from the data augmentation and modification ap-
proaches detailed thus far, we modify the architecture used to
encode the conversational NLI data. Since transformer models
are typically used on single sentences, we seek to obtain better
representations of the multi-turn premises using an architecture
that combines a bidirectional LSTM network with BERT em-
beddings of each utterance. While such approaches have been
used in other dialogue based tasks, we believe that their utility
here is limited by the amount of training data available.

Several of the approaches outlined above surpass the base-
line provided by [1], achieving accuracies in the range of 58-
63%. However, combinations of these approaches do not yield
further improvements, thus indicating the scope for new av-
enues of research in this area. In our experiments with varying
the amount of training data used, we find that the performance
of the model is better than chance even with a quarter of the
already limited data. This serves to show that merely quadru-
pling the amount of training data will not solve the problem of
code-switched conversational NLI, making this an interesting
research problem.
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Abstract

Code-switched speech and language processing is challeng-
ing due to the paucity of publicly-available datasets for re-
search. We describe a shared task on language identification
from speech organized as part of the First Workshop on Speech
Technologies for Code-switching in Multilingual Communi-
ties. The shared task consisted two sub-tasks 1. Spoken Lan-
guage Identification at the utterance level, where the goal was
to classify an utterance as monolingual or code-switched 2.
Spoken Language Identification within a code-switched utter-
ance, where the goal was to identify languages at a frame-level.
We released a dataset consisting of 60 hours of data in three
language pairs - Tamil-English, Telugu-English and Gujarati-
English. Six teams participated in the utterance level task, while
two teams participated in the frame-level task. Team Vocapi-
aLLIMSI used a combination of i-vector and phonotactic-based
models to achieve the best performance across languages on
both tasks. We hope that this dataset, which is now available
for research purposes will encourage research in code-switched
spoken language identification.

Index Terms: spoken language identification, code-switching,
shared task

1. Introduction

Code-switching, which is the use of two or more languages in a
single conversation or utterance, is a challenging phenomenon
for Speech and Natural Language Processing systems to han-
dle. Recently, there has been significant progress made in code-
switching Speech and NLP research [1], however, the lack of
sufficient data and resources in code-switched language pairs
compared to monolingual resources still remains a hurdle.

A well known technique for handling code-switching is to
first identify the language of part of an utterance, and then
use monolingual systems to process each corresponding frag-
ment. Such Language Identification (LID) systems have also
been used in conjunction with monolingual or multilingual sys-
tems to aid in processing. So far, the focus of code-switching
research has mainly been on LID in text, in which words in
a code-switched utterance are individually labeled with lan-
guage tags. Much of this research has been spurred due to sev-
eral shared tasks on code-switched text LID. Inspired by this,
we conducted a shared task on Language Identification from
speech, which has been relatively less studied.

Our shared task consisted of two sub-tasks. Task A was an
utterance-level LID task, in which a system had to classify an
utterance as being monolingual or code-switched. Task B was a
frame-level LID task, in which a system had to classify a code-
switched utterance with language labels at the frame-level. For
both tasks, systems only had access to raw audio at test time,
without accompanying text transcriptions of the utterances.
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For the shared task, we released a code-switched speech
corpus with 60 hours of speech from three language pairs:
Tamil-English, Telugu-English and Gujarati-English.  This
dataset is available for research use and is the first dataset of
code-switched speech in these language pairs. More details
about the dataset can be found in Section 4. We used a CNN-
BLSTM-based model to build baselines for both tasks, which is
described in Section 5. Participants were provided with a blind
test set to evaluate their systems on. We describe the techniques
used by participating teams in the shared task, along with results
in Section 6.

2. Related work

Language Identification for code-switched utterances from text
has been well studied and a comprehensive overview can be
found in [1]. The first and second workshops on Computational
Approaches to Code Switching conducted a shared task on Lan-
guage Identification for several language pairs [2, 3].

While LID for speech has been a well established area of re-
search, intra-utterance LID from speech for code-switching has
been relatively less studied. However, there have been initial at-
tempts to solve this problem, mainly in the context of using LID
systems in conjunction with an Automatic Speech Recognition
(ASR) system.

In [4], the authors show that humans exploit prosodic cues
to detect code switching in speech and can anticipate switch
points even in noisy speech. In [5, 6] the authors investi-
gate the effectiveness of using retrained multilingual DNNs
and augmenting the data for detecting the language. In [7, 8]
authors employ word based lexical information, build HMM-
based acoustic models followed by an SVM based decision
classifier to identify code-switching between Northern Sotho
and English [9]. It may be useful for an ASR system to be
able to detect the code-switching style of a particular utter-
ance, and be able to adapt to that style through specialized
language models or other adaptation techniques. [10] classify
code-switched corpora by code-switching style and show that
features extracted from acoustics alone can distinguish between
different kinds of code-switching in a single language.

Previously, we conducted a low resource ASR challenge
[11] in which we released 150 hours of speech data for three
languages: Tamil, Telugu and English. In this challenge, we
release code-switched data for the same language pairs so that
the research community can make use of this data together to
build robust speech systems for multilingual scenarios.

3. Challenge Rules

As mentioned before, the shared task consisted of two subtasks:

¢ Task A: Utterance-level identification of monolingual vs.



code-switched utterances

¢ Task B: Frame-level identification of language in a code-
switched utterance.

Registered participants were sent a link to download data
sets in all three languages. We released 16 hours of training
data and around 2 hours of test data for each language, details
of which can be seen in section 4. We also released baseline Ac-
curacy (ACC) and Equal Error Rate (EER) numbers evaluated
on the 2 hour test sets along with instruction on how to replicate
the baselines. Details of the baseline and evaluation metrics can
be found in section 5. Participants were allowed to use monolin-
gual data that we released in our previous ASR challenge [12],
but no other external data was allowed to be used.

Testing was conducted in April 2020, in which we tested
all submitted systems over a period of 3 days. Participants were
sent links to 4 hours of blind test audio data in each language
for Task A and 2 hours of blind test audio data in each language
for Task B. Participants ran their systems on the blind test audio
data and submitted hypothesis files via email to an automated
scoring system which calculated the ACC and EER and sent
it back to them as a reply to their email. Each participating
team was allowed 3 attempts per language per task, so each
team could submit up to 18 models in all for evaluation. The
automated scoring system was created using Microsoft Flow !

4. Data
4.1. Data

The data released for the challenge was provided by Spee-
chOcean.com and Microsoft. It consisted of phrasal (recorded
as read-out phrases) and conversational speech in Tamil-
English, Telugu-English and Gujarati-English. The transcrip-
tion consisted of English words in Roman script and the other
language’s words in native script, although there was some
cases of cross-transcription. Some example code-switched ut-
terances are shown in figure 1.

4.1.1. Task A

For training data, each character in the transcript was replaced
its corresponding language tag by looking up the language it
was transcribed in i.e., ‘T for Telugu or Tamil and ‘G’ for Gu-
jarati. As a part of training data, participants were allowed to
use data from Low Resource Automatic Speech Recognition
Challenge [11] along with the data released as a part of this
challenge. The test and blind test sets consisted of monolingual
and code-switched utterances and their corresponding class (0
and 1 respectively). The data description for task A can be seen
in table 1.

Table 1: Description of train, test and blind test data for Task A

Train Test Blind Test

ta-en 16 hrs (8928 utt.) | 4 hrs (2223 utt.) | 4 hrs (2235 utt.)
(CML:0.17)

te-en | 16 hrs (8226 utt.) | 4 hrs (2149 utt.) | 4 hrs (2133 utt.)
(CMI:0.22)

gu-en | 16 hrs (8620 utt.) | 4 hrs (2091 utt.) | 4 hrs (2102 utt.)
(CMLI:0.16)

Uhttps://flow.microsoft.com/
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The Code Mixing Index [13] is a metric that measures the
amount of code-switching in a corpus by using word frequen-
cies. We report the CMI of our code-switched train and test sets
in parentheses in Table 1 and Table 2. Gujarati and Tamil have
a relatively lower CMI of 17% while the Telugu dataset has a
CMI of 22%.

4.1.2. Task B

Since Task A was an utterance-level task, each utterance had
a single label. In task B, each utterance was labeled with lan-
guage information at the frame-level. In the training data, each
character in the transcript was replaced its corresponding lan-
guage tag i.e., ‘T for Telugu or Tamil and ‘G’ for Gujarati. For
the test and blind test sets, we generated language tags for every
200 ms of the CS audio. Further details of the data for task B
can be found in table 2.

Table 2: Description of train, test and blind test data for Task B

Train Test Blind Test
ta-en 16 hrs (8928 utt.) | 2 hrs (1135 utt.) | 2 hrs (1120 utt.)
(CML:0.17) (CMI:0.18) (CML:0.17)
te-en 16 hrs (8226 utt.) | 2 hrs (1047 utt.) | 2 hrs (1033 utt.)
(CMI:0.22) (CMI:0.22) (CMI:0.22)
gu-en | 16 hrs (8620 utt.) | 2 hrs (1080 utt.) | 2 hrs (1078 utt.)
(CMI:0.16) (CMI:0.17) (CMI:0.17)

5. Evaluation and Baselines
5.1. Evaluation

We used two standard metrics for evaluation: Accuracy (ACC)
and Equal Error Rate (EER). They are defined as follows.

* Accuracy
N
Accuracy = T

Where,
N is the total no. of correctly predicted data samples
T is the total no. of data points

¢ Equal Error Rate (EER)

EER — FRR+ FAR
2
TFR
FRR = ——
T
TFA
FAR = ——
T
where,
EER Equal Error Rate

F RR False Rejection Rate

F AR False Acceptance Rate

T F R Total No. of False Rejects
TF A Total No. of False Accepts
T Total No. of Datapoints

5.2. Baselines

We used a CNN-BLSTM model based on Deepspeech? [14] as
the baseline system for both tasks.

We denote our training monolingual datasets (X7,
Vi), (XE, YE) where L € {TE/TA/GU}, code-switched



Tamil — English Code-Switched Utterances

(CBI recorded a case against fake encounter)

(Most voltage is the cause of water heater failing)

@) & GLIMed ENCOUNTER 6T60T CB | suiapa‘s@s LS e QFUISS

WATER HEATER LI(DSTEUS DS SIS VOLTAGE SIT6T STJ6U0ILD

Telugu — English Code-switched Utterances

¢5¢5 FEBRUARY &00& ?oa.)aoéé MAY &0& DOCTOR e£ 2oren e@oddcio &
(From past February to May, Doctors and staff are not getting salary)

FASHION LEAGUE QO[DTO00S e e3¢5 SH#$d0oN)eS SraroBodS S aren

(clothes exhibited in fashion league combines of tradition and modernity)

Guijarati — English Code-Switched Utterances

o1& URLA HIT A HITTEN RUN CASE M1 ALEL 281 o{lAl COURT A AcH Lot vitetal Ui cidlell Seofl 1o sesi3l edl
(Salman Khan has been sentenced to 5 years of imprisonment by the court for the Hit and Run Case)

PCB A ICL AU B1SIAA WALSIRAR URE CRICKET MATCH Hi Ml UR Yol daucll €1 &

(Cricketers associated with PCB and ICL have been banned from playing local cricket matches)

Figure 1: Some example code-switched utterances from the dataset.

datasets (X, YO, (XS5, Y,°%) where CS e {TE-
EN/TA-EN/GU-EN}. The labels Y are language tags i.e., ‘T’
for Telugu or Tamil and ‘G’ for Gujarati. Our baseline model
consists of two Convolution Neural Network (CNN) layers fol-
lowed by five bidirectional long-short term (BLSTM) layers of
1024 dimension. Further, the frame-wise posterior distribution
P(Y'|X) is conditioned on the input X and calculated by apply-
ing a fully-connected layer and a softmax function.
P(Y|X) = Softmax(Linear(h)) (1)
where h is the hidden state from BLSTM. For task A, based on
the softmax output, we determine whether the audio is mono-
lingual or code-switched, while for task B, We use the 200ms
frame length and predict the language tag for the same. The
model parameters are trained using the Connectionist Temporal
Classification (CTC) [15] criterion. We use the SGD optimizer
with 3e-4 learning rate. We trained the model for 40 epochs for
Task A and 60 epochs for Task B, with mini-batch size equal to
64 per GPU.
Baseline results for task A and task B are provided in table
3 and 4 respectively.

Table 3: Baseline results for Task A

Class1 | Class 2 ACC EER

ta-en ta-mono | 74.0% | 13.0%
te-en te-mono | 71.2% | 14.4%
gu-en gu-mono | 76.8% | 11.6%

Table 4: Baseline results for Task B

ACC EER
ta-en | 77.6% | 6.5%
te-en | 76.5% | 6.7%
gu-en | 76.7% | 6.7%
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6. Systems and Results

Six teams participated in task A, while two teams participated in
task B. In this section, we describe the systems built by partici-
pating teams and compare their results to the baseline numbers.
The teams which participated in the evaluation were Vocapial-
IMSI, Swiggy, Annotatelt, Sizzle, Ground Zero and CMU. Par-
ticipants spanned academic institutions, industry labs and star-
tups.

Tables 5 and 6 show results from participating teams on
both tasks. For task A, in case of Gujarati, no team was able to
beat the baseline in terms of ACC and EER. In case of Telugu,
four teams (VocapiaLIMSI, Swiggy, CMU and Sizzle) outper-
formed the baseline. In case of Tamil, two teams (Vocapial.-
IMSI and Swiggy) outperformed the baseline. For task B, the
VocapiaLIMSI system outperformed the baseline for all three
language pairs, while the Swiggy team came close to but could
not outperform the baseline. Next, we describe the approaches
that the various teams took for solving both tasks.

Team VocapialLIMSI [16] achieved the best scores for both
the tasks, and across all the languages. They proposed two
acoustic modeling approaches, one being i-vector modeling of
the audio segments and phonotactic modeling focusing on se-
quences of language-independent phone units. The i-vector
system characterizes the language of an utterance with vectors
obtained by projecting the speech data onto a total variability
space while the phonotactic approach relies on the idea that the
phonetic sequence in an audio sample is characteristic of the
language used. Team VocapiaLIMSI [16] also experimented
with combining the scores from both the systems and found that
a linear combination of the scores from both the systems gave
the best performance.

Team Swiggy [17] modified the spectral augmentation ap-
proach and proposed a language mask that discriminated lan-
guage ID pairs, leading to a noise robust spoken LID system.
The authors proposed a temporal masking approach in which
they first map language transcripts to speech frames. The num-
ber of temporal masks were determined based on the number
of English words present in the language transcripts. Time seg-
ments corresponding to the English words were masked. Once
the masking was done, they then extracted features and passed



Table 5: ACCs and EERs for top performing models for task A

Team ACC EER
tamil Baseline 74.0% | 13.0%
tamil VocapiaLIMSI | 79.8% | 10.1%
tamil Swiggy 78.6% | 10.6%
tamil CMU 73.6% | 13.2%
tamil Sizzle 69.1% | 15.5%
tamil Ground Zero 67.1% 17.0%
tamil Annotatelt 61.8% 19.1%
telugu Baseline 71.2% | 14.4%
telugu VocapiaLIMSI | 79.3% | 10.3%
telugu Swiggy 79.0% | 10.5%
telugu CMU 73.9% | 13.0%
telugu Sizzle 71.3% | 14.3%
telugu Ground Zero 67.2% 16.4%
telugu Annotatelt 59.6% | 20.2%
gujarati | Baseline 76.8% | 11.6%
gujarati | VocapiaLIMSI | 753% | 12.3%
gujarati | Swiggy 73.0% | 13.5%
gujarati | Annotatelt 66.1% 16.9%
gujarati | Ground Zero 551% | 22.4%
gujarati | CMU 499% | 25.0%
gujarati | Sizzle 48.4% | 25.7%

them to an end-to-end CNN-LSTM system and train the system
using CTC loss function at the output layer.

Team CMU [18] proposed a multi-task learning framework
where the primary task is language detection and secondary task
is audio reconstruction. Considering a speech corpus X con-
sisting of languages {l1, .., ., }, where each /; comprise of dif-
ference speakers. x1, ..., 2, denotes acoustic frames of X. x;
can be monolingual or code-switched and Y denotes the labels.
The authors trained a model to learn the join distribution be-
tween {z,y}. The process was mediated using latent discrete
random representation. To ensure that the latent representations
correspond to speech utterances, they adopted this multi-task
learning framework.

Team Annotatelt [19] used a two-stage training and infer-
ence model. In the front-end, the authors trained a monolingual
speech recognition model using the monolingual speech corpus
described in the previous section. In the second stage, they used
the inference from the first stage to train a linear classifier for
the binary language identification task: monolingual vs. code-
switched.

Team Sizzle [20] proposed a convolutional encoder in com-
bination with the transformer architecture for utterance-level
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Table 6: ACCs and EERs for top performing models for task B

Team ACC EER
tamil Baseline 77.6% | 6.5%
tamil VocapiaLIMSI | 78.8% | 6.5%
tamil Swiggy 76.1% | 7.4%
telugu Baseline 76.5% | 6.7%
telugu VocapiaLIMSI | 79.6% | 6.3%
telugu Swiggy 76.1% | 7.4%
gujarati | Baseline 76.7% | 6.7%
gujarati | VocapiaLIMSI | 77.7% | 6.9%
gujarati | Swiggy 76.1% | 7.5%

code-switching detection. The authors used the convolutional
encoder to process audio features and pass these features to a
transformer based network with multi-head self attention lay-
ers. Finally, the authors, aggregated the frame level features
from the transformer network to get utterance level features to
predict the class label.

In summary, approaches that used the audio directly and
did not rely on an ASR system seemed to work best, however
this may be due to the small amount of data used to train the
ASR. Future work in this direction could include using all the
languages in a multilingual setup for spoken language identifi-
cation.

7. Conclusions

In this paper, we described the first shared task conducted for
spoken language identification of code-switched speech. The
shared task consisted of two sub-tasks - an utterance-level task
to classify speech into monolingual or code-switched and an
intra-utterance classification task, in which a code-switched ut-
terance had to labeled with languages at the frame-level. We
released, for the first time, code-switched data in three language
pairs: Tamil-English, Telugu-English and Gujarati-English for
the shared task. The data released as part of this shared task is
available for future research use.

Six teams participated in the shared task, however we had
significantly less participation in task B compared to task A.
The best performing systems that beat the baseline included
VocapialLIMSI and Swiggy, which used approaches based on
i-vectors, phonotactic models and temporal masking. The sec-
ond task of our shared task, which is the frame-level identifi-
cation of code-switching remains under-explored, and we hope
that future research will focus on this problem.
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Abstract

This paper describes the systems submitted by Vocapia Re-
search and LIMSI for the shared task on Code-switched Spoken
Language Identification, organized in the conjunction with the
First Workshop on Speech Technologies for Code-switching in
Multilingual Communities 2020. Our primary system combines
an acoustic approach based on i-vector modeling of audio seg-
ments with a phonotactic approach that focuses on sequences of
language-independent phone units. Both modeling approaches
provided comparable performance, and a gain was obtained by
a simple linear combination of their scores, showing their com-
plementarity. One of our submissions obtained first rank for all
combinations of tasks and language pairs. For the utterance-
level detection task (task A), an F-measure of 76.0% was ob-
tained with our combined system for which the average accu-
racy on the development set was 83.3%. For the frame-level
detection task, the average accuracy was 81.2% on the devel-
opment set and 78.7% on the evaluation set. However, a de-
tailed analysis reveals a very high rejection of the 200ms code-
switched frames, which comprise only 12% of the corpus. This
shows that a more precise modeling of code-switched segments
is needed for an accurate segmentation.

Index Terms: language identification, code-switching, phono-
tactic model

1. Introduction

Code-switching is very usual in multilingual communities. In
formal situations, a speaker may choose one language accord-
ing to the situation. For such speech data, automatic language
identification can be performed at the speaker turn or docu-
ment level before further content processing. However, in more
spontaneous cases, short code-switched segments may occur
in the middle of a sentence. This type of code-switching is
much harder to detect and adversely affects the speech tran-
scription, since words in the alternative language will be miss-
ing from the vocabulary of the speech-to-text system. Al-
though code-switching has been studied in the linguistic com-
munity for many years, it has recently started attracting grow-
ing interest in the speech technology domain with the collection
of several code-switching corpora for Cantonese-English [1],
Mandarin-English [2], Frisian-Dutch [3], Hindi-English and
Spanish-English [4], South African languages [5], Egyptian
Arabic-English [6] or CanVEC Vietnamese-English [7]. This
interested has also resulted in special sessions at Interspeech
conferences since 2017, covering various language pairs (e.g.,
Mandarin-English [8], Hindi-English [9], isiZulu-English [10],
English-Spanish [11], French-Algerian Arabic [12] or Frisian-
Dutch [13, 14]) and addressing linguistic analysis, speech syn-
thesis [15], code-switching detection [14], language model-
ing [11, 16] or automatic transcription [17, 18, 19, 20].

levb@vocapia.com,
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In this paper, we describe the systems submitted by Vocapia
Research and LIMSI laboratory for the shared task on Code-
switched Spoken Language Identification (LID), which was
organized in conjunction with the First Workshop on Speech
Technologies for Code-switching in Multilingual Communities
2020'. Our system combines an acoustic approach based on
the i-vector modeling of audio segments and a phonotactic ap-
proach focusing on sequences of language-independent pho-
netic units. The outputs of the two component systems were
also submitted individually to obtain contrastive results.

The next section summarizes the two evaluation tasks and
experimental conditions. Section 3 describes the component i-
vector and phonotactic systems. Their performance on the de-
velopment and evaluation data is presented in Section 4, before
a conclusion.

2. Task description

A short summary of the tasks and evaluation plan is given here
along with some characteristics of the corpus. A complete de-
scription is available from the link in footnote 1.

2.1. Subtasks

Two subtasks were proposed: (Task A) utterance-level identifi-
cation of monolingual vs. code-switched utterances; (Task B)
frame-level language identification in code-switched utterances,
where frames are 200ms contiguous audio segments. For each
task, three language pairs were considered with one primary In-
dian language among Gujarati, Telugu and Tamil and English
as a possible code-switching target. The primary language was
known a priori.

2.2. Evaluation metric

The primary evaluation metric for the evaluation was the ac-
curacy rate, defined as the ratio of correctly predicted samples
over the total number of samples. Task A is a sentence-level bi-
nary classification task (code-switched vs. non code-switched
utterance), while task B requires a frame-level labeling with 3
classes (silence, primary language or English). There is no spe-
cific cost function, so the prior distribution of the classes is the
factor governing the relative weight of each error type.

In this paper, we also report three other metrics: recall and
precision rates expressed as the number of correctly detected
code-switched samples (utterances for task A or frames for task
B) over the number of expected or hypothesized samples, re-
spectively; the F-measure is defined as the harmonic mean of

https://www.microsoft.com/en-us/research/
event/workshop-on-speech-technologies—-for-
code-switching-2020/



the recall and precision; and the false positive and false negative
rates expressed as the number of false positive (resp. negative)
hypothesis over the total number of positive (resp. negative)
code-switched samples.

The evaluation plan also proposed an EER metric defined,
for task A, as the total number of false rejects and false accepts
divided by twice the total number of sentences. Being redun-
dant with the accuracy rate, this metric is not reported in the

paper.

2.3. Corpus

The training and evaluation data is composed of sets of sen-
tences with durations ranging from 2 and 20 seconds, and an
average duration of 6.8 sec. For task A, about 8000 training sen-
tences and 1000 development sentences without code-switching
were provided for each target language (Gujarati, Tamil and Tel-
ugu) along with a similar number of code-switched sentences.
The detail is provided in Table 1.

Table 1: Number of sentences without or with code-switching
(resp. no CS and CS) in the training and dev. sets for task A.

Training Development

Language | no CS CS | noCS CS
Gujarati | 8161 8619 1012 1079
Tamil | 8965 8978 1123 1135
Telugu | 8766 8225 1088 1047

For task B, only code-switched sentences were provided
with the corresponding 200ms frame-level annotation: 8000
sentences for training (about 15 hours) and 1000 sentences for
development (about 2 hours) per language. On average, 21%
of the frames are labelled as silence, 12% as English and the re-
maining 67% as either Gujarati, Tamil or Telugu. Table 2 shows
the detail for the training and development sets.

Table 2: Cumulated duration (hh:mm) of primary language, En-
glish code-switched and silent frames (resp. P, CS and SIL) in
the training and development sets for task B.

Training Development
Language P CS SIL P CSs SIL
Gujarati | 10:39  2:08 3:24 | 1:20 0:16 0:25
Tamil | 10:52  1:47 3:32 | 1:21  0:15 0:26
Telugu | 10:53  1:50 3:27 | 1:21  0:14 0:25

Note that the additional monolingual datasets provided for
the three languages were not used to develop the submitted sys-
tems described in this paper.

3. Submitted systems

In this section, we describe the two types of systems developed
for the detection of code-switched utterances or frames and used
for the evaluation: one based on the acoustic (i-vector) approach
and other on a phonotactic approach. In addition we also sub-
mitted results obtained by combining the outputs of these two.

3.1. i-vector acoustic modeling

The i-vector framework [21] has been successfully applied in
Speaker Verification [22, 23] and Language Identification [24]
tasks. The i-vector system characterizes the language of an
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utterance with vectors obtained by projecting the speech data
onto a total variability space. The approach is generally formu-
lated as follows: S = m + T'w where w is called an i-vector,
T is a matrix representing the total variability space; and m
and S represent Gaussian supervectors (GSV) obtained from a
language-independent and a language dependent model respec-
tively. The language-independent model is also called Univer-
sal Background Model (UBM).

In our implementation, the input features of the i-vector lan-
guage identification system are 40 dimensional phonetic bottle-
neck features. For each frame, a 32 ms window and a 10 ms
offset are used to extract 32-band Mel scale spectrogram con-
catenated with log-pitch, delta-log-pitch and voicing probabil-
ity. Then, TRAP-DCT features [25] are estimate on 100 ms
windows (11 frames), retaining the first 6 coefficients includ-
ing the DC component [26]. The resulting TRAP-DCT features
with 210 dimensions (35x6) are input to a bottle-neck DNN
that has 3 hidden layers with 2000 units and 1 bottle-neck hid-
den layer with 400 units. Each hidden layer is followed by a
non-linearity p-norm unit [27] which reduces the dimension of
the layer to 200 and 40, respectively. The phonetic bottle-neck
DNN was trained on about 1000 hours of English Broadcast
Data. The bottle-neck features are extracted without cepstral
mean or variance normalization (CMVN).

The full covariance GMM with 2048 components, the
UBM, and an i-vector extractor are estimated using the train-
ing data using the Kaldi toolkit [28]. A 600-dimension i-vector
is extracted for each training utterance or segment. The i-vector
length is normalized to unity [23]. A language-specific i-vector
is obtained by averaging the normalized i-vectors for each train-
ing utterance [23].

During the test phase, an i-vector is extracted for each
test utterance or segment, and is processed to compensate for
session variability. Different techniques can be used to com-
pute the test utterance scores. Multi-class logistic regression
(MLR) [29] is used in this work. The use of probabilistic linear
discriminant analysis (PLDA) [30] such as applied in [22, 23],
was explored for the NIST 2015 Language Recognition Eval-
vation (LRE15) [31] but since the MLR method provided bet-
ter results on Broadcast data on an internal LID dataset it was
adopted here. The MLR model is estimated on all training utter-
ances/segments using an expectation-maximization algorithm.

For Task A, and for each of the 3 Indian languages, an i-
vector is extracted for each training utterance (code-switched or
non-code-switched) and then a logistic regression (LR) classi-
fier (positive and negative code-switched classes) is estimated
on these i-vectors. In the test phase, an i-vector is extracted for
each test utterence and scored using the LR model. No voice
activity detection (VAD) is performed on the training and test
sentences before acoustic features extraction in this task.

For task B, all audio files of the training, developement
and evaluation data are analyzed using 600ms-long overlapping
windows with a 200ms step (a frame). The label of the seg-
ment was associated to the frame at the center of the window,
with e.g. the [0-600ms] window corresponds to the frame [200-
400ms]. For each of 3 the Indian languages, an MLR classifier
is estimated on all training i-vectors (one/frame) for each class
(silence, native language and English). In the test phase, an
i-vector is extracted for each test frame and scored using the
MLR model. For this task, the use of an explicit i-vector class
for silence trained on the target dataset significantly improved
the silence frame detection performance over using either GMM
or DNN pretrained VAD models.



3.2. Phoneotactic identification

The phonotactic approach to automatic language identification
relies on the idea that the phonetic sequence in an audio sample
is characteristic of the language used. It has been shown over
time to perform very competitively compared to purely acoustic
approaches, from phone-based acoustic decoding [32] to paral-
lel phone recognizers [33] and phone lattices, as presented to
LRE15 [31]; RNN-based phonotactic models were also shown
as very efficient [34]. Similar to [31], phone decoders using
phonetic models from several languages are used to decode the
training data and to estimate phone n-gram statistics on the re-
sulting phone lattices for each target class; then, given a new ut-
terance, expectation of its phonetic log-likelihood is computed
according to each target models, resulting in a set of posterior
scores. The implementation relies on the VoxSigma Software
Suite, a commercial product from Vocapia.

For task A and for each target language, a pair of phonotac-
tic models was estimated separately using either the positives
code-switched sentences or the negative non-code-switched
sentences. The development/evaluation utterances were then
scored against the matching language pair. Given the global
balance between positive and negative samples in the data set, a
0.5 decision threshold was chosen, i.e. the class with the highest
posterior score was selected.

To train models for task B, the frames labeled as silence
in the reference annotation were discarded and a pair of models
(one for English and one for the primary language) were trained
for each target language on the associated training audio seg-
ments. For development and evaluation, the frame-level VAD
from the i-vector module, as described at the end of previous
sub-section, was first applied and frames automatically labelled
as silence were discarded prior to further processing. The re-
maining frames were scored against both the code-switched and
non code-switched models. Similar to the i-vector system, each
frame was extended to a 600ms audio segment centered around
it for training or scoring. As explained in Section 2, the distri-
bution of code-switched and native speech frames is unequal,
so a subset of the training data was kept apart and used for to
optimize the decision threshold for the code-switched class.

3.3. Systems combination

Since i-vector and phonotactic modeling capture different, and
potentially complementary, information, the two models were
combined for the primary submission. For both tasks, a linear
combination of the posterior scores of the phonotactic and the
i-vector models was used, using weights optimized on the de-
velopment data.

Table 3: Task A: accuracy (%) by language on the development
/ on the evaluation data sets for the phonotactic, i-vector and
combined systems. Accuracy of the organizer’s baseline system
is also given on the dev set. Best score on evaluation data in
bold.

Language baseline  phonotactic i-vector  combined
Gujarati 76.8 79.1/754 84.1/573 84.3/68.8
Tamil 712 77.4/76.6 79.1/764 822/79.8
Telugu 740 79.0/77.1 78.8/783 815/794
Average 740 785/764 80.6/70.7 83.3/76.0
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Figure 1: Task A: recall and precision of monolinugal vs. code-
switched utterance detection on the dev set, for the phonotactic,
i-vector and combined systems averaged across all languages.
F-measure is given for the chosen operating point.

4. Experiments and results

Figure 1 shows the recall and precision for the code-switched
utterance detection (Task A) on the development data set, as
computed globally across the three languages for the combined
system and the individual phonotactic and i-vector systems. The
combination weight was set to 0.4 for the phonotactic scores
and 0.6 for the i-vector scores. We can see that the i-vector sys-
tem generally performs better than the phonotactic system, and
that their combination provides a gain for almost all operating
points. This is confirmed by looking at the detailed accuracy by
language in Table3. On the development data, the gap between
the phonotactic and i-vector models is especially high for Gu-
jarati (79.1 vs 84.1%), but even in this case the combination is
slightly positive. The performance difference is less for Tamil
(and even slightly better for the phonotactic models for Telugu),
where their combination provides more than a 2% absolute gain
in accuracy. On average for the three languages, the combined
system achieves an accuracy of 83.3% on the development set,
i.e. an error rate of 16.7%.

On the evaluation dataset, there is a very specific and dra-
matic degradation of performance for the i-vector system on
Gujarati, dropping from 84.1% on the development set to 57.3%
on the evaluation set, which carries over to a lesser extent in the
combined system. This resulted from a shift of the Gujarati i-
vector score distribution on the evaluation set compared to the
development set (a 22% relative increase of the average score),
which was not observed for the other languages. It is interest-
ing that the phonotactic system proved to be much more robust,
with a more limited reduction from 79.1% to 75.4%. For Tamil
and Telugu, the performance on the evaluation data was slightly
reduced compared with the development data, while keeping
a 1-3% absolute gain in accuracy due to system combination.
Overall, the combined system has an accuracy of 76.0%, i.e. an
error rate of 24%.

For Task B, Figure 2 shows the balance between the false
positive and false negative rates of code-switched frame detec-
tion as a function of the decision threshold. The axes are scaled
by their standard normal deviates, and non-speech frames were
excluded for the figure. The phonotactic and i-vector systems
show similar behaviors and their combination brings an im-
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Figure 2: Task B: false positive and false negative rates of code-
switched frame detection computed on the development set and
cumulated on all language pairs, for the phonotactic, i-vector
and combined systems. Non-speech frames are excluded.

provement across all operating points. The discrimination be-
tween code-switched and non code-switched frames appears to
be a difficult task with an equal error rate above 30%. The actual
accuracy rates shown in Table 4 confirm this behavior both on
the development and evaluation data sets. The combined sys-
tem accuracy rates averaged across the 3 languages are 81.2%
and 78.7%, respectively.

Given the relatively low prior of the code-switched samples
at about 12%, the decision thresholds of the systems were op-
timized according to the evaluation primary metric towards a
very low false positive (or false alarm) rate for code-switching
and thus a very high negative (or miss) rate. The confusion
matrix in Table 5 between the three target classes (silence,
code-switched English or primary language) of the combined
system, cumulated for all languages on the development set,
shows that only 3016 code-switched frames out of 13332, i.e.
22.6%, were correctly labelled, leaving room for improvement.
Conversely, identification was correct for 68,089 out of 72,771
speech frames in the primary language, i.e. 93.5%.

One important factor impacting code-switching detection
should be the length of the segments; furthermore, code-
switched segment shorter than the 600ms analysis window will
provide a very sparse information to the phonotactic or i-vector
modelling. We show on Figure 3 the histogram of code-
switched segments according to their duration: 56% of the seg-
ments last only 200 or 400ms. We also show the accuracy of
our combined system on the development set cumulated for all
languages, in the situation where code-switching would account
for half of the spoken content, corresponding to the equal-error-
rate configuration. As expected, the accuracy increases with du-
ration, raising from 63% for 200ms segments to 74% for 1.2sec
segments.

5. Conclusion

The shared task on Code-switched Spoken Language Identi-
fication allowed us to compare different approaches for the
utterance-level and frame-level detection of code-switched
speech, thanks to the annotated corpora provided in three lan-
guage pairs. For each combination of task and language pair,
one of our systems was ranked first among the submitted sys-
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Table 4: Task B: accuracy (%) by language on the development /
evaluation data sets for the phonotactic, i-vector and combined
systems. Accuracy of the organizer’s baseline system is also

given on the dev set. Best score on evaluation in bold.

Language baseline  phonotactic i-vector  combined
Gujarati 76.7 799/769 80.0/76.9 80.5/77.7
Tamil 76.5 795/715 80.8/78.6 81.2/78.8
Telugu 776  80.0/789 81.4/789 81.8/79.6
Average 769  79.8/77.8 80.7/78.1 81.2/78.7

Table 5: Task B: frame-level confusion matrix for the combined
system on the development set; Columns for reference, rows for
hypothesis. SIL stands for non-speech, CS for code-switched
English, P for primary language ie. Gujarati, Tamil or Telugu.

hyp \ ref SIL CS P
SIL 14,097 (69.7%) 248 ( 1.9%) 1,797 ( 2.5%)
CS 445 ( 2.2%) 3,016 (22.6%) 2,885 ( 4.0%)

P 5,675 (28.1%) 10,068 (75.5%) 68,089 (93.5%)

tems. In general, both the phonotactic and i-vector acoustic
modeling obtained comparable performances, and a simple lin-
ear combination brought a further improvement showing their
complementarity.

For the utterance-level detection task, an F-measure of
about 80% was obtained. Compared to the provided base-
line system with a 74% accuracy average across the three lan-
guages, our combined system had an 83.3% accuracy on the
development data. Seen conversely, the error rate was reduced
from 26% to 16.7%. On the evaluation set, its performance
was lower, 76.0%, caused by a distribution shift of the i-vector
scores for one of the language pairs. The phonotactic scores
were less affected by this distribution mismatch and the phono-
tactic modeling appears to be more robust than the i-vector ap-
proach.

For the frame-level annotation task, the accuracy appears to
be of the same order of magnitude, with an average of 81.2% on
the development set and 78.7% on the evaluation set. However,
a detailed analysis revealed a very high rejection of the code-
switched frames, which amount to only 12% of the corpus. This
shows that a more precise modeling of the code-switched seg-
ments is needed for an accurate segmentation. For this aim,
following metrics more specifically fitted to the code-switching
detection task as e.g. the ones proposed by Guzman et al. [35],
would certainly be beneficial.
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Figure 3: Task B: histogram of code-switched segments as a
function of their duration (left) and accuracy in code-switching
frame detection in a equiprobable setting (right), cumulated
over all languages for the combined system on the dev set.
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Abstract

Spoken language Identification (LID) systems are needed
to identify the language(s) present in a given audio sample, and
typically could be the first step in many speech processing re-
lated tasks such as automatic speech recognition (ASR). Auto-
matic identification of the languages present in a speech signal
is not only scientifically interesting, but also of practical im-
portance in a multilingual country such as India. In many of
the Indian cities, when people interact with each other, as many
as three languages may get mixed. These may include the of-
ficial language of that province, Hindi and English (at times
the languages of the neighboring provinces may also get mixed
during these interactions). This makes the spoken LID task ex-
tremely challenging in Indian context. While quite a few LID
systems in the context of Indian languages have been imple-
mented, most such systems have used small scale speech data
collected internally within an organization. In the current work,
we perform spoken LID on three Indian languages (Gujarati,
Telugu, and Tamil) code-mixed with English. This task was or-
ganized by the Microsoft research team as a spoken LID chal-
lenge. In our work, we modify the usual spectral augmentation
approach and propose a language mask that discriminates the
language ID pairs, which leads to a noise robust spoken LID
system. The proposed method gives a relative improvement of
approximately 3-5% in the LID accuracy over a baseline sys-
tem proposed by Microsoft on the three language pairs for two
shared tasks suggested in the challenge.

Index Terms: spoken language identification, code-mixing,
spectral augmentation, noise-robustness, speech recognition

1. Introduction

In recent years, advances in artificial intelligence (AI) have sig-
nificantly expanded the degree to which individuals can interact
with technology utilizing just their voice [1]. However, these
systems often require explicit information about the language
of the users. The ability to dynamically process a single input
speech stream consisting of different languages would expand
the usefulness of existing voice-based systems and open up a
wide array of additional functionalities. The spoken language
identification (LID) research addresses this issue by exploring
how to extract information from the audio signal and use it to
predict the spoken language. LID is used in several applications
such as multilingual translation systems or emergency call rout-
ing, where the response time of a fluent native operator might
be critical [2].

Over the years, researchers have utilized many prosodic and
acoustic features to construct machine learning models for LID
systems [3]. Several prosodic and acoustic features are based on
phonemes, which become the underlying features that drive the
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performance of the statistical models [4]. If two languages have
many overlapping phonemes, then identifying them becomes a
challenging task for a classifier. Subsequent LID systems relied
on acoustic modelling [5]. In particular, guided by the advances
on speaker verification, the use of i-vector feature extractors as
a front-end followed by diverse classification mechanisms be-
came popular as acoustic LID systems [6] [7]. The extensive
feature engineering with i-vectors results in very complex sys-
tems, with an increasing number of computational steps in their
pipeline [8].

Approaches solely based on applying neural networks on
input features like mel-frequency cepstral coefficients (MFCC)
show that they reach state-of-the-art results, while being less
complex [9]. Current research on language identification sys-
tems using deep neural networks (DNN) mainly focuses on us-
ing different forms of long short term memory (LSTMs), work-
ing on input sequences of transformed audio data. The re-
sulting sequence features are fused together and used to clas-
sify the language of the input samples. In [10] [11], a DNN
based architecture was proposed for extracting spatial features
from the log-mel spectrograms of raw audio using convolutional
neural networks (CNNs) and then using recurrent neural net-
works (RNNs) for capturing temporal features to identify the
language.

Automatic spoken LID systems are particularly relevant for
multilingual countries such as India. An LID system recog-
nising 27 Indian languages was implemented using Gaussian
mixture model (GMM) and MFCC features [12]. Another LID
system for Bengali, Hindi, Telugu, Urdu, Assamese, Punjabi
and Manipuri languages was implemented that used feed for-
ward neural networks trained with two hours of speech data of
each of the seven languages [13]. Most LID systems for In-
dian languages were trained and tested with either speech of
professional news readers [2] or with small scale speech data
collected by researchers [14] [15], that may not be available
for public use. Till recently, the lack of publicly available In-
dian language speech databases was a limitation for a scientific
study of various acoustic analysis and modeling techniques. Re-
cently, a phonetically balanced speech corpus of Hindi-English
code-mixed speech was developed by IIT Guwahati [16], and
is explicitly designed for automatic speech recognition (ASR)
paradigm, but not for the LID task.

Microsoft organized a shared task on Code-switched spo-
ken language identification (LID) in three language pairs —
Gujarati-English, Telugu-English and Tamil-English [17]. The
shared task consists of two subtasks:(1) utterance-level identi-
fication of monolingual vs. code-switched utterances, and, (2)
frame-level identification of languages in a code-switched utter-
ance.

Spectral augmentation is a popular technique to improve the
noise robustness of an ASR system [18] [19]. It involves three
main steps namely time warping, frequency masking, and tem-



poral masking. In this paper, we have explored the spectral aug-
mentation [20] for detecting the LID information. The spectral
augmentation approach randomly chooses the position of the
different masks. However, in our work we select the temporal
masks based on the number and position of the English seg-
ments in a code-switched utterance. The clean and the masked
spectrograms are provided as an input to the CNN-BiLSTM en-
coder network trained with CTC loss function. The variation of
frequency and temporal masks in the recent spectral augmenta-
tion [20] are found to provide discriminative power to identify
the language information in a code-mixed speech data.

The organization of the remaining sections of the paper are
as follows: In Section 2, the importance of spectral augmenta-
tion for LID is discussed. The proposed framework for spoken
LID is explained in Section 3. Section 4 provides the experi-
mental set-up of the proposed spectral augmentation based spo-
ken LID. We analyze the impact of the proposed approach on
spoken LID performance in Section 5. Section 6 describes the
conclusions and future directions.

2. Spectral Augmentation

In this section, the related work on spectral augmentation for
different speech processing applications is discussed. Data aug-
mentation is a popular method for improving robustness and
training of neural networks [18] . It’s been used successfully in
several domains starting from image classification to molecular
modelling [21]. The fundamental principle is to increase the
amount of training samples by creating multiple variants of the
dataset. The data augmentation method is typically applied to
create an additional training data for ASR to improve the per-
formance. For instance, in [22], the data was augmented for low
resource speech recognition tasks. Vocal Tract Length Normal-
ization has been explored for data augmentation in [23]. Speech
perturbation has been applied on raw audio for LVCSR tasks in
[19]. The use of an acoustic room simulator has been adopted
in [22]. Data augmentation is used to spot the important key-
words from the speech utterance [24]. Perceptually, human lis-
teners show remarkable tolerance to a variety of spectrotempo-
ral manipulations of the input sound signal during segregation
of speech-in-noise recognition tasks [25] [26] [27]. Inspired by
such studies in human auditory perception and cognitive neu-
roscience, and the recent success of augmentation techniques
in the speech and vision domains, SpecAugment, an augmen-
tation method that operates on the log mel spectrogram of the
input audio (rather than the raw audio ) was proposed in [20].
This method is simple and computationally inexpensive, as it
directly acts on the log mel spectrogram as if it was an image.
Spectral Augmentation includes the following steps:

1. Time warping: Given a log mel spectrogram with 7
time steps, it is viewed as an image where horizontal and
vertical axes represents time (s) and the frequency (Hz)
respectively. A random point along the horizontal line
passing through the center of the image within the time
steps (W, 7 - W) is to be warped either to the left or
right by a distance w chosen from a uniform distribution
from O to the time warp parameter 1/ along that line.

2. Frequency Masking: It is applied so that f consecutive
mel frequency channels [ fo, fo + f) are masked, where
f is first chosen from a uniform distribution from 0 to
the frequency mask parameter F', and fy is chosen from
[0, v - f). v is the number of mel frequency channels.

3. Temporal Masking: It is applied so that ¢ consecutive
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time steps [to, to + t) are masked, where ¢ is first cho-
sen from a uniform distribution from O to the time mask
parameter 7', and to is chosen from [0, 7 - ?).

Figure 1 shows examples of the individual aug-
mentations applied to a single speech input (PartBGu-
jarati/Dev/Audio/000060438.wav). The log mel spectrograms
are normalized to have zero mean value, and thus setting the
masked value to zero is equivalent to setting it to the mean
value.

Figure 1: Augmentations applied to the base input. The figures
(from top) depict the log mel spectrogram of the base input with
no augmentation, (time warp, frequency and time masking ap-
plied)

The spectral augmentation approach is shown to be success-
ful on Noise robust ASR [18]. For instance, the selection of
different masks in the spectral augmentation can discriminate
between the clean speech and the noisy speech. In code-mixed
speech spoken in India, it is generally observed that the native
speaker tries to speak in her native language, and occasionally
uses English words. The process of masking the English words
can lead to building a mono-lingual corpus. In order to build
an efficient spoken LID system, the DNN may first learn to dis-
criminate between the code-mixed speech and the mono-lingual
speech. Since the temporal masking positions can be altered
with respect to different languages, we sought to mask out the
English words in the code-switched speech.

3. Proposed Work

Figure 2 shows the CNN-LSTM system that uses CTC loss
function at the output layer. The fundamental end-to-end CTC

Speech Spectrogram
. Spectral
[Transcnpl H Augmentation

« Data
Figure 2: End-to-End spoken LID using CNN-LSTM model

mo®

Language
Mask

—>

Model Training

system receives the 2-D spectrogram as shown in the bottom of
the figure. The CNN layer is effectively used in speech pro-
cessing applications as they are capable of modeling temporal
invariance for variable length utterances [28]. The BiLSTM



models are trained on the convolved features to capture long-
term sequential context. Later, the dense layer or the fully con-
nected (FC) layer is connected to the output layer. The output is
produced through a softmax function computing a probability
distribution over the target labels. The target labels used in Fig-
ure 2 are S, G and E which corresponds to Silence, Gujarati and
English language ID, respectively. To accelerate the training
procedure, Batch Normalization [1] is applied on hidden lay-
ers. In our work, we feed the clean spectrogram, and the aug-
mented spectrogram to the end-to-end LID system. However,
the spectral augmentation is obtained by proposing an appro-
priate temporal mask termed as ‘language mask’ in the paper,
and explained in the next subsection.

3.1. Language Transcript based Temporal mask

The conventional temporal mask(s) used in the spectral aug-
mentation is selected at a random position that follows a uni-
form distribution from O to the time mask parameter 7". In our
work, at the time of training, the temporal masks are obtained
from the language ID transcripts. The steps followed to obtain
the temporal mask from the language transcript are as follows:

1. Initially, the number of characters in the transcript is
computed (I1).

2. Find the language segments from the transcript. Ex: If
transcript = ‘SSSGGGEEGG?’, then the language seg-
ments are ‘SSS’, ‘GGG’, ‘EE’, and ‘GG’, where ‘S’, ‘E’
and ‘G’ corresponds to the silence, English, and Gujarati
speech segments, respectively.

3. Obtain the maximum number of frames based on the
length of the characters in the transcript (Ny). Since the
language label is created for every 200 ms for the shared
task, every language ID character corresponds to 200 ms
of speech content.

4. We calculate the number of temporal masks by finding
the number of speech segments corresponding to the En-
glish speech. Since, the non-predominant language in
the code-mixed speech data is English, we mask the En-
glish words from the spectrogram.

5. Obtain the start (to), and end time frame index (¢1) for
every English speech segment.

6. The to to t1 consecutive time steps [0, 1] are masked.

Figure 3 shows a toy example to augment the spectrogram
based on the language mask. The spectrogram is obtained for
the speech signal ‘PartB/Gujarati/000010183.wav’ as shown in
Figure 3 (a). The speech signal is sampled at 16 KHz with win-
dow size of 200 ms, and window stride of 100 ms. The language
transcripts are mapped to the speech frames, and are shown in
Figure 3 (b). For instance, there is an English phrase (‘flight
operation’) in the speech signal from 3.21 s to 3.99 s (shown
in black). The number of temporal masks are decided based on
the number of English segments present in the language tran-
scripts. In this case, the number of English segments are two,
and are present from (a) 3.1 - 3.99 s, and (b) 4.69 - 4.79 s. The
corresponding time segments are masked as shown in Figure 3

(©).

4. Experiments

First, we introduce our experimental environment and the met-
rics used for the spoken LID task. Then, we show our results
on the shared tasks. Following this, we show the results of our
experiments on the proposed work.
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Figure 3: Illustrative example of the proposed LID based tempo-
ral masking in spectral augmentation: (Top) Raw spectrogram,
(Middle) Language information at different time instance, and
(Bottom) Proposed spectral augmentation

4.1. Data

The data set consists of three code-switched language pairs
- Gujarati-English, Tamil-English and Telugu-English. The
shared task for the workshop consists of two sub-tasks for spo-
kenLID of code-switched audio. The two sub-tasks will consist
of (1) Part A: Utterance-level LID, and (2) Part B: Frame-level
LID.

Table 1: Dataset description for the code-mixed spoken LID

Number of Samples (Duration in hh:mm:ss)

Data | Language Train Dev Test
Gu-En |16780 (31:59:53)[2091 (3:59:55){2156 (3:44:50)

Part-A| Ta-En [17943 (31:59:47)[2258 (4:00:05)[2258 (3:53:59)
Te-En 16991 (31:59:50)[2135 (4:00:06)[2064 (3:42:15)
Gu-En | 8620 (15:59:56) | 1080(1:59:58) {1078 (2:00:02)

Part-B| Ta-En | 8982 (15:59:57) [1135 (1:59:59)|1129 (1:59:57)
Te-En | 8226 (15:59:56) [1047 (2:00:03)[1033 (1:59:55)

4.2. Training

The Microsoft’s baseline system is made up of an end-to-end
multi-layer model consistingof 5 layers of LSTM, each consist-
ing of 1024 neurons. The model is based on deepspeech-2 [29].
The model is trained using the CTC loss function. The LID
detector using CTC starts with two layers of 2D convolutions
over both time and frequency domains with 32 channels, 41 x
11, 21 x 11 filter dimensions, and 2 x 2, 2 x 1 stride. Next,
five Bi-LSTM layers with 1024 hidden units are followed by
one fully connected linear layer with 5 softmax outputs blank,
, Gujarati, English, Silence. The Bi-LSTM models have around
10.2 millions (M) parameters. The input sequence are values of
spectrogram slices, 20 ms long, computed from Hamming win-
dows with 10 ms frame shifts. The output (target) sequence was
obtained directly from the letters of the word transcription. We
used 100 epochs to train all the models used for further eval-
vation. The two variants of spectral augmentation are imple-
mented in this paper: (1) spectral augmentation with random
temporal, and frequency mask positions, and (2) spectral aug-
mentation with the proposed language mask.



4.3. Decoding

Assuming an input sequence of length 7" , the output of the
neural network will be p(c|z,) fort = 1,...,T . Let p(c|z:) is
a distribution over possible characters in the alphabet ¢/ (which
includes the blank symbol) given audio input z;. In order to
recover a character string from the output of the neural network,
as a first approximation, we take the argmax at each time step.
Let S = (s1,..., ) be the character sequence where

ey

s¢ = arg max p(c|z)
ceyY

The sequence S is mapped to a transcription by collapsing

repeat characters and removing blanks. On the other hand, the

beam search decoder uses the context information in generating

the decoded sequence. There are two cases: either we extend

the beam by a character c different from the last character, then

there is no need for separating blanks in the paths, or the last
character is repeated.

4.4. Evaluation

For task A, the predicted label (Monolingual or code- switched)
file is submitted for a particular audio file in the blind test set.
For task B, a frame-level (200ms) label for each frame in the
audio is submitted. The LID system performance is evaluated
using accuracy and Equal Error Rate (EER) as evaluation met-
rics.

(@)

where N and T are the total no. of correctly predicted data
samples and the total no. of data points in the speech dataset
respectively.

N
Accuracy = T

F FA
EER = W 3)

where FRR = TFR/T, and FAR = TFA/T; FRR,
FAR, TFR, TFA and T corresponds to false rejection rate,
false acceptance rate, total no. of false rejects, total no. of false
accepts and total number of datapoints, respectively.

5. Results and Discussion

The Deepspeech-2 model is trained on the baseline configura-
tions and on the variants of spectral augmentation. In this sec-
tion, we report the accuracies and EERs on the Test set for Task-
A and Task-B.

Table 2 shows the % spoken LID Accuracy of the baseline
model and the proposed spectral augmentation method. It can
be observed that the proposed system outperforms as compared
to that of the baseline model on Task-A.

Table 2: Spoken LID accuracy on Task-A for different datasets

Data_Test | % Acc [Baseline] | % Acc [SpecAug]
Gu-En 71.9 73.01
Ta-En 71.2 79.02
Te-En 74.0 78.65

For Task-B, we compare the performance of the code-
mixed language recognizer using spectral augmentation with
random temporal mask location, and the proposed language
mask. Table 3 shows the performance comparison of the pro-
posed work, and the DeepSpeech-2 model (Microsoft’s Base-
line) on the test set of Part-B with Greedy Search Decoding. It
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Table 3: Performance comparison of the proposed work, and
the DeepSpeech-2 model (Microsoft’s Baseline) on the test set
of Part-B by Greedy Search Decoder

% Acc [%EER] on the test set on Greedy search decoder

Language Baseline SpecAug SpecAug + Lang Mask
Gujarati |66.79 [9.71](75.33 [7.78] 75.72 [7.53]
Tamil [72.17 [8.42]|74.80 [7.76] 75.02 [7.67]
Telugu [70.54 [8.65]|74.06 [7.88] 74.08 [7.87]

Table 4: Performance comparison of the proposed work, and
the DeepSpeech-2 model (Microsoft’s Baseline) on the test set
of Part-B by Beam Search Decoder

% Acc [%EER] on the test set on Beam search decoder

Language Baseline SpecAug SpecAug + Lang Mask
Gujarati |72.53 [8.54](76.33 [7.52] 76.64 [7.36]
Tamil |73.89 [8.06]|75.80 [7.54] 76.06 [7.44]
Telugu |75.20 [7.68]|75.90 [7.47] 75.84 [7.47]

can be observed that the proposed language mask on the spec-
trogram is able to discriminate the language ID’s within an ut-
terance.

Table 4 shows the performance comparison of the proposed
work, and the state-of-the-art methods on the test set of Part-B
on Beam Search Decoder. The size of the beam width is varied
from 5 to 20 in steps of 5. It is observed that the beam width
size of 15 is optimal for all languages in the shared task.

5.1. Discussion

The research on spoken LID for code-switched speech is rel-
atively new for Indian languages. Further, in India it is fairly
common to mix words from English and Hindi along with the
native language. Spectral augmentation has shown promising
improvement on noise robust ASR, and on low resource lan-
guages. Instead of masking random positions in the spectro-
gram, the positions of the language transitions are masked. Due
to this, the train speech corpus contains only the code- switched,
and the mono-lingual utterances. As a result, the model learns
to discriminate well between the code-switched utterances, and
the mono-lingual utterances. Also, the positions of the proposed
language mask captures the corresponding grammar in the ut-
terance. Thereby the model learns about the different statistics
of code-mixing. On the speech segments where there are small
portions of non-dominant language is involved, the model cap-
tures these small language transitions.

6. Conclusion

Spoken LID is performed on the three Indian languages (Gu-
jarati, Telugu, and Tamil) code-switched with English. We pro-
posed a language mask from the speech transcripts, and incor-
porated it in the spectrogram. We observed that the proposed
method is able to discriminates the languages in a code-mixed
data. The proposed method gives a relative improvement in
performance of approximately 3-5% in the LID accuracy over
that of a baseline system proposed by Microsoft on three code-
switched language pairs for two different shared tasks.
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Abstract

Code Mixing - phenomenon where lexical items from one
language are embedded in the utterance of another - is relatively
frequent in multilingual communities and therefore speech sys-
tems should be able to process such content. In this paper’, we
investigate approaches towards building systems capable of de-
tecting code mixing from a speech utterance. We propose em-
ploying a conditional variational encoder decoder that extracts
discrete latent representations while being optimized to detect
if the input utterance is code mixed. We explore two ways of
engineering the prior distribution to capture the linguistic space
of the utterance. Through objective evaluation via metrics Ac-
curacy and Equal Error Rate, we show that our approach signif-
icantly outperforms the baselines in the context of three Indian
languages - Gujarati, Tamil and Telugu.

Index Terms: Latent variable models, variational inference,
code mixing, language identification

1. Introduction

Code Mixing is a conversational phenomenon where linguistic
units such as phrases, words and morphemes of one language
are embedded into the utterance of another language [1, 2]. It
is quite common in multilingual societies such as in India, Sin-
gapore where English has transitioned from the status of a for-
eign language to that of a second language. Today such mixing
has manifested itself in various types of content ranging all the
way from news articles through comments/posts on social me-
dia, leading to co-existence of multiple languages in the same
sentence. In the context of devices such as Alexa/Siri, inter-
faces deployed in code mixed contexts should to be able to pro-
cess mixed speech without ignoring the content from one of the
languages. Identifying whether or not the utterance is mixed,
and the participating languages in case of a mixed utterance can
benefit the downstream speech and natural language models.

In this paper, we present an approach aimed at identifying
if a given speech utterance is code mixed or not. Humans have
been shown to perform language detection exploiting two types
of information from the speech utterance[3]: content informa-
tion such as phonetic repertoire, phonotactics and style informa-
tion such as rhythm and intonation. Infants have been shown to
rely on content information to discriminate between languages
even before having gained lexical knowledge[3]. Inspired by
this, we propose an approach aimed at first hypothesizing the
linguistic space of the given speech utterance and then using
this information to detect if the utterance is characterized by
code mixing. In our approach, the acoustic phonetic informa-
tion of the speech utterance corresponds to the content and the
para linguistic information corresponds to style. To isolate both
these types of information, we employ a conditional variational
encoder decoder with latent stochastic variables and investigate

'0ur implementation can be found here:

https://github.com/blackbawx/SILA
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two ways of constraining the prior space:(1) using a Uniform
discrete prior and (2) designing prior space inspired by articu-
latory dimensions.

A typical optimization challenge observed while train-
ing latent stochastic variable models is referred to as KL-
collapse (or) posterior collapse [4], wherein the decoder net-
work marginalizes the learnt latent representation. Approaches
to dealing this issue involve annealing the KL divergence
loss [4, 5], weakening the generator [6] and ensuring the recall
using bag of words loss. In [7], authors propose a principled so-
lution using vector quantization in the latent space, effectively
making the loss due to KL Divergence a hyperparameter. In
addition, they show that the resultant discrete latent representa-
tions may correspond to linguistic units. Our approach builds
on this observation and we hypothesize that the learnt discrete
units must be different for monolingual and code mixed utter-
ances. Extending [7, 8], we add additional constraints in the
prior space forcing the latent representations to follow articu-
latory dimensions: The encoded representation is hashed to a
latent code based on a articulatory prior bank designed using
a discrete codebook. This coded representation(content) is fed
both to our decoder to detect mixing as well as to the gener-
ator for reconstructing the input. To model speaker informa-
tion(style), we investigate two approaches: (a) Using a discrim-
inatory speaker encoder similar to [9] and (b) Using a generative
speaker encoder based on [10].

Our contributions from this work are as follows: (1) We
propose an approach to identify if a speech utterance is mixed
by employing discovered latent units. The authors are not aware
of other works employing such hypotheses for the task of lan-
guage (or) mixing identification (2) We investigate the effec-
tiveness of designing the latent prior space based on articulatory
constraints. This paper is organized as follows: In section 2, we
present some background followed by earlier work on exploit-
ing acoustic units. This is followed by an explanation of our
proposed approach in section 3. We present our experiments
in section 4 followed by an analysis of the proposed approach.
This is followed by conclusion in section 6.

2. Background

The goal of acoustic unit discovery is to come up with a set of
units that represent a speech utterance allowing robust resyn-
thesis. The elements of such a set also might conform to certain
desirable characteristics such as being consistent and compact,
i.e. that different inputs should have discriminant acoustic units,
but expected variance such as speaker or dialect should produce
the same acoustic units. There have been numerous attempts to
discover such acoustic units in an unsupervised fashion. In [11],
authors presented an approach to modify the speaker diarization
system to detect speaker-dependent acoustic units. [12] pro-
posed a GMM-based approach to discover speaker-independent
subword units. [13] designed a stacked AutoEncoder using
backpropagation and then cluster the representations at the bot-
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(a) Downsampling Encoder
(b) Latent space with uniform prior

(c) Latent space with articulatory prior

(d) Decoder

Figure 1: Architecture of proposed approach. For brevity we
have shown only three latent groups for the articulatory prior
(b). In our model we have four latent groups with 2,3,4 and
7 classes respectively. The speaker embeddings are not shown
here. (Best viewed in color)

tleneck layer. To avoid quick transitions leading to repeated
units, they employed a smoothing function based on transition
probabilities of the individual states. [14] extended the struc-
tured VAE to incorporate the Hidden Markov Models as latent
model. [7, 8] proposed VQ-VAE and argue that by vector quan-
tization the posterior collapse problem could be circumvented.
Our work is closely related to [7, 15] in that we follow a similar
architecture. However, instead of reconstruction, our decoder
performs a discriminative task of identifying if the input utter-
ance is switched. We also engineer our prior space to reflect the
articulatory constraints. Our view of decomposing the content
and style information is in the same spirit as the approach in
[16].

3. SILA: Switching Identification by Latent
Articulation

Let us consider a speech corpus X consisting of mulitple lan-
guages where each language might comprise of multiple speak-
ers. Let z1,...,x, denote acoustic frames X . Note that x; might
be either monolingual or a code mixed utterance and let Y de-
note this information. Our model learns the joint distribution
between {x, y}. We mediate this process using latent discrete
random variables represented by Z. We employ two types of
priors for Z to capture the content information: (1) Uniform
discrete prior and (2) Prior space divided into multiple groups
corresponding to articulatory dimensions. We hypothesize that
this ensures the latent representations correspond to speech. To
capture the style information, we employ pretrained speaker
embeddings. Our model can be summarized by the following
set of equations:

encoded.79 = HE"COd”(SEl:ﬂ)
z1:72 = VQ(encodedi.12) 9]
y = HDECOdET(Zl;TQ)

At training time, parameters are learnt using Varia-
tional Inference. Specifically, we first draw latent code se-
quence(dropping the subscript for brevity) z from the current
posterior represented by HZ™¢°4™ We then feed z into the de-
coder to optimize the likelihood and. During inference, we pass
the speech utterance through encoder and obtain the latent units.
The latent units are then fed to the decoder to obtain logits. The
architecture of our proposed approach can be found in figure 1.
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Table 1: System Variants

System | Spk Embedding Type | Spk Embedding Location
SILAZ en Discriminative Encoder
SILADFde Discriminative Decoder
SILASQ;?" Generative Encoder
SILAZ Generative Decoder

3.1. Model Components
3.1.1. Encoder

Our Encoder extracts temporal linguistic representation from
the input to be fed to the variational layer. We refer to this
representation as content and implement the encoder as a down-
sampler following the same architecture as in [7]. Additionally,
we also add batch normalization to the output of encoder. We
found that this improves the speed of training for some of the
system variants we built.

3.1.2. Speaker Embeddings

In this work we employ pretrained speaker embeddings as the
style information. For discriminative speaker embedding, we
follow the procedure from [9] where the primary task was
speaker identification®. For generative speaker embedding, we
follow the procedure from [7] where the primary task was re-
construction of input. We extend the architecture to [10] and
extract the ‘top level’ latent variable as the speaker embedding.

3.1.3. Decoder

Our decoder consists of an LSTM followed by an Attention
block and a linear layer. The latent units z are first passed
through decoder LSTM and then Attention block acts on the
temporal sequence output by LSTM. We employ soft attention
and implement it using dot product.

3.1.4. Latent Vector Quantization and Articulatory Priors

We investigate two separate prior space designs in our architec-
ture. For the uniform discrete prior space, we follow the vec-
tor quantization procedure mentioned in [7]. For designing the
articulatory prior space, we engineer our prior space to account
for the phonetic information in the utterance by representing the
prior as a discrete latent variable bank. Each discrete latent vari-
able has a different set of states reflecting one of the articulatory
dimensions. We divide the latent space into four groups, with
2,4, 5 and 7 classes corresponding to the different articulatory
dimensions as mentioned in Table 2.

3.2. Optimization and Model Interpretation

Our objective function is composed of four terms: (a) Classifi-
cation loss characterized by cross entropy, (b) KL Divergence
between the posterior output by encoder and the prior latent
distribution, (c) Encoder penalty following [7] and (d) Vec-
tor Quantization penalty following [7]. Since we directly em-
ploy the pretrained embeddings for speaker we do not have the
penalty terms corresponding to speaker embedding in the loss
function. The KL Divergence being optimized in our model

2We have used the implementation of speaker encoder from
https://github.com/CorentinJ/Real-Time-Voice-Cloning



Table 2: Articulatory Features

Feature name |  Value | Details

ve +- vowel or consonant
ving slda vowel length
ctype sfanlr consonant type
cplace lapbdvg | place of articulation

can be shown as follows. Consider the case of uniform discrete
prior with K classes:

la=l2)[[p(2)] = > a(z|z)logla(z|z) /p(=)]

= q(klz)loglq(k|z)/p(k)]
= l.log[1/(1/k)]
= log(k)

In the case of our model employing articulatory priors, the
KL Divergence collapses to the sum of logarithm of the number
of classes in each articulatory group. This can be shown as
follows:

(©))

la(zl2)lIp(2)] = > a(zlz)logla(z]x) /p(2)]

z€EZ

= q(klx)loglq(k|z)/p(k)]

keK

= log(k)

keK

3

The advantage of formulating our model in this fashion is
the presence of random variables that might capture the articu-
latory causal factors of variation in the speech utterance. Tech-
niques aimed at this [17] have shown that it is possible to effec-
tively disentangle the factors of variation using stochastic vari-
ables. Hence, we postulate that augmenting our model with
appropriate prior distribution helps ‘discover’ latent linguistic
units.

3.3. System Variants

We have built multiple variants of the proposed architecture.
We denote the systems employing uniform prior and articula-
tory priors as SILAy,; and SILA,,fs respectively. Each of
these systems has two additional variants based on (a) the type
of speaker embedding employed and (b) the position where
speaker embedding is incorporated. A description of all the
variants built can be seen in the table 1. The motivation for
using the speaker embedding at the encoder is to capture the
speaker specific mixing. On the other hand, providing the
speaker embedding at the decoder allows the latent represen-
tation to capture linguistic units which are speaker independent
and hence more representative of the speech utterance.

3.4. Hyperparameters

The architecture of our model is a modified version of the ar-
chitectue proposed in [7]. As our content encoder, we use di-
lated convolution stack of layers which downsample the input
audio by 64. The speech signal was power normalized and
squashed to the range (-1,1) extracting the mel spectrum. We
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Table 3: Accuracy for various systems in all the three lan-
guages: Gujarati, Tamil and Telugu.

System Gujarati | Tamil | Telugu
SILAPTen 1777 724 | 7638
SILADTde | 771 702 | 770
SILAES | 782 | 731 | 769
SILAJ Y | 766 724 | 76.1

feed this spectrum to to the content encoder. For both discrimi-
native and generative speaker embedding types, we obtain 128
dimensional utterance encoding. The quantizer acts as a bottle-
neck and performs vector quantization. Quantization is imple-
mented using minimum Euclidean distance in the embedding
space. The number of latent classes was chosen to be 512 and
length of each class was 256 in the case of uniform prior. For
the articulatory prior, the length of latent vectors was 64. As-
suming z.(x) denotes the encoder output in the latent space,
then the input of decoder zq(z) will be obtained by argmin of
d(ej,ze(x)), where d is a similarity function of two vectors.
The weight for encoder penalty was annealed from 0.001 to 0.01
over 2K timesteps and was maintained 0.01 there after. The de-
coder is a simple bidirectional LSTM with attention. It takes
the output from the quantizer and is trained using cross entropy
to predict if the utterance is mixed or not.

4. Experimental Setup
4.1. Data

We have used data released as part of shared task on detection of
code mixing from speech [18]. Data included speech utterances
for three Indian languages Gujarati, Tamil and Telugu. The la-
bels for each utterance indicated if the utterance exhibits code
mixing. No transcriptions or speaker labels have been provided
as part of the official data release. The release included train-
dev-test splits and therefore we have followed the same splits.

4.2. Baselines

An official baseline was released along with data [18]. Offi-
cial baseline employed acoustic model similar to DeepSpeech
and used CTC loss to optimize the network. We have built the
following systems as baselines:

4.2.1. CBHG Baselines

This class of baselines were built using CBHG(1-D convo-
lution bank + highway network + bidirectional GRU) from
Tacotron[19] as the acoustic model and a linear layer as the de-
coder. This baseline was trained using cepstral representation.
We have experimented with 80 dimensional Mel features used
typically in speech synthesis as well as 39 dimensional MFCCs
used in speech recognition.

4.2.2. Downsampling Baselines

This class of baselines used downsampling encoder from [7]
as the acoustic model and a linear layer as the decoder. We
have experimented with different rates of downsampling from
2 through 64. We have also experimented with different input
representations of audio: cepstral and raw audio. For systems
using raw audio, we have also performed p law quantization
using 256 levels.



4.2.3. Experts Baselines

We built Mixture of Experts baselines extending the approach
proposed in [20]. Specifically, we train a number of expert mod-
els with soft parameter sharing implemented by gating mecha-
nism. We hypothesized that each expert could capture infor-
mation relevant to one language, or the individual linguistic
units. We experimented with 2 through 8 experts where each
expert was hypothesized to track the characteristics of a lan-
guage and/or mixture of languages.

Table 4: Accuracy and Equal Error Rates on Dev Set for Var-
ious Systems in all the three languages: Gujarati, Tamil and
Telugu. BL - Baseline

System Gujarati Tamil Telugu
Official BL 76.8/11.6 | 71.2/14.4 | 74.0/13.0
CBHG BL 75.7/11.9 | 704/149 | 68.8/14.3

Downsampling BL | 76.2/11.7 | 70.2/15.0 | 67.4/14.5
Experts BL 7747112 | 71.7/14.3 | 74.8/13.0
SILA 78.2/10.8 | 73.1/13.2 | 77.1/12.8

5. Results and Discussion

Evaluation was performed in the form of accuracy and Equal
Error Rate(EER) following [18]. Since we did not have access
to the ground truth labels for test set, we have compared the
systems in terms of their performance on the development set.
These results can be seen in the tables 3 and 4.

5.1. Discussion on system variants of SILA

The results evaluating different variants of SILA can be seen
in table 3. The variant SILAS " achieves the best metrics
in Gujarati, Tamil and is the second best in Telugu. From the
scalar accuracy values the variants do not seem to be statisti-
cally different from each other. However, we noticed that the
variants employing generative embeddings took longer to con-
verge compared to the variants employing discriminative vari-
ants. Similarly we did not observe significant performance dif-
ferences between the variants employing embeddings at the en-
coder and the decoder. We have also built a variant that uses
a residual connection for speaker embeddings from encoder to
the decoder. This system therefore can be seen as a combination
of the systems SILA®" and SILA“®(after removing the other
terms from the system notation for brevity). We observed that
this system obtains slightly degraded performance compared to
the other variants in terms of accuracy. In addition, the latent
units in this system were degenerate - they collapsed to a sin-
gle latent unit. Since we are interested in discovering the latent
units and exploiting them in our future works, we have ignored
this system variant. Figure 2 depicts the entropy of individ-
uval articulatory groups during training. It can be seen that the
entropy of some groups increases during the training. We at-
tribute this to the model allocating additional capacity in the
latent space and ‘discovering’ additional latent units. The be-
haviour seemed consistent across all the system variants that
employed articulatory priors.

5.2. SILA vs Baselines

For each of the systems, we have only tabulated the best per-
forming variant. For CBHG Baselines, Kaldi features with
deltas and double deltas have significantly better performance
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Figure 2: Entropy of the individual latent articulatory groups. X
axis denotes the number of gradient updates during training. Y
axis denotes the scalar value of entropy. (Best viewed in color)

compared to the other variants. We hypothesize that this might
be due to the presence of information about deltas which is
missing from Mel features. Similar observations have been
made from the Downsampling Baselines. Best performance
from Experts class of Baselines was obtained with 2 experts.
This was contrary to our original hypothesis that having more
number of experts might provide the model flexibility to encode
more specific information. We plan to investigate this further as
future work. Our proposed approach using discrete latent vari-
ables has shown to be significantly better than all of the base-
lines. This observation is in line with our hypothesis that the
discrete latent units might be appropriate for detecting mixing
in a speech utterance.

5.3. Discussion

To further validate our hypothesis about discrete units being dif-
ferent for different languages, we have also performed informal
evaluation of the individual units being obtained given an utter-
ance. We used data from Telugu for this as the primary author
was proficient in that language. Manually inspecting the indi-
vidual latent units did not yield units specific to monolingual or
mixed lingual scenarios. We also found that the discrete units
are not completely speaker and background independent. For
instance, some of the utterances in the data were characterized
by different room acoustics compared to the rest. While we
would expect our model to normalize this effect and result in
room acoustics independent discrete units, we have observed
that this was not the case - rather some of the discrete units ap-
pear to have captured information about room acoustics. The
authors acknowledge that that latent units do not correspond to
exact articulatory features. In fact, when the model is trained
without using reconstruction as an additional task, we observe
that the latent units function as language embeddings rather
than articulatory units. We intend to further investigate this be-
haviour in our future work.

6. Conclusion

In this work, we investigate approaches towards building sys-
tems capable of detecting code mixing from a speech utterance.
We build a conditional variational encoder decoder where the
latent space is characterized by discrete stochastic variables.
We investigate two ways of engineering the prior space to in-
corporate articulatory constrains. We show that our approach
outperforms the baseline methods.
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Abstract

In this paper, we identify challenges for language identifica-
tion for code-mixed Indian languages with speech utterances
captured in the wild. The study begins with building mod-
els for controlled datasets for Telugu, Tamil and Gujarati code
mixed speech. This is part of the shared task of the Speech
Technologies for Code-Switching in Multilingual Communities
2020 workshop. In the second half of the paper, we discuss an
exercise to collect more diverse code-switched data for evalu-
ating the language identification models. This data is derived
from a wide range of YouTube videos in Gujarati and Telugu.
The models get mixed results: the development set shows excel-
lent performance, while the evaluations show degradation. The
study identifies a need for more diverse, real-world code-mixed
datasets for underserved languages.

Index Terms: multilingual speech recognition, code-mixed
speech, language identification

1. Introduction

One of the challenges of building speech recognition models for
modern Indian languages is the use of multiple languages in the
same utterance. Unlike monolingual systems, multilingual or
code-mixed systems need to be able to deal with utterances or
words in different languages. Moreover, many publicly avail-
able datasets are imbalanced [1], with an over-representation of
the primary language (or mother-tongue) of the speaker, or an
over-reliance on written text to derive spoken utterances. This
motivates our call for building higher quality datasets for code-
mixed speech and NLP tasks.

To mitigate some of these challenges, some systems have
explored conditioning the speech recognition models with a lan-
guage vector [1, 2, 3, 4]. This method has shown to improve
speech recognition performance for large multilingual speech
recognition models [1]. In this paper, we study the task of lan-
guage identification for code-mixed languages for use in down-
stream speech recognition tasks.

Our approach first builds monolingual speech models for
the three languages (Telugu, Tamil, and Gujarati), which are
subsequently used to train a binary classifier to predict between
code-mixed and monolingual utterances. Our approach also
takes into account the quantity and quality constraints of the
available training data.

To build monolingual speech models, we use a modified
Wav2Letter model [5] to train a simple speech recognition
model. For the binary classification task, we use a linear SVM
that we pass the character n-grams of the monolingual speech
model.

In the second part of the paper, we present a framework
for the collection of a large volume of high quality and well-
annotated modern vernacular speech in realistic settings. We
build a high-quality code-mixed dataset in two steps. Step one
involves the collection of diverse content from YouTube con-

akshay@annotateit.com
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sisting of interviews, educational videos, local film industry in-
spired by earlier work that used YouTube celebrity interviews
to curate a vast dataset of English language speakers [14]. We
use the SyncNet framework to extract audio clips from these
videos. In the next step, to annotate this data, we build an an-
notation tool to annotate multilingual speech datasets. The tool
uses several techniques to make annotating audio clips easy us-
ing tools inspired by the state of the art research in annotation
of code-mixed speech.

Finally, we evaluate the performance of the language iden-
tification model on the shared task from the Code-Switching
in Multilingual Communities 2020 Workshop and the YouTube
dataset and analyze the underperformance of the model for the
latter.

2. Related Work

Considerable effort has gone into building datasets and models
for code-mixed and multilingual speech.

2.1. Speech Recognition and Language Identification Mod-
els

Anjuli Kannan et. al. [1] propose a low latency end-to-end sys-
tem that works with real world data where they use a single mul-
tilingual model instead of separate models for each language.
They propose sampling as one method to reduce the problem
with imbalance in multilingual utterances. Additionally, they
found the use of language vectors useful in improving the mod-
ified transliterated Word Error Rates (WER) [6]. In a review of
the Shared Task Evaluation for Language Identification at Var-
Dial, several top performing submissions were found to use lin-
ear discriminators for language identification [7]. Feature hash-
ing has been found helpful to reduce the high-dimensionality of
language identification datasets [8].

2.2. Data Annotation

Sanket Shah et. al. [9] describe an approach to building an an-
notation tool for collecting code switched data. Their annota-
tion interface helps annotators transcribe code-switched speech
faster and more accurately than a traditional input tool. In later
sections, we use a similar interface for annotation, with some
modifications to accommodate for input on mobile devices.

3. Shared Task

The Workshop on Speech Technologies for Code-switching in
Multilingual Communities 2020 organized a shared task for
Code-switched Spoken Language Identification (LID) for these
language pairs:

1. Gujarati-English (GU-EN)

2. Telugu-English (TE-EN)

3. Tamil-English (TA-EN)



The shared task has two parts:

e Part A: Language identification at the utterance level
¢ Part B: Language identification at the frame level

For each of the sub-parts, datasets have speech data labeled
for code-mixed and monolingual at the utterance and frame-
level respectively.

The language identification models discussed in the follow-
ing section solve the problem of utterance level language iden-
tification (Part A), which allows utterance level language vector
conditioning for downstream speech recognition models.

3.1. Dataset Description

For Part A, the dataset for each language has been split into
a training dataset and a development dataset. Each utterance
is between 2 seconds to 24 seconds long, and the utterance is
labeled as either monolingual or code-mixed speech.

The provenance of the data was not available from the orga-
nizers at the time of publication. However, after sampling a few
audio files, it seems likely that the dataset is speech recorded
by narrating target language text corpora. Due to constraints
posed by recording in these conditions, the dataset may not
cover certain real-world domains like spontaneous speech, col-
loquial speech and conversations.

Additionally, a much larger collection of monolingual
data ! was available for each target Indian language with ut-
terance labels, that could be used to train the language identifi-
cation model, with the condition that test data from this dataset
should be excluded.

4. Language Identification Model

For language identification, we use a two-stage training and in-
ference model. In the front-end, we train a monolingual speech
recognition model using the monolingual speech corpus de-
scribed in the previous section. In the second stage, we use
the inference from the first stage to train a linear classifier for
the binary language identification task: monolingual vs. code-
mixed.

4.1. Monolingual Speech Recognition Model

Since CNNs are generally faster than LSTMs, we use a
Wav2Letter model with CTC [10] loss to train a simple speech
recognition model from the monolingual data.

The monolingual data has unicode sentence labels for Gu-
jarati, Tamil and Telugu speech. Gujarati uses a variant of the
Devanagri script, while Tamil and Telugu come from the fam-
ily of Brahmic scripts. These languages have high grapheme-
to-phoneme correspondence, hence grapheme based models
should theoretically achieve similar performance to phoneme
based models, even for relatively small amounts of training
data. Moreover, there is very little phonetic data available for
these languages.

End-to-end speech recognition models trained on character-
based outputs like graphemes, byte-pair-encodings (BPEs), or
word-pieces, jointly learn the acoustic model, pronunciation
model and language model within a single neural-network [11,
12]. The latter two would be particularly useful during infer-
ence, since code-mixed speech with English words will be ef-
fectively treated as out-of-vocabulary (OOV) words.

Ihttps://msropendata.com/datasets/7230b4b1-912d-400e-be58-
£84e0512985¢
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We use 90-dimensional log-mel spectrum with a 20 mil-
lisecond window and a 10 millisecond hop length as frame level
audio features. For the output, we tokenize the sentences using
BPE with a vocabulary of size 1000.

The monolingual speech corpus is split into two parts: 80%
of the corpus is used for fitting the model parameters using
backpropagation and 20% of the corpus is used to keep track
of the validation character error rate (CER). We also use audio
augmentation (pitch shift and speed change) and spectral aug-
mentation [13] to improve generalization performance.

To avoid overfitting, no additional hyperparameter search
is performed. Additionally, to encourage better generalization
performance, we use the same hyperparameters for training
monolingual speech recognition models of all three languages.

The best performing speech models trained above are gen-
erally not suitable for practical speech recognition applications,
however, the output is discernible enough to train downstream
discriminators as described in the next section.

4.2. Language Identification Binary Task

From the tokenized output of the monolingual speech model,
we extract character n-grams of length 1 to 5. For training a lin-
ear discriminator, these n-grams need to be categorized. How-
ever, because of the large space of possible n-grams, the dimen-
sionality of the categorized features is very high.

Feature hashing provides an elegant way of reducing di-
mensionality without limiting the n-gram space. We use 1000
dimensional feature hashing to reduce the dimensionality of the
Bag-of-Words (BoW) n-gram vectors for input to the classifier.

The features are used as input to a linear SVM that predicts
between code-switched and monolingual utterances.

5. YouTube Data Collection and Annotation

The availability of high-quality resources for low-resource lan-
guage is a significant constraint in building speech and natural
language models. Each of India’s top-10 native languages have
more than 30 million speakers each. However, the amount of la-
beled speech data available is minuscule in comparison to other
languages like English, Mandarin or Russian.

Since Indians are naturally multilingual, informal speech
and text includes frequent code-mixing to a high-degree. On
the other hand, formal text and speech, often used for training
speech and language models, contains very little code-mixing.

With the proliferation of low-cost high-speed internet, there
is a sizable amount of Indian language content available on-
line on social media, video sharing platforms and streaming
platforms. YouTube, in particular, hosts a large number of
Indian content creators that cater diverse interests including
celebrity interviews, news, educational videos, Bollywood film
and music, fashion and beauty tips, agriculture, stand-up com-
edy, pranks etc.

Earlier work had used YouTube celebrity interviews to cu-
rate a vast dataset of English language speakers for speaker
recognition applications [14]. Inspired from that work, we use
a similar workflow to curate a small dataset of Gujarati and Tel-
ugu speech from YouTube videos for speech recognition.

5.1. Gujarati and Telugu Speech from YouTube Videos

We use the SyncNet framework [15] to extract speech from
YouTube videos. The SyncNet model uses face tracking and
lip tracking to sync speech with the speaker in a video frame.
For the interested readers, we refer them to the original paper.



Table 2: Results of Gujarati, Telugu and Tamil code-mixed iden-
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Figure 1: Code-Mixed Speech Annotation Interface

From the output of the model, audio clips are segmented into
utterances of up to 30 seconds length to allow batch training of
neural networks.

For the source Gujarati and Telugu videos, we choose topics
that cover local celebrity interviews, official government bul-
letins, current affairs, food preparation videos and educational
videos, where the speaker is visible in the frame most of the
time. Videos with music are filtered out. The common theme
among all of the videos is that they have a large amount of code-
mixing with English.

5.2. Speech Annotation using Crowdsourcing

Crowdsourcing is commonly used to get speech annotations for
low-resource languages. Crowdsourcing can be cheap, how-
ever quality can be a concern when annotators are untrained
and focused on maximizing their throughput. For annotating
the speech utterances derived from YouTube videos, we created
a custom interface for our annotators, as shown in Figure 1.
The annotators are able to playback the speech utterance on a
desktop or mobile platform. Annotators can quickly switch be-
tween a standard English keyboard to type English words or a
transliteration keyboard to type Gujarati/Telugu words. They
are, optionally, given a transcription hint to increase annotation
throughput.
For quality control we take two measures:

» For every annotation session, we benchmark annotator
accuracy using a pool of expert-labeled speech, and re-
ject utterances where the annotator accuracy falls below
a calibrated quality threshold.

 For further reliability, we merge redundant annotations
for the same utterance with a consensus algorithm sim-
ilar to ROVER [16]. Each evaluation utterance has
roughly 3-5 redundant annotations.

Table 1: Number of utterances of code-mixed and monolingual
speech in the YouTube dataset

To identify code-mixed speech, we sample the utterances
for the presence of one or more words in the Latin script. This
is not always accurate, for example in Gujarati, it is common to
find English words suffixed with Gujarati morphemes to express
the plural:

« Case becomes 5%\ instead of cases
¢ Film becomes [%C-"ﬂ instead of films

Moreover, Indian languages use a lot of loaner words from
English, which are interchangeably written in Latin or regional
scripts. To minimize errors from these peculiarities, we reject
utterances where there is annotator disagreement about specific
words in the consensus building step.

In this exercise, we collected over 200 hours of annotated
Gujarati and Telugu speech. However, for practical reasons, we
chose a significantly smaller dataset for evaluation as shown in
Table 1. The dataset is fairly balanced between code-mixed and
monolingual utterances.

6. Results
6.1. Shared Task Evaluation

The results of the shared task evaluation are shown in Table 2.
The language identification model outperforms the baseline on
the development set for all three languages. This is encour-
aging, since the individual models do not have any language
specific hyperparameter tuning.

There is a notable drop in accuracy and equal error rate
(EER) for the testing set, as compared to the development set,
yet the models perform comparably to the leaderboard available
at the time of submission. The Gujarati language identification
model, in particular, was ranked at third place in the leaderboard
among five submissions hosted on the organizer’s website. Due
to a late submission of the evaluation, our results were not offi-
cially published on the leaderboard.

Labels for the test set were not available at the time of pub-
lishing for error analysis. However, we hypothesize that the
development set for the code-mixed data and the training set for
the monolingual corpus may have significant overlap for mono-
lingual utterances. This may indicate that the model has not

Table 3: Accuracy and EER for code-mixed language identifi-
cation on YouTube dataset

Number of Utterances YouTube
Monolingual Code-Mixed Accuracy EER
Gujarati 766 517 Gujarati 42.1% 28.9%
Telugu 697 754 Telugu 52.7% 23.6%
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generalized to unseen monolingual speech data. Another hy-
pothesis is that the provenance of the test dataset is significantly
different from the training and development dataset.

6.2. Cross-Domain YouTube Dataset Evaluation

For the YouTube dataset, we generated ground truth labels from
the annotated transcripts after data cleaning and quality control.
The same Gujarati and Telugu models are used for evaluation
as in the section 6.1, without any fine-tuning. Hence, this can
classified as a cross-domain evaluation.

In Table 3, the performance of the language identification
model trained on data from Part A of the Shared Task suffers
a significant drop compared to the test results from the pre-
vious section. The model particularly underperforms for Gu-
jarati, where we saw the best performance in the evaluation of
the Shared Task among all three languages.

On further analysis, it was observed that monolingual ut-
terances were frequently being erroneously classified as code-
mixed. Since the binary classifier is presumably functioning
as an anomaly detector, this may indicate that the front-end
needs more in-domain monolingual data to improve generaliza-
tion performance.

7. Conclusion and Future Work

In this submission we propose a two step approach to language
identification for a code-switched utterance. We build a tradi-
tional monolingual speech recognition model using Wav2Letter.
Next we use the n-grams of the monolingual model as input for
a linear SVM to perform the binary classification task. From
the data provided by the challenge, we show promising results
on the dev set and peer-comparable results for the shared task
evaluation. However, there is a notable degradation in accuracy
and EER for the cross-domain YouTube dataset evaluation. The
drop in accuracy could be ascribed to:

¢ Lack of large amounts of in-domain training data
* Lack of model generalization
* Noisy labels for monolingual and code-mixed speech

These results clearly demonstrate a pressing need for eval-
uating models on real-world and cross-domain datasets for
speech recognition tasks in underserved languages. Datasets
can be curated relatively inexpensively and scaled up quickly
with the use of right annotation tools and quality control mech-
anisms.

This paper also recognizes the need for larger datasets for
downstream applications in NLP for underserved languages. In
the future, we anticipate participation in dataset annotation and
collection exercises in text to speech, comprehension, intent de-
tection and more for a wider range of Indian languages.
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Abstract

A continuous change between two or more languages in a sin-
gle utterance is known as code-switching. In this work, we de-
velop a novel model to predict whether given audio is mono-
lingual or contains code-switching. We propose to use a con-
volutional encoder in combination with transformer architec-
ture for utterance-level code-switching detection. The convo-
lution encoder processes the spectral features from audio with
the help of 1D convolutional layers. The convolutional layer
output features are processed by the Transformer network, con-
sisting of a sequence of multi-head self-attention layers. The
multi-head self-attention layers use attention mechanisms and
help in selecting relevant information for better code-switching
detection. Finally, our model aggregates frame-level features
from the transformer network to create an utterance-level fea-
ture vector to predict the class label. We train and evaluate
our model using the dataset provided by the Microsoft code-
switching challenge. The training data contains three different
languages, and each language contains both mono-lingual and
code-switched utterances. Our model achieves significantly bet-
ter accuracy compared to the baseline model. Our experiments
show that, compared to the baseline, we obtain approximately
8%, 7%, and 3% improvement in accuracy for Telugu, Gujarati,
and Tamil language, respectively.

Index Terms: code-switch detection,transformer, 1D-CNNs.

1. Introduction

Code-switching detection is about identifying whether an ut-
terance contains multiple languages. Code-switching speech
is defined as a speech that contains multiple languages within
a single conversation [17]. Code-switching is known to oc-
cur in mostly low resource languages. In India, almost all
of the spoken languages are multilingual in nature. Code-
switching can sometimes cause problems to speech recognition
systems, which are built using mono-lingual data. Many re-
searchers in the speech community are trying to develop sys-
tems that can handle code-switching speech. Recently, robust
acoustic-modeling techniques[8] are developed to handle code-
switching. [5] proposes to map English phonemes to Ger-
man phonemes to create a robust acoustic model for German
speech recognition. [6] propose to use language-independent
speech recognition and have shown to improve the system per-
formance for Chinese speech recognition system. Recently, [7]
built an end-to-end sequence-based neural network model for
improving Chinese code-switching speech recognition accuracy
by predicting language labels for every frame. Recently tech-
niques [19,20] have shown to use language modeling in order to
build robust speech recognition systems against code-switching.
Language identification (LID) also seems to be an important
technique to deal with code-switching [9,10,11,18]. Some of
the interesting works[1,2,3,4] have shown different methods
to detect the code-switching in single conversation/utterance.
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Multilingual training of DNN-based speech recognition sys-
tems has shown some improvements in the low resource lan-
guages[13,14,15,16].

Recent developments in the area of deep learning [27] have
shown tremendous improvement in many areas of speech, in-
cluding speech recognition [21], language identification [22],
speaker identification [23], etc. Sequence to sequence [24]
models have shown to be the best models for sequence pre-
diction or sequence mapping problems like machine translation
and speech recognition. Attention models [25] have become the
dominating models in both NLP and speech problems due to
their ability to focus on specific part of the signal to extract rel-
evant information. Attention models have been the state of the
art models for most of the sequence mapping problems like ma-
chine translation, speech recognition [21], text-to-speech, etc.
Today state of the art speech recognition uses attention based
sequence to sequence model due to its efficiency and capacity
to align and predict. Transformers [26] is a special type of at-
tention model that uses only attention technique without any
other layers of convolution or RNNs, and they have been the
best models for machine translation. Recently, attention mod-
els have also been extensively used in problems like emotion
recognition [28], language identification and they are shown to
be the best models for these problems.

Motivated by the work [26], this paper proposes to use
transformer architecture in combination with a 1D convolu-
tional neural network for code-switching identification. Our
proposed model sequence of 257-dimensional spectral features
as input and applies a sequence of 1D convolutional layers fol-
lowed by a sequence of multi-head self-attention layers. We
use the statistics pooling layer as an utterance-level aggregator
to pool the frame-level features into an utterance-level feature
vector. The utterance-level feature is used to predict if the in-
put is mono-lingual or code-switched utterance. We conduct
all our experiments on the Microsoft code-switching challenge
dataset for three Indic languages Telugu, Tamil and Gujarati.
Our experimental study shows that the transformer architecture
can significantly improve the baseline for all three languages.

The organization of the paper is as follows. In section 2, we
explain our proposed approach in detail. In section 3, we give a
detailed analysis of the dataset, and in section 4, we explain our
experimental setup in detail. Finally, in section 5, we describe
our results.

2. Proposed approach

In this section, we explain our proposed approach in detail. The
detailed model architecture is shown in Figure 1. Our model
consists of 3 main stages, 1) An Convolutional Encoder layer,
which consists of series of 1D convolutional layers, 2) Trans-
former block, consisting of multiple self-attention layers to se-
lect important and relevant features for code-switching detec-
tion using attention weighting and 3)Utterance-level aggrega-
tion layer, which contains statistics pooling layer to obtain ut-
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Figure 1: Proposed model architecture.

terance level feature vector for classification. The model takes
a spectrogram feature matrix as input, and it is fed to the Con-
volutional Encoder as shown in Figure 1. The features from the
convolutional encoder layer will go to the transformer block,
which consists of a series of multi-head self-attention to extract
relevant features from different parts of the input. The statistics
pooling layer generates an utterance level feature vector by con-
catenating the mean and standard deviation vectors. The output
of the statistics pooling layer gives us a single feature vector
called the utterance level feature vector. This utterance level
feature vector is fed into a projection layer followed by a Sig-
moid layer to predict whether the input audio is monolingual or
code-switched. We explain the details of each of these blocks
in the following section.

2.1. Convolutional Encoder

Convolutional neural networks have been used a lot by com-
puter vision community due to their nature of learning higher-
level representation through the hierarchical structure. In
speech, the audio waveform also contains both lower and
higher-level abstractions. The higher-level abstractions like
phonemes, syllables, or words are important in code-switching,
whereas lower-level representations are may not of great im-
portance. We use a convolutional neural network to learn these
higher-level representations from lower-level spectral features.
The Convolution encoder stage contains a series of 4 Convolu-
tion blocks, as shown in Figure 1. Each Convolutional block
consits of 1D convolution operation, 1D Batch Normalization,
Relu, Dropout and 1D max-pooling as depicted in Figure 1.
Each of the convolution blocks operates at the same kernel size,
but the number of filters varies between them. The convolution
encoder takes a spectrogram feature matrix as input. The spec-
trogram contains a series of T spectral features with a feature
dimension of 257. The input processed by the first convolution
block Convolution Block -1 consists of 64 1D convolution fil-
ters of kernel size 1x3, and the max-pooling operation is applied
with a kernel size of 1x3 and stride 2. Similarly, the Convolution
Block -2, Convolution Block -3 and Convolution Block -4 have
128,256,and 256 filters respectively. Each of the convolution
blocks is operated with the same kernel size of 1x3. Also, each
of the blocks is operated with a max-pooling kernel size of 1x3
and stride of 2. The convolution filter sizes and max-pooling
filter sizes are chosen in such a way that the final output from
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the convolution encoder gives us a feature vector for every 200
ms. Let X, = [Z1,®2..Zn,...x7] be a spectrogram of an
utterance consisting of T feature vectors. The input vector &,
is a spectral feature vector extracted from the raw audio.

H€ = Convolution-Encoder(X ) 1)

Where, Convolution-Encoder is a mapping function
which consisting of series 1D Convolution blocks Convolution
Block -1,Convolution Block -2, Convolution Block -3, and Con-
volution Block -4. After this operation, we obtain a feature se-
quence HC = [hy, ha.....hTV of length T" and T' << T.
The Convolution-Encoder operation can be thought of as a
feature learning neural network, and it also helps frame-rate re-
duction. The reason is as follows, typically the spectral features
are extracted at a 10ms frame rate from the raw audio, but the
code-switching can happen at a word or sub-word level, typi-
cally occurring for around 200ms. We design the network in
such a way that we obtain a single feature vector approximately
for every 200 ms so that the transformer model can look for vari-
ations in the features and learn to classify whether an utterance
is mono-lingual or code-switched.

2.2. Transformer

Attention-based models have shown significant improvement in
many speech problems these days. Specifically, the transformer
[26] architecture is shown to the best neural network model for
many sequence mapping problems like machine translation and
speech recognition due to their ability to select important and
relevant information during prediction. In this work, we pro-
pose to use a transformer for code-switching detection task. We
expect the transformer model to learn to attend and select rel-
evant features for better classification once we extract higher-
level representations using convolutional layers. We assume
that after training, the transformer will be able to focus and se-
lect the feature where code-switching occurs through an atten-
tion mechanism. Hence, we will be able to predict if the given
utterance is monolingual or code-switched.

In this section, we describe the transformer block in detail.
The transformer block contains three multi-head self-attention
layers and an initial positional encoding layer [26], as shown in
Figure 1. The positional encoding layer uses the sinusoidal po-
sitional embedding technique, as proposed in [26]. The multi-
head self-attention layers in the transformer use scaled dot prod-
uct attention mechanism to select the relevant features from the
input feature sequence HS = [ha, ha..... hT'] at multiple
levels. The transformer helps attend to different parts of the
input to detect if there is code-switching occurring in between
monolingual words. The multi-head self-attention block is de-
scribed, as shown in Figure 2. It consists of 3 different lin-
ear blocks, one for query Q , one for key K, and another for
value V. Each linear block consists of M independent linear
layers, as shown in Figure 2, where M is the number of heads.
The first multi-head attention block Multi-Head Self-Attention
-Layer 1 takes features H c = [h1, h2..... hT'] from Con-
volution block after positional encoding operation and applies
linear transformation to create Q;, K; and V; using " linear
layers where, ¢ = [1,2.....M] and M is the total number of
attention heads. The Q;, K; and V; are fed into scaled dot
product attention layer. The scaled dot product attention A; for
i head is defined as follows.

Q:K;

q

A; = Softmax(

)Vi (@)
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Figure 2: multi-head self-attention

Where dg is the dimension of the query vector. We com-
bine the attention output from all the heads using simple con-
catenation and feed into the feed-forward layer.

A= Concat(Al,Az,Ag...Ai ..... AM)W() 3)

Where, A; is a dgxT dimensional matrix. Since the Con-
cat operation is applied to the feature dimension of all the ma-
trices, the final output attention matrix A from multi-head at-
tention block will have M dgxT matrix dimensions. The out-
put of the first layer A goes to the second layer Multi-Head
Self-Attention -Layer 2, and this time the query, Key and Value
vectors are generated from A. Similarly, the output from Multi-
Head Self-Attention -Layer 2 are fed Multi-Head Self-Attention
-Layer 3 to select more important features at a higher level. It
can be seen that the output of the last layer of the transformer
block will have the same temporal dimension as HC because
multi-head self-attention layers do not change the dimension.
Overall, the transformer layer helps in finding regions that are
more for detecting code-switch. The scaled dot product at-
tention achieves this by giving more weighting to the features
which are more relevant and less weighting to less relevant fea-
tures. This process selects features from different parts of the
input and helps in obtaining better classification performance
due to the presence of multiple heads in the attention layer.

2.3. Statistics pooling

The idea of the statistics pooling layer is similar to max pool-
ing. In the case of statistics pooling, we compute the mean and
standard deviation from feature vectors generated by the trans-
former model. The mean and standard deviation features are
concatenated in order to create the utterance level feature vector,
as described in the equation below. Let A = [a1, az.....a_/]
is the output from the transformer block.

P = Concat(mean(A),std(A)) 4)

Where, a; is a feature vector of dimension M * dg and
P is final pooled feature vector using statistics pooling layer.
Since the dimension of the utterance level feature vector is P
become bigger when M is large, we add a projection layer on
top to the statistics pooling layer (Figure 1) in order to reduce
the dimension of P. The project layer output will be passed
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Table 1: Train and evaluation splits for different languages

Datset . Train . Evaluation
Duration(Hrs) | Utterances | Duration(Hrs) | Utterances
Gujarati | 31.59 16780 3.59 2091
Telugu 31.59 16991 4.0 2135
Tamil 30.24 10933 7.312 2642

to the Sigmoid layer in order to predict if the input utterance
contains any code-switching.

3. Dataset

In this section, we briefly discuss the dataset. We obtain the
dataset from Code-switching spoken language identifica-
tion challenge'. The task of the challenge is to detect if an au-
dio file is monolingual or code-switched. The shared task con-
tains two subtasks, 1) Utterance-level identification of monolin-
gual vs. code-switched utterances, and 2)Frame-level identifi-
cation of language in a code-switched utterance. In this work,
we chose to work on the first subtask. The dataset contains 3 In-
dic languages, Gujarati, Telugu, and Tamil. Each language con-
tains audio files that are monolingual and code-switched along
with their labels. The statistics of the dataset is given in Table 1.
In India, most of the languages are code-switched with English
languages. In this dataset also, each utterance can be completely
monolingual, or it can be mixed with English. Each language
pair contains training data and evaluation dataset. The dataset
contains labels of every 200ms in the audio, but in our case, we
convert all the frame-level labels utterance level labels. We train
a separate model for each of the languages, and we report our
results on the evaluation dataset. We also test our model on the
blind dataset provided during the challenge.

4. Experiments

We conduct all our experiments on Microsoft’s Code-
switching spoken language identification challenge
dataset. The dataset is described in the previous section
in detail. We develop our model for an utterance-level
code-switching identification task. Our model consists of
a Convolutional encoder operating with 1D convolution
kernels. The convolution encoder has 4 convolution block with
[64,128,256,256] 1D convolution kernels of kernel size 1x3.
Each layer also has a max-pooling layer operating with a kernel
size of 1x3 with stride 2. The output of the Convolutional
encoder goes to the transformer block, which consists of 3
multi-head self-attention blocks. Each self-attention block
has eight attention heads. Finally, the statistics pooling layer
computes the mean and standard deviation to pool frame-level
features into utterance level feature. We use the sigmoid layer
to predict the binary class label. In our case, we use 0-(class-1)
corresponds to code-switched, and 1(class-1) corresponds to
monolingual. The input to our model is a 2D magnitude spec-
trogram (we refer magnitude spectrogram as a spectrogram).
We take the maximum length of the audio to be 25sec. We crop
the audio if the duration of the audio is more than 25sec, and
we pad zeros if the duration is less than 25sec. We compute
a 257-dimensional spectral feature for every 25ms window
with a frame-shift of 10ms. So, the spectrogram contains 2500

Uhttps://www.microsoft.com/en-us/research/event/workshop-on-
speech-technologies-for-code-switching-2020/



Table 2: Acc (%) and EER(%) on Evaluation dataset: bold rep-
resents the best method

Language Baseline Proposed

Acc (%) | EER(%) | Acc (%) | EER(%)
Te-En 71.2 14.4 79.34 12.40
Ta-En 74.0 13.0 76.70 12.55
Gu-En 76.8 11.6 83.54 9.9

frames, and each frame will be of 257 dimensions. We can
think of the spectrogram as an image with a single channel. We
also normalize the spectrogram by computing the mean and
standard deviation. We use binary cross-entropy loss function
to train our model. We use Adam [30] optimizer to train all our
models with a learning rate of 0.0001 for up to 80 epochs. We
use a batch size of 32 during training. We train all our models
using Pytorch [29] toolkit. We compare our results with the
baseline model, and we observe that our approach gives 8%,
7%, and 3% improvement in accuracy for Telugu, Gujarati,
and Tamil language respectively over the baseline results. We
use 3 RTX 2080Ti GPU cards for our experiments. We will
open-source our codes and models soon.

5. Results

In this section, we describe the evaluation of different mod-
els and their performances. Our baseline model is a five layer
LSTM model, each layer having a hidden dimension of 1024.
The baseline model uses CTC loss function during training.
The workshop organizers already provide the baseline model
results for the evaluation dataset. We train our proposed model
for three different languages Gujarati, Telugu, and Tamil. We
compare both accuracy and equal error rate performance of our
model with the baseline approach. The results are shown in Ta-
ble 2. We represent the languages as Gu-En, Te-En, and Ta-En.
Where Gu-En represents Gujarati code mixed with English, Te-
En represents Telugu code mixed with English, and Ta-En rep-
resents Tamil code mixed with English. It can be seen that our
approach obtains 8.74% absolute improvement in accuracy and
1.69% improvement in EER for Gu-En. Similarly, we obtain an
8.14% improvement in accuracy and 2.0% improvement in EER
for Te-En. For Ta-En, we obtain 2.7% absolute improvement in
accuracy and 0.5% improvement in EER.

We also test our models on the blind test data provided for
the challenge, and the results are shown in Table 3. We can
see that the model performance not as good as on the evalua-
tion dataset, and this may be due to various reasons like speaker
variability, perturbation like speed and volume, etc. We do not
know the exact reason why there is a significant difference be-
tween the evaluation test set and the blind test set. We want to
explore the reason and make improvements in the future.

6. Conclusions

In this work, we propose a new approach for utterance-level
code-switching detection using transformer architecture. We
use a convolutional encoder to extract higher-level abstractions
at phoneme or syllable levels. We use a sequence of multi-head
self-attention layers to find to select and learn relevant informa-
tion to detect if the utterance is monolingual or contains code-
switching. We also utterance-level aggregation module, which
uses a statistics pooling approach to pool frame-level features
into utterance-level features. Our experimental results show that

56

Table 3: Accuracy and EER on blind test data

Language Proposed

Acc (%) | EER(%)
Te-En 69.23 15.38
Ta-En 69.08 15.45
Gu-En 48.46 25.76

a transformer-based model can outperform the LSTM baseline
due to their ability to attend and select different parts of the
input to detect code-switching. Our method consistently ob-
tains huge improvement on Microsoft’s Code-switching spo-
ken language identification challenge dataset for Telugu,
Tamil and Gujarati languages. We also see that the model suf-
fers accuracy on the blind test data due to the speaker and other
local variations. We would like to explore the reasons and make
improvements in the future.
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Abstract

Recognizing code-switched speech is challenging for Au-
tomatic Speech Recognition (ASR) for a variety of reasons,
including the lack of code-switched training data. Recently,
we showed that monolingual ASR systems fine-tuned on
code-switched data deteriorate in performance on monolingual
speech recognition, which is not desirable as ASR systems de-
ployed in multilingual scenarios should recognize both mono-
lingual and code-switched speech with high accuracy. Our ex-
periments indicated that this loss in performance could be miti-
gated by using certain strategies for fine-tuning and regulariza-
tion, leading to improvements in both monolingual and code-
switched ASR. In this work, we present further improvements
over our previous work by using domain adversarial learning
to train task agnostic models. We evaluate the classification
accuracy of an adversarial discriminator and show that it can
learn shared layer parameters that are task agnostic. We train
end-to-end ASR systems starting with a pooled model that uses
monolingual and code-switched data along with the adversar-
ial discriminator. Our proposed technique leads to reductions
in Word Error Rates (WER) in monolingual and code-switched
test sets across three language pairs.

Index Terms: speech recognition, code-switching, adversarial
learning, transfer learning

1. Introduction

Recognizing code-switched speech is challenging for Auto-
matic Speech Recognition (ASR) systems due to the lack of
large amounts of labeled code-switched speech and text data for
training Acoustic and Language Models. Recently, we showed
that even if there is sufficient code-switched speech data to train
models, there is a loss in performance on monolingual test sets
when monolingual models are trained or fine-tuned with code-
switched data [1]. Since code-switched and monolingual speech
co-occur, it is imperative that models perform well on code-
switched speech while not deteriorating on monolingual speech.
With this goal in mind, in [1] we proposed strategies for
learning how to recognize code-switched speech while not for-
getting monolingual speech recognition in the following scenar-
ios:
Case 1: If monolingual and code-switched data are both avail-
able and a model can be trained from scratch, regularization
strategies and fine-tuning a pooled model that uses all data leads
to best results across data sets.
Case 2: If only a monolingual model is available and a new
model cannot be trained from scratch, the Learning Without
Forgetting [2] framework can be used to improve performance
on all test sets compared to a monolingual model fine-tuned on
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code-switched data [1].

In this work, we build upon our findings for Case 1, in
which we have access to both monolingual and code-switched
data and can train a model from scratch. When we train a joint
model to learn both monolingual and code-switched speech
recognition tasks with task specific and shared layer parame-
ters, the model tends to drift towards one particular task. This
drift is because shared layers try to learn task specific features
which is not ideal for a joint model that needs to perform well
on both tasks. Hence, we need to learn task invariant or agnostic
shared layer parameters which lead to task agnostic features at
shared layers and discriminant features at task specific layers.

In this work, we learn task agnostic shared layer param-
eters by adversarial discriminative learning. We show that it
is possible to improve performance by using adversarial learn-
ing over our previously proposed techniques of fine-tuning and
regularization on monolingual and code-switched test sets that
span three language pairs - Tamil-English, Telugu-English and
Gujarati-English. In this work, we assume that there exists a
classifier that will classify code-switched and monolingual ut-
terances prior to recognition by our model, however, our tech-
nique can also be used if this assumption does not hold.

The rest of the paper is organized as follows. Section 2
relates our work to prior work. Section 3 describes our experi-
mental setup and results. Section 4 concludes.

2. Relation to Prior Work

In this paper, we learn task agnostic shared layer parameters by
adversarial learning inspired by the domain-adversarial training
of neural networks [3]. Originally, domain-adversarial learn-
ing was proposed to adapt models trained on labeled data to
new unlabeled data by adversarial discrimination. Adversarial
training has been adopted recently for many tasks: [3] and [4]
use adversarial learning for domain adaptation for image clas-
sification. [5] utilized adversarial strategies for word boundary
segmentation of the Chinese heterogeneous data. [6] and [7] uti-
lized adversarial learning for environment and speaker adapta-
tion for robust speech recognition. Recently, [8] explored adver-
sarial learning for transferring knowledge from source language
to target language for low-resource ASR models.

The following approaches have been explored for end-
to-end code-switched speech recognition. A hybrid attention
based architecture is described in [9] for Mandrian-English
code-switched ASR. Multiple fine-tuning approaches have been
studied to improve code-switched speech recognition in [10]
and [11]. Multi-task learning strategies have also been pro-
posed for improving code-switched speech recognition in [12]
and [13]. Recently, we proposed approaches to learn code-



switched speech recognition without forgetting monolingual
speech recognition [1] using various regularization and fine-
tuning strategies, as well as the Learning Without Forgetting
[2] framework.

3. Experimental Setup
3.1. Data

We use the same data and baselines as described in [1], which
we mention in brief in this section. We carried out experi-
ments for three languages - Tamil (TA), Telugu (TE) and Gu-
jarati (GU) and their code-switched counterparts with English -
Tamil-English, Telugu-English and Gujarati-English. Although
all three languages were mixed with English, the type and extent
of mixing was different. We used two types of speech data for
training - conversational data as well as phrasal data, which is
similar to read speech, while for testing, only phrasal data was
used. We test our models on monolingual and code-switched
data sets separately to ensure that models perform well on both.
Hence, we have six test sets that we evaluate our models on.
Table 1 describes the dataset size in hours.

Table 1: Training and test data statistics

Train + Dev | Train + Dev Test Test

(MONO) (CcS) (MONO) | (CS)
TA | 212 hrs 177 hrs (CMI: 22.08) | 24 hrs 19 hrs (CMI: 17.07)
TE | 170 hrs 243 hrs (CMI: 23.85) | 19 hrs 28 hrs (CML: 21.62)
GU | 241 hrs 186 hrs (CMI: 18.91) | 26 hrs 18 hrs (CMI: 16.32)

The Code Mixing Index (CMI) [14] measures the amount of
code-switching in a corpus by using word frequencies. We mea-
sure the CMI of our code-switched train and test sets and report
them in parentheses in Table 1. The CMI of Telugu-English
is the highest, while Gujarati-English is the lowest suggesting
that Telugu-English is the most code-switched while Gujarati-
English is the least code-switched among the languages under
consideration.

Table 2: Baseline Word Error Rates (WER)

Test Set Expl | Exp2 | Exp3
TA-MONO | 45.81 | 66.11 | 44.42
TA-CS 62.73 | 58.63 | 50.92
TE-MONO | 41.40 | 52.00 | 39.67
TE-CS 52.70 | 37.21 | 33.70
GU-MONO | 39.20 | 51.70 | 37.82
GU-CS 46.50 | 42.50 | 40.81

3.2. Baseline experiments

We denote our training monolingual datasets (XM,

Y, (XM, VM) where M € {TE/TA/GU}, code-
switched datasets (XC°, V:¢9),.,(XS%, Y,¢%) where CS
€ {TE-EN/TA-EN/GU-EN}. The labels Y are graphemes
and the character set includes the union of English and
the respective language’s characters. Further, we denote
T = {M,CS} where T is the monolingual or code-switched
speech recognition task.
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Our baseline model consists of two Convolution Neural
Network (CNN) layers followed by five bidirectional long-short
term (BLSTM) layers of 1024 dimension. These parameters are
shared between the monolingual and code-switched task and
are denoted by 6,. Further, the frame-wise posterior distribu-
tion is conditioned on the input frame X7, is calculated by a
forward pass through the shared layers, 6, and through a fully-
connected layer, 67 followed by softmax computation over la-
bels as shown in Fig. 1(a). We maximize the conditional pos-
terior distribution by minimizing the Connectionist Temporal
Classification (CTC) [15] criterion represented by L1 (0s, 01).
The model parameters are trained using stochastic gradient de-
scent (SGD) optimizer. The learning rate () is initialized with
3e-4. The model is trained for 40 epochs, with mini-batch size
equal to 64 per GPU. The model parameters are updated using
the back propagation algorithm.

We evaluated our proposed approach against three base-
lines, which we refer to as Exp1, Exp2 and Exp3.

* Expl: Monolingual-only baseline, consisting of models
trained only on monolingual data

¢ Exp2: Code-switched-only baseline, consisting of mod-
els trained only on code-switched data

* Exp3: Pooled model, consisting of models trained using
all the data from Exp1 and Exp2

An n-gram Language Model (LM), trained using transcrip-
tions from the training data is used during decoding. Table
2 shows Word Error Rates (WER) of all three baselines on
both monolingual and code-switched test sets. Exp3, which is
the pooled model consisting of monolingual and code-switched
data performs best on all test sets. Expl performs better on
monolingual test sets than Exp2, and the reverse is true for code-
switched test sets, as expected.

3.3. Adversarial task agnostic pooled model

From the baseline experiments we observe that the pooled
model performs better than the monolingual or code-switched
model for all test sets. Even though the pooled model performs
significantly better than code-switched only baseline, the im-
provements are only marginally better on monolingual test sets
compared to the monolingual only baseline.

We hypothesize that this is because shared layer parameters
learn unwanted task specific features which drifts the perfor-
mance of the monolingual recognition task towards the code-
switched task. In order to alleviate this performance drift, we
propose learning task invariant shared layer parameters in the
pooled model by adversarial training as shown in Fig. 1(b). The
adversarial pooled model consists of task independent shared
(05) layers, task dependent (67) layers and adversarial task dis-
criminator consisting of a fully connected (FC) layer, gradient
reversal layer (GRL) and sigmoid activation. The parameters of
the adversarial discriminator are denoted by 6,,.

The gradient reversal layer of the adversarial task discrim-
inator ensures that features from the shared layers are as in-
discriminant as possible for the given task so that the shared
layers learn a generalized representation. The GRL contains no
trainable parameters and acts as a identity transformer during
forward pass. However, during back-propagation the GRL re-
verses the gradients of the previous layers i.e., multiplies the
gradients by -1 and passes it to the next layers which helps
in making the shared layer features in-discriminant to specific
task. For each utterance u, the adversarial task discriminator
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Figure 1: Illustration of the proposed adversarial learning of task agnostic shared layer parameters for monolingual and code-switched
speech recognition. (a) Baseline model trained with either monolingual or code-switched speech utterances. (b) Pooled model trained
with both monolingual and code-switched speech utterances along with adversarial task (monolingual or code-switched) discriminator
to learn task agnostic shared layer parameters. (c) Multi-task adversarial discriminator trained to recognize monolingual and code-
switched speech recognition independently. CNN and BLSTM are the shared layers shown inside the dotted rectangular box. Set of FC
and Softmax are the task specific layers. GRL, FC and Sigmoid form the adversarial task discriminator layers.

is trained to discriminate speech utterances into either monolin-
gual or code-switched (' = {M, CS}).

N
La(6s,00) = — > log P(Tu|X; 05, 0a)
u=1
where XT and T, represents wu, input utterance and corre-
sponding label and IV represents the total numbers of utterances
in the dataset. Even though the discriminator is trained to mini-
mize the classification loss, the gradients of the discriminator is
negative so that the shared layers are trained to be task indepen-
dent. The parameters of the adversarial task discriminator are
updated as

ey

OLA
00,

OLa

20, 3
In our previous work [1], we found that speech recognition per-
formance can be improved by initializing the parameters of the
model from a pretrained model. Hence, shared layer parame-
ters of the adversarial task agnostic pooled model is initialized
from the baseline pooled model (Exp3) and trained with the loss
function

Os +— 05+ A (@)

Oq — 0o — A
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Lap(0s,07,0,) = Lv(0s,07) + La(0s,6,) “4)
The parameters of the model are updated as
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The performance of the adversarial task agnostic pooled
model (Exp5) compared with the pooled model (Exp3) is shown
in Table 3. We can see that Exp5 performs better than Exp3 for
all test sets. This indicates that the model benefits from adver-
sarial task-discriminative training for improving both monolin-
gual and code-switched speech recognition.

3.4. Multi-task adversarial speech recognition model

In our previous work [1], we observed that a multi-task model
trained with separate monolingual and code-switched task spe-
cific layers yields better performance than the pooled model.



Hence, we trained a joint monolingual and code-switched multi-
task model as shown in Fig. 1(c). The multi-task adversarial
speech recognition model consists of shared layers (65), task
specific monolingual (#,,,) and code-switched (6.) layers, and
the adversarial task discriminator (6,) as shown in Fig 1(c). The
shared layer parameters of the multi-task model are initialized
from the pooled model as before and trained jointly end-to-end
along with the adversarial task discriminator.

LJ\/IA (057 0m7 0c, ea) = LM(957 9m)+LCS(057 Gc)"_LA (95, ea)

®
where Las(0s,6m), and Leos(8s, 0.) are the individual mono-
lingual and code-switched loss functions. Similar to Exp5, the
utterance level adversarial loss L4 (6s,60,) makes the shared
layer features as in-discriminant as possible to monolingual and
code-switched speech utterances while learning discriminant
features at task specific monolingual and code-switched private
layers by updating the parameters

OLm OLcs OLa
‘95‘_95_A<aes ~ o6, _aes> ©)
OLn
Om — O = A G2 (10)
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On — 0, — 2214 (12)
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The performance comparison of Multi-task adversarial
model (Exp6), adversarial task agnostic pooled model (Exp5),
the best fine-tuned pooled model [1] (Exp4), and the pooled
model (Exp3) are shown in Table 3. We can see that the Multi-
task adversarial model (Exp6) outperforms all other models on
all monolingual and code-switched test sets. The improved
WER can be attributed to the fact that adversarial training helps
the shared layer parameters to learn task invariant monolingual
and code-switched features, and having task specific layers fur-
ther help in improving accuracy for individual tasks.

An important caveat to note here is that task specific lay-
ers require knowledge of whether an utterance is code-switched
or not. This can be achieved either by using a classifier to clas-
sify an utterance as monolingual or code-switched, or the output
from both task-specific layers can be averaged to make the final
prediction. In future work, we plan to compare the results of
both these techniques to the proposed model that uses ground-
truth knowledge of monolingual and code-switched utterances.

Table 3: WER|[%)] of pooled (Exp3), fine-tuned pooled model
[1] (Exp4), adversarial task agnostic pooled model (Exp5) and
multi-task adversarial speech recognition model (Exp6)

Test Set Exp3 | Exp4 | Exp5 | Exp6
TA-MONO | 44.42 | 46.62 | 45.52 | 44.40
TA-CS 50.92 | 50.55 | 50.33 | 49.00
TE-MONO | 39.67 | 41.40 | 41.60 | 40.40
TE-CS 3370 | 33.04 | 33.80 | 32.80
GU-MONO | 37.82 | 35.80 | 38.00 | 36.10
GU-CS 40.81 | 37.50 | 40.00 | 35.70
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3.5. Classification experiments

In order to test whether the shared layers indeed learn task-
invariant parameters, we perform classification experiments.
We trained a model with shared layers (65) and speech utterance
classifier layers which classifies the utterances into monolin-
gual or code-switched with GRL (adversarial discriminator) and
without GRL (vanilla classifier) to observe the effect of GRL on
the shared layers.

The validation accuracy of both models is shown in Fig. 2.
We observe that the validation accuracy remains constant for
the adversarial discriminator, while it keeps increasing for the
vanilla classifier. This indicates that the shared layers below the
classification layers learn task agnostic features in case of the
adversarial discriminator. In contrast, the shared layers learn
discriminative features for the vanilla classifier.
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Figure 2: Validation accuracy of the vanilla classifier and the
adversarial discriminator.

4. Summary and Conclusions

Although monolingual and code-switched speech recognition
tasks are similar, we see that trying to improve performance on
one hampers the performance on the other. Specifically, train-
ing a single model with pooled data containing both monolin-
gual as well as code-switched speech performs better than in-
dividual models trained on task-specific data. However, gains
on monolingual speech recognition are much lower compared
to code-switched speech recognition due to the fact that shared
layers learn some task-specific features.

In this paper, we show that learning task invariant shared
layer parameters in a pooled model using adversarial training
outperforms a pooled model on both monolingual as well as
code-switched test sets across three language pairs. We fur-
ther experiment with adding task specific layers to this model
to allow the model to learn some task specific parameters and
show improvements on all test sets. Thus, we show that to im-
prove performance on both monolingual as well code-switched
speech recognition task, having task invariant shared layers as
well as task specific layers are necessary. In future work, we
plan to explore techniques to incorporate a Language Identifi-
cation (LID) system to classify utterances into code-switched or
monolingual, as well as explore techniques to use outputs from
task specific output layers in the absence of an LID system.
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Abstract

In this work, we explore the benefits of using multilingual
bottleneck features (mBNF) in acoustic modelling for the au-
tomatic speech recognition of code-switched (CS) speech in
African languages. The unavailability of annotated corpora in
the languages of interest has always been a primary challenge
when developing speech recognition systems for this severely
under-resourced type of speech. Hence, it is worthwhile to
investigate the potential of using speech corpora available for
other better-resourced languages to improve speech recognition
performance. To achieve this, we train a mBNF extractor us-
ing nine Southern Bantu languages that form part of the freely-
available multilingual NCHLT corpus. We append these mB-
NFs to the existing MFCCs, pitch features and i-vectors to train
acoustic models for automatic speech recognition (ASR) in the
target code-switched languages. Our results show that the inclu-
sion of the mBNF features leads to clear performance improve-
ments over a baseline trained without the mBNFs for code-
switched English-isiZulu, English-isiXhosa, English-Sesotho
and English-Setswana speech. This represents a step forward in
the use of out-of-domain data to improve the automatic recogni-
tion of code-switched speech in under-resourced South African
languages.

Index Terms: Multilingual bottleneck features, acoustic mod-
elling, code-switching.

1. Introduction

With recent rapid advances in the field of artificial intelligence,
the ease with which humans can interact with machines has be-
come a yardstick with which the sophistication of a system is
assessed [1]. This has had a particularly strong effect in stim-
ulating research interest in ASR. However almost all current
speech interfaces assume monolingual input, while most of the
world’s population is conversant in more than one language.
Hence, there had recently also been a surge in interest in the
automatic recognition of code-switched speech.

The population of South Africa is highly multilingual and
this has recently motivated the development of code-switching
ASR systems for African languages [2, 3]. In South Africa,
most code-switching occurs between English and one or more
South African languages. However, annotated speech corpora
that include such mixed-language speech are extremely scarce
and those that are available are small. Several approaches have
been proposed to address the limitations posed by this lack of
annotated speech data. One major drive considers the incorpo-
ration of speech in other better-resourced languages to leverage
improved ASR performance in the target languages. In [4], the
authors show that the overall performance of a multilayer per-
ceptron acoustic model increases substantially when the system
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is initialized using bottleneck features (BNFs). This acoustic
modelling strategy was coupled with a new language modelling
strategy called “open target language” which trains more flex-
ible models for language adaptation and with which improve-
ments in performance were reported for under-resourced lan-
guages. In [5], improvements in the region of 45% over base-
line features were reported when incorporating BNFs for ASR
on DARPA RATS data. Two deep bottleneck neural networks
were trained on English and Mandarin and the resulting features
fused in [6], yielding improvements of between 2% and 7%
in equal error rate for longer and shorter segments respectively
on the NIST language recognition evaluation 2009 (LREQ9)
dataset. The authors of [7] analysed the practical aspects of
training bottleneck networks as well as their integration in ASR.
They also compared monolingual and multilingual training for
ASR by evaluating different systems on the LRE09 dataset.

A BNF extractor that was specifically designed for subword
modelling and was trained on the GlobalPhone database was
proposed in [8]. From 16 of the languages in the Globalphone
corpus, 10 high resource languages were used for training the
extractor and the remaining 6 for ASR performance evaluation.
It was shown that an ASR system trained on a single language
using this BNF extractor outperformed a baseline whose fea-
tures were computed using a correspondence autoencoder and
vocal tract length normalization. It was also found that using
two or more languages in the BNF extractor training pool re-
sulted in better performance than using a training data set of the
same size from only one language.

In previous work we have explored the effectiveness of us-
ing out-of-domain monolingual South African speech to im-
prove the performance of code-switched ASR [9]. We found
that better-resourced monolingual speech helped to enhance
code-switched ASR performance, but only by a small margin
considering the amount of out-of-domain data and the compu-
tational resources that were required to incorporate the addi-
tional data during acoustic model training. Much more out-of-
domain data than in-domain data was required to improve code-
switched speech recognition accuracy, and thus the most effec-
tive way of improving performance has remained the extension
of the in-domain training set.

However, given the severe scarcity of resources in the target
languages, we have also actively explored other ways to exploit
available sources of out-of-domain data. This study represents
our first use of BNF extractors to leverage out-of-domain data
to improve the accuracy of code-switched speech in five South
African languages. Although BNF extractors are generally well
established in ASR and other speech processing tasks, to the
best of our knowledge, this is the first attempt to train BNF ex-
tractors using South African Bantu languages.

We investigate the benefit of training a BNF feature extrac-



tion network on related but out out-of-domain data and then us-
ing the extracted BNF features in combination with baseline
features (MFCC, pitch and i-vectors) to train acoustic models
for South African code-switch ASR. To achieve this, a multi-
lingual BNF (mBNF) extractor is developed using nine South
African Bantu languages from the freely-available multilingual
NCHLT corpora [10]. Two mBNF extractors with different bot-
tleneck dimensions are trained and used to extract BNFs from
the target code-switched speech. We observe that the incorpo-
ration of the mBNFs improves the code-switched speech recog-
nition accuracy relative to the system trained using the baseline
features.

2. Data

This section introduces two data sets: a set of monolingual cor-
pora in South Africa’s 11 official languages that was used to
train our mBNF extractor and a corpus of code-switched (CS)
South African speech that was used to train acoustic models for
ASR purposes.

2.1. Monolingual Speech Data

The NCHLT speech corpora contain monolingual wide-band
prompted speech in each of the eleven official languages of
South Africa [10]. A greedy algorithm was used to select the
prompts from a body of text during the compilation of each cor-
pus [11]. Trigram or five-gram prompts were derived from the
text data, depending on the orthographic conventions of each
language. This approach resulted in prompts that vary in length
from single word utterances to short phrases of up to 10 words.
The South African English and Afrikaans corpora were not in-
cluded in our current investigation, only data from the nine re-
maining languages that all belong to the Bantu language family
were used.

Table 1: Statistics of the training sets of the NCHLT Bantu
speech corpora.

Language Speakers Duration Word Word
(hours) types tokens
IsiNdebele (nbl) 132 473 14679 132529
Sepedi (nso) 194 50.6 11056 266 859
Sesotho (sot) 194 50.7 10424 250125
SiSwati (ssw) 181 48.4 11925 115611
Setswana (tsn) 194 50.6 5495 254274
Xitsonga (tso) 182 49.6 5934 208 684
Tshivenda (ven) 192 49.3 7579 218820
IsiXhosa (xho) 193 49.1 27856 122236
IsiZulu (zul) 194 48.3 23912 116319
Total 1656 443.9 118 860 1685457

We used the predefined NCHLT training sets' summarised
in Table 1 to train the feature extraction network introduced
in Section 3. The NCHLT development and test sets were not
used.

2.2. Code-switched Speech Data

For building code-switched (CS) ASR systems, a dataset of
multilingual speech was compiled from South African soap
opera episodes [12]. The data contains examples of code-
switching between four language pairs: English-isiZulu (EZ),

IThe definitions of the predefined NCHLT training, development
and test sets are available at https://sites.google.com/
site/nchltspeechcorpus/
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English-isiXhosa (EX), English-Setswana (ET) and English-
Sesotho (ES). IsiZulu and isiXhosa belong to the Nguni lan-
guage family whereas Setswana and Sesotho belong to the
Sotho-Tswana family. Both these belong to the larger Southern
Bantu language family. The available training data consists of
three subsets: (1) manually segmented and transcribed data; (2)
manually segmented but automatically transcribed data; and (3)
automatically segmented and transcribed data. The subsets are
described in more detail below. When combined, the the three
subsets contain 78.1 hours of speech. The development and test
sets were taken from the manually segmented and transcribed
data.

2.2.1. Manually segmented and transcribed data

In most of our experiments concerning code-switched speech,
we have used a 23-hour set of of annotated speech. This set was
partitioned into a training set of 21.1 hours and development and
test sets of 48.3 and 78 minutes respectively. The training set
includes a language balanced subset as well as additional data
that, although skewing the data towards English, was found to
enhance ASR performance [13]. Table 2 gives an overview of
the manually transcribed component of the training data used in
this study.

Table 2: Duration in minutes (m) and hours (h) as well as word
type and token counts for the unbalanced manually segmented
and transcribed training set.

Laneuage Mono CS Total Total Word Word

guag (m) (m) (h) (%) tokens types
English 755.0 1218 14.6 69.3 194426 7908
isiZulu 92.8 57.4 2.5 11.9 24412 6789
isiXhosa 65.1 23.8 1.5 7.0 13825 5630
Setswana 36.9 34.5 1.2 5.6 21409 1525
Sesotho 44.7 34.0 1.3 6.2 22226 2321
Total 994.5 2715 21.1  100.0 276290 24170

A similar overview of the development and test sets is given
in Table 3. It is noteworthy that the test sets present a strict
evaluation as these utterances are never monolingual but always
contain code-switching.

Table 3: Duration in minutes of English, isiZulu, isiXhosa,
Sesotho and Setswana monolingual (mdur) and code-switched
(cdur) segments in the development and test sets.

English-isiZulu

emdur zmdur ecdur zcdur Total

Dev 0.0 0.0 4.0 4.0 8.0

Test 0.0 0.0 12.8 17.9 30.4
English-isiXhosa

emdur xmdur ecdur xcdur Total

Dev 2.9 6.5 2.2 2.1 13.7

Test 0.0 0.0 5.6 8.8 14.3
English-Setswana

emdur tmdur ecdur tedur Total

Dev 0.8 4.3 4.5 4.3 13.8

Test 0.0 0.0 8.9 9.0 17.8
English-Sesotho

emdur smdur ecdur scdur Total

Dev 1.1 5.1 3.0 3.6 12.8

Test 0.0 0.0 7.8 7.7 15.5




2.2.2. Manually segmented and automatically transcribed data

During the compilation of the corpus described in the previous
section, some data was manually segmented but not transcribed.
In a previous investigation, these segments were transcribed us-
ing a semi-supervised procedure, resulting in an additional 11
hours of training data [13].

2.2.3. Automatically segmented and transcribed data

The semi-supervised approach applied in the previous section
was subsequently extended to include a CNN-GMM-HMM
based VAD system (without speaker diarization). This system
was used to segment the raw audio of additional soap opera
episodes and the resulting segments were transcribed in a semi-
supervised manner [14]. Using this procedure a further 45.6
hours of training data was generated. Table 4 provides a sum-
mary of the language tags assigned to the data by the semi-
supervised procedures.

Table 4: Number of segments assigned to each language by the
semi-supervised transcription systems.

Language Eng Zul  Xho Sot Tsn CS
Man Seg 2780 3113 657 3370 32 13338
Auto Seg 4754 2122 236 719 2196 17911

3. Multilingual Bottleneck Feature
Extraction

Multilingual bottleneck features (mBNF) have been shown to
outperform traditional spectral features as well as monolingual
bottleneck features in a variety of speech processing tasks [7, 8,
15]. Table 5 provides an overview of two mBNF extractors that
were evaluated in this study. Details on each configuration are
provided in subsequent sections.

Table 5: BNF extractor configurations.

Extractor Training data BNF dimension
mBNF; NCHLT 39
mBNF2 NCHLT 80

To the best of our knowledge, this is the first attempt to de-
velop a mBNF extractor trained on Bantu languages. Our pri-
mary objective is to use the mBNF features to enhance the per-
formance of code-switched ASR. The extractor was developed
using the monolingual NCHLT data introduced in Section 2.1
according to the Babel multilang recipe in the Kaldi ASR toolkit
[16]. Due to time and computational constraints, fine-tuning of
the hyperparameters could not be performed.

As a starting point, a context-dependent Gaussian mixture
model-hidden Markov model (GMM-HMM) system is trained
for each language to obtain the alignments required for training
the feature extraction network. The features used in this step
comprise 39-dimensional MFCCs (including A and AA) cal-
culated over a 25ms window size with 10ms overlap between
windows. Three-dimensional pitch features were also included
since the Bantu languages are tonal.

A block diagram of the time-delay neural network (TDNN)
architecture we used to train the feature extractors is shown in
Figure 1. The network is based on the well-established block
softmax approach described in [15] and [7]. It consists of six

67

Language independent
hidden layers

]

Phone state
Posteriors (L,

|

Phone state
Posteriors (L,)

Linear bottleneck
layer

| sesotho (L,) |@ee [ isixhosa (L,) | [ isizulu (L)) |

Phone state
Posteriors (L)

Figure 1: Multilingual bottleneck feature extractor trained on
nine South African Bantu languages with block softmax.

1024-dimensional hidden layers followed by a 39-dimensional
(mBNF; ) and 80-dimensional (mBNF2) linear bottleneck layer
and terminates in a block softmax output layer. The hidden lay-
ers are shared across languages while the block softmax output
layer separates the phone state posterior training targets per lan-
guage. The number of output phone state units varies for each
block with a minimum of 4520 for Sesotho and a maximum of
4920 for isiZulu. The input features comprise high resolution
40-dimensional MFCCs (no derivatives), 3-dimensional pitch
features and 100-dimensional i-vectors for speaker adaptation.
The bottleneck layer is used for mBNF extraction.

4. ASR for code-switched Speech
4.1. Acoustic Model

All acoustic models were trained using the Kaldi ASR toolkit
[16] and the training data described in Section 2.2. Three-fold
data augmentation was applied prior to feature extraction [17].
The feature set included standard 40-dimensional MFCCs
(no derivatives), 3-dimensional pitch and 100-dimensional i-
vectors. For the mBNF experiments, combination features were
created by appending the mBNFs to these features.

The models were trained with lattice-free maximum mu-
tual information objective [18] using the standard Kaldi CNN-
TDNN-F [19] Librispeech recipe (6 CNN layers and 10 time-
delay layers followed by a rank reduction layer) and the default
hyperparameters. All acoustic models have a single shared soft-
max layer for all languages as, in general, there is more than one
target language in a segment.

No phone merging was performed between languages and
the acoustic models were all language dependent. For the
bilingual experiments, the multilingual acoustic models were
adapted to each of the four target language pairs.

4.2. Language Model

The EZ, EX, ES, ET vocabularies respectively contain 11292,
8805, 4233, 4957 word types and were closed with respect to
the train, development and test sets. The SRILM toolkit was
used to train and evaluate all trigram language models [20].
The EZ, EX, ES and ET development set perplexities are 425.8,
352.9, 151.5, and 213.3 respectively. The corresponding values



Table 6: Word error rate performance of the four bilingual code-switch ASR systems with and without mBNF features.

Avg EZ EX ES ET
System Feature
extractor Dev Test Dev Test Dev Test Dev Test Dev Test
A Baseline MFCC [14] 39.5 42.1 33.3 38.9 34.7 423 49.1 479 40.8 39.3
B mBNF; 38.9 41.5 32.5 38.8 34.1 41.5 49.3 46.5 39.8 39.0
C mBNFy 394 41.0 34.0 38.0 34.0 41.1 48.8 46.7 40.8 38.1

Table 7: Language specific WER (%) (lowest is best) for English (E), isiZulu (Z), isiXhosa (X), Sesotho (S), Setswana (T) and code-
switched (CS) bigram correct (Bics) (%) (highest is best) for the test set.

English-isiZulu

English-isiXhosa

English-Sesotho English-Setswana

System

E Z Bics E X Bics E S Bics E T Bics
A (baseline) 32.4 439 38.6 35.1 479 32.4 34.7 57.0 34.0 27.4 45.4 425
B 322 435 38.7 34.9 453 342 34.8 54.2 34.9 26.9 455 42.8
C 31.7 43.0 39.2 34.6 44.3 34.5 35.0 539 349 26.7 449 43.1

for the test set are 601.7, 788.8, 180.5, 224.5.2

5. Results and Discussion

ASR performance was evaluated by measuring word error rate
(WER) on the EZ, EX, ES and ET development and test sets
described in Table 3. In Tables 6 and 7, System A is the base-
line MFCC-based system without BNF features, while Systems
B and C use features produced by mBNF; and mBNF,, respec-
tively.

5.1. BNF Extractor Performance

As can be observed in Table 6, for almost all the cases in the
four bilingual data sets, the ASR performance of Systems B and
C improve over the baseline when the mBNFs are included in
the feature set. Hence, it can be concluded that including mB-
NFs in the acoustic model training improves ASR performance
for code-switched speech. Furthermore, using 80-dimensional
BNFs (System C) offers improved test set performance over us-
ing 39-dimensional mBNFs (System B) for three of the four
language pairs as well as on average. However, training acous-
tic models with the higher dimensional mBNF features requires
more computational resources.

5.2. Language Specific WER Analysis

For code-switched ASR, the recognition performance at code-
switch points is of particular interest. Language specific WERs
and code-switched bigram correct (Bics) values for the different
systems are presented in Table 7. Code-switch bigram correct
is defined as the percentage of words correctly recognised im-
mediately after a language switch. All values are percentages.
Itis interesting to note that mBNFs contributed significantly
to reduce the Bantu WER, especially for isiXhosa and Sesotho.
Modest reductions in WER were also obtained for English in
most of the language pairs. This may be because the extractor
was only trained on Bantu languages. However, ultimately the
aim would be to have a feature extractor that has generalised
well over all data and could be used to extract features for any
language equally accurately. Further, the accuracy at the code-
switch points is also substantially higher for Systems B and C
compared to the baseline (System A). Hence, adding mBNF
features enhanced system performance at code-switch points.

2A more detailed description of the development of our code-
switched language models is provided in [13].
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Although current improvements are modest, we would like
to point out that initial experiments on our code-switching data
that used a BNF extractor trained on a proprietary data set con-
taining other languages yielded similar improvements.

6. Conclusions

We studied the potential benefit of using bottleneck features for
acoustic modelling of under-resourced code-switched speech in
four South African language pairs. A new bottleneck feature ex-
tractor was developed using the Bantu languages in the freely-
available NCHLT Speech corpus. Two bottleneck feature ex-
tractors producing mBNFs with different dimensionalities were
included in the investigation. Recognition results have shown
that including the mBNFs in the acoustic modelling not only
improved the overall ASR performance for mixed-language
speech, but also contributed to improving performance specifi-
cally at code-switch points. Future work will include the addi-
tion of English and other languages to the pool of languages for
mBNF extractor training, optimization of network hyperparam-
eters and investigating the trade-off between performance and
the bottleneck dimension.

The source code for training the multilingual
bottleneck feature extractor is available at https:
//github.com/ewaldvdw/kaldi/tree/mbnf_
cs2020/egs/nchlt_multi_bnfs/sb5.
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Abstract

Code-switching (CS) is a common phenomenon and recog-
nizing CS speech is challenging. But CS speech data is
scarce and there’s no common testbed in relevant research.
This paper describes the design and main outcomes of the
ASRU 2019 Mandarin-English code-switching speech recog-
nition challenge, which aims to improve the ASR perfor-
mance in Mandarin-English code-switching situation. 500
hours Mandarin speech data and 240 hours Mandarin-English
intra-sentencial CS data are released to the participants. Three
tracks were set for advancing the AM and LM part in traditional
DNN-HMM ASR system, as well as exploring the E2E mod-
els’ performance. The paper then presents an overview of the
results and system performance in the three tracks. It turns out
that traditional ASR system benefits from pronunciation lexi-
con, CS text generating and data augmentation. In E2E track,
however, the results highlight the importance of using language
identification, building-up a rational set of modeling units and
spec-augment. The other details in model training and method
comparsion are discussed.

Index Terms: automatic speech recognition, code-switching,
end-to-end ASR

1. Introduction

Code-Switching (CS), the alternating use of more than one lan-
guages inside a single utterance [1], is a special and complicated
language phenomenon, which has become an important field of
both linguistics and ASR research. For instance, the Interspeech
2020 workshop on speech technologies for code switching is a
recent platform particularly focusing on CS related research.'
Code-switching has many varieties, and a classification method
based on mixed position is often used, which classifies CS into
two primary categories: inter-sentencial (switch happens at the
sentence boundaries) and intra-sentencial (switch happens in
the middle of a sentence).

An ASR system usually contains the ability of modeling
linguistic information and acoustic information at the same
time. In CS situation however, language switching happens
at unpredictable positions makes it difficult to train a multilin-
gual language model (LM) while the varied accent of non-native
speakers and mixing of phonemes from different language bring
difficulty to acoustic model (AM) training.

Previous work has made continous progress in Code-
switching area, and a variety of modeling methods are pro-
posed, which can be roughly divided into three categories. The
first kind of optimization aims at modeling units, which turns

Lywww.microsoft.com/en-us/research/event/workshop-on-speech-
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out that both phone merging methods and new modeling units
building methods [2,3] are helpful to code-switching ASR. The
second kind of methods focus on the nerual network structure,
making deep neural networks-hidden Markov model (DNN-
HMM) based ASR system more competent for CS tasks by opti-
mizing the neural network and training strategy [4,5]. The third
kind of efforts is explored on End-to-End (E2E) speech recog-
nition [6-9]. E2E ASR framework enables lexicon-free recog-
nition, which is an important advantage over traditional hybrid
system, especially for CS tasks. An encoder-decoder based CS
ASR system was built by Hiroshi et al. [10]. Zhang et al. [11]
built a bilingual Mandarin-English acoustic model by putting
two separately pre-trained DFSMN-CTC-sMBR together. Li et
al. [12] added a frame-level language identification (LID) loss
to bilingual CTC model, assisting CTC to distinguish the lan-
guage ID of frames. Although those efforts have improved the
performance of CS ASR, robust ASR system that supports ar-
bitrary switching of languages still remains a challenging goal.

This paper describes the design and outcomes of the ASRU
2019 Mandarin-English Code-Switching Speech Recognition
Challenge, a special event of IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU 2019).Actually,
the difficulties discussed above also reveal one of the bottel-
necks in CS ASR research: data insufficiency. Code-switching
speech data is always scarce, only SEAME [13], a small set
of 30 hours Mandarin-English speech data collected in Sin-
gapore and Malaysia is released to the public. Besides, in
Mandarin-English CS ASR, there is no common testbed and
open datasets for method validation and model comparison, es-
pecially in the area of fast development of data-hungry deep
learning approaches. This challenge is especially designed for
these reasons. Three speech datasets are released to partici-
pants, 740 hours in total, and 240 hours of them are Mandarin-
English CS data®. A well-trained 3-gram CS language model
in ARPA format is also provided. The participants are sup-
posed to use the permitted data only to build CS ASR systems
in three tracks: i) Traditional ASR system with identical official
N-gram LM; ii) Traditional ASR system without LM limitation;
iii) End-to-End ASR system. Totally 72 teams participated in
the challenge. Participants have around 50 days to finish their
system building and submit the recognition results.

The rest of this paper is organized as below: Section 2 de-
scribes detailed information of the datasets. In Section 3, rules,
data using limitation of each track and results evaluation method
are explained. Section 4 describes a overview of results submit-
ted and advancing system building methods in all the tracks.
Summary of the main findings in the challenge is in Section 5.

2Exploring www.datatang.com/competition for more detail about
datasets and the challenge.



2. Open Source Datasets

Code-switching speech data is always scarce, which hinders the
research of CS ASR seriously. For this challenge, DataTang
released 3 ASR datasets to participants. The basic information
of the datasets is as below.

Table 1: Basic information of the 3 released datasets

Dataset Transcripts Type Dur/hours
Trainnran ~ Mandarin only 500
Traincs Intra-sen Mandarin-English CS 200
Devces Intra-sen Mandarin-English CS 40

All the data are collected by smart phones in quiet rooms
from various Android phones and iPhones. The speakers were
from 30 provinces in China. 70% of the speakers were under 30
years old, with no significant difference in the number of male
and female.

The transcripts of data cover many common fields includ-
ing entertainment, travel, daily life and social interaction. In
Trainnran, €ach sentence has 10 Chinese characters in average.
As for Traincs and Deve s, each sentence has 8.6 Chinese char-
acters and 1.6 English words in average. Most English words
are nouns, personal names, song names and some adjectives.
Besides, there are 6 kinds of symbols and tags for noise and En-
glish abbreviation in Traincs and Devcs transcripts. Several
examples from the dataset are shown in Table .

Table 2: Examples of CS transcription from the dataset

CS transcription:
EN translation:

“RARE S —Phone.”
“I’ll buy an iPhone Today.”

“Jeff ;& —/MR sensitive {24
“Jeff is such a sensitive student.”

CS transcription:
2 EN translation:

3. Tracks Setting and Rules

Traditional forced alignment based ASR system consists of two
separately trained components: acoustic model and language
model. The hybrid MMI-Chain model build by Kaldi [14] is
regarded as one of the state-of-the-art ASR systems. The first
two tracks aim at making the traditional ASR system able to
recognize Mandarin-English code-switching speech. E2E ASR
is drawing increasing attention in recent years, and it seems to
have more potential and possibility to solve CS question. Track
3 was built for E2E systems to compare with each other.

A series of instructions are designed to ensure an equitable
comparison. In Section 3.4, the evaluation of code-switching
recognition results is explained.

3.1. Trackl: Traditional ASR with identical N-gram LM

Acoustic model in traditional ASR system is used to bind a
speech frame to a certain unit through computing acoustic like-
lihood. This track focus on AM behavior only.

A Mandarin language model and a code-switching lan-
guage model are trained separately by KenLLM toolkit [15] and
merged with SRILM toolkit [16]. The triple-gram in Mandarin
training data occurs less than 10 times are pruned while no prun-
ing was applied to uni-gram and bi-gram. The final size of the
merged arpa is 2G.

Rules that participants should follow in track 1 is as below:
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1. The acoustic model should be a frame-level force-
alignment model, and CTC model is prohibited.

2. Data used for AM training is limited to Trainnran,
Trainc s and Librispeech [17] 960 hours English speech
data. Data augmentation methods are allowed.

3. Multi-system fusion techniques including recognizer
output voting error reduction (ROVER) [18] are prohib-
ited.

4. Decoding graph should be complied with G.fst gener-
ated by the given arpa. Any kind of lattice rescoring is
prohibited.

3.2. Track2: Traditional ASR without LM limitation

Language model also plays an important role in traditional
ASR. It estimates the grammatical rationality of character or
word sequences. In this track, any training data for LM and
all kinds of techniques including but not limited to RNN (Re-
current Neural Network) LM , large scale LM rescoring are al-
lowed, but AM still should be trained under the rule 1-3 of track
1.

3.3. Track3: End-to-End ASR

End-to-End ASR here refers to systems without frame-level
forced-alignment, always modeling acoustic information and
language information jointly. It is becoming an increasingly
topical field and various of E2E ASR systems are proposed.
Encoder-Decoder based system LAS [7] and transformer [6]
use global attention and multi-head self-attention to generate
implicit alignment. RNN-transducer combines two RNNs into
a sequence transduction system [19,20].

Including the models above, any E2E ASR system is al-
lowed in track 3, and CTC model is also regarded as an E2E
model. Rule 2-3 in track 1 are effective in track 3. Besides, as
for systems need to model acoustic information and language
information jointly, the text training data is limited to transcripts
of permitted speech data.

3.4. Results Submission and Evaluation Plan

Competitors are supposed to submit their recognition results
and system descriptions of each track they participated in.
Recognition accuracy is the only target considered in the evalu-
ation. Mixture error rate (MER) considers Mandarin characters
and English words as the tokens in the edit distance calcula-
tion. Errors of Chinese and English will be counted separately
according to the language of the reference token.

The error rate of the Chinese part and the English part in
the final publicity result is only for reference, ranking is based
on MER only.

4. Results and Discussion on Methods
4.1. Trackl

35 teams submit their results of track 1, the top 10 best sys-
tems is listed in Table 3, along with the their key features. The
following part introduces the main outcomes in three aspects.

4.1.1. Phone Sets

Building a traditional ASR system starts with building a phone
set. Among the 20 teams that introduced their phone sets build-
ing methods, 11 teams use totally separate phone sets for Man-
darin and English, 6 teams bind partial phones according to



Table 3: Top 10 of 35 submitted systems in track 1. The columns in the middle summarize the key features of systems, CER(%) for
Chinese part error rate, WER(%) for English part error rate, and MER(%) for mixture. The right side of the table describe the error
rate of Mandarin part, English part and total MER. Phone merging includes partial combining and totally binding of Chinese phones

and English phones.
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MobvoiASR CNN-TDNN vV |V |V |V |V 4.04 12.33 4.94
Qdreamer CNN-LSTM-TDNN vV |V |V v 3.85 14.88 5.05
XNXYZ LSTM-TDNN vV |V (4 4.05 15.43 5.28
SZSXW TDNN vV |V 4.61 14.44 5.66
JRYY TDNN vV |V 4.60 15.06 5.74
VIVO ASR TDNN vV |v |V 4.50 16.63 5.81
2R CNN-TDNN v v 4.95 14.32 5.97
Paopao TDNN vV |V |V |V |V 5.22 14.14 6.19
SCUT-ASR CNN-TDNN vV |V 5.43 15.99 6.57
Royalflush CNN-TDNN vV |V v 5.18 18.37 6.61

phonetics. 2 teams map all of the English phones to Chinese
phones, above that, one team marked partial English words
which appear frequently with Chinese phones.

Concatenating a Chinese lexicon and an English lexicon is
the most simple and commonly used method, and the merged
phone sets cat be extracted from the lexicon directly. Several
teams with higher ranking proved that binding partial Chinese
and an English phonemes works to acoustic modeling benefit.
The last method ‘map partial English words’ refers to marking
the high frequency English words with Chinese phonemes, with
the rest part of the lexicon still using the first method. However,
there is no detailed contrastive experiment results about phone
sets reported.

4.1.2. Feature Extraction and Data Augmentation

Concatenating i-vectors feature to MFCC (Mel Frequency Cep-
stral Coefficents) or Filter-bank feature brings 5%-7% relative
improvement. Librispeech data is abandoned by most teams as
it raised error rate, even when using only a small part of it. This
may because of the mismatch of native English speaker and Chi-
nese speaker. Speed augmentation can enhance the robustness
of the model modestly, while volume augmentation and rever-
beration simulation help little. This may because the training
data and test data are collected in the environment with simi-
lar acoustic conditions. Spec-augment is a data augmentation
method proposed by Google [21]. Several teams gain about 2%
relative improvement using spec-augment layer in Kaldi Nnet3.

4.1.3. Network Structure

Kaldi chain model with lattice-free maximum mutual informa-
tion (LF-MMI) [22] is used by all the teams, there are seldom
differences among different systems. CNN or LSTM are used
to combine with time-delay neural network (TDNN). The Ist
team MobvoiASR used max-likelihood path to fix the origi-
nal loss function and gain 3% relative improvement. The 2nd
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place team Qdreamer use LF-MMI-SMBR (State-level Mini-
mum Bayes Risk) and gain 9% relative MER reduction com-
paring to original LF-MMI.

Table 4: The top 10 teams in track 2, along with their key
method used, MER(%) stands for mixture error rate. MERR
are calculated based on their results in track 1. A negative
MERR indicates that participants achieved a better LM than
the 3-gram released in track 1.
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Team = | & | S [ MER®%) | MERR(%)
MobvoiASR v v 4.72 — 45
Qdreamer v 5.64 + 11.7
JingRong v 5.80 + 1.0
Royalflush vV |v |V 5.88 - 11.0
VIVO ASR vV |V |V 5.91 - 1.7
I2R v 6.25 + 4.7
Aisg-xju v v 6.65 - 6.0
Xmuspeech v v 7.01 + 2.5
LKDMM vV |V 8.57 - 112
MiniSpeech 8.95 - 1.1

4.2. Track2

The recognition results of the top 10 systems are shown in Table
4. The efforts teams made for track 2 are mainly about CS text
generation, balancing Chinese and English text proportion, and
RNN-LM rescoring.

Spontaneous code-switching text data for LM training is al-
ways scarce because of the randomness and casualness of CS



Table 5: Top 10 of submitted systems in track 3.
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WYHZ Transformer v v v v 4.33 18.95 5.91
SJTU SL Transformer v v v v v 6.93 24.35 8.82
Royalflush Transformer v v v v 7.49 21.40 9.00
Code-switcher LAS (4 (4 (4 v 7.38 25.69 9.37
ZFZ Transformer 4 4 v 8.49 24.56 10.24
Qdreamer CLDNN+CTC v v v v 8.23 33.32 10.90
VIVO ASR Transformer 9.05 32.21 11.57
UVoice BLSTM+CTC (4 v (4 8.94 41.46 12.48
xmuspeech Joint-CTC Attention v 9.59 37.20 12.59
Aisg-xju Transformer v v v 10.44 31.60 12.74

phenomenon. Therefore, it’s necessary to expand the text data.
The parallel language pair in machine translation is widely used
in ASR to generate CS transcripts. Besides, text generation
based on pointer generator [23] is used by team Royalflush,
but this method is limited by the scale of CS text and only
a small amount of available data is generated. As reported, a
well-trained RNN-LM using external CS data can yield 2%-4%
recognition improvement.

4.3. Track3

In E2E track, 29 teams submit their results, the top 10 teams’
results and key features are described in Table 5. The outcomes
of this track are mainly about modeling units, network structure,
as well as taking language identification into consideration.

4.3.1. Modeling Units

The E2E ASR systems use sequence-to-sequence model to map
the speech frames to the character sequence. In Chinese ASR,
character is commonly used to be the modeling units directly as
the amount of Chinese characters is around 6k. But modeling
words in English directly is difficult because of the large amount
and the sparsity of low frequency words. So in the challenge,
Chinese character and English word piece [24] is mostly used.
Its advantages mainly come from two aspects: balancing the
granularity of Chinese and English modeling units and solving
OOV problem with limited English training data. The number
of English word pieces that teams used varied from 1k to 3k.
Except for char + bpe, there are also teams using syllable for
Chinese and letter for English.

4.3.2. Network and Language Modeling

The winner of track 3 went to a Transformer model [10] trained
by ESPnet [25], using multi-task learning to guide the decoder
to distinguish Chinese and English characters (as reported, the
language distinguishing CE loss optimized at decoder outper-
formed it at encoder). Label smoothing, averaging checkpoints
and spec-augment all yield recognition improvements. Data
augmentation performs almost same as in track 1. Transfer
learning in the table refers to all kinds of different languages
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pre-training and fine-tuning strategies.

4.3.3. Language Modeling

As for language information modeling, 4 of the 10 teams in
Table 5 use language model for rescoring or fusion with AM.
Aisg-xju’s and Royalflush’s language models are RNN-LMs
used for shallow fusion. UVoive’s language model is a 4-gram
LM used in CTC prefix beam search. Qdreamer uses a 3-gram
LM as first pass and an RNN-LM for rescoring.

5. Conclusions

In the ASRU 2019 code-switching automatic speech recogni-
tion challenge, participants used 500 hours Mandarin speech
data and 200 hours intra-sentencial CS data to build ASR sys-
tems with recognition ability for Mandarin and English within
a single utterance. Most teams achieve 5% Chinese part error
rate and English error rate under 20% with DNN-HMM based
models. The E2E models haven’t outperformed the traditional
model yet. It is clear that the systems tend to have higher recog-
nition accuracy for Chinese part in the utterance, the reason may
come from the imbalance of the data in two languages, which
brings difficulty for LM training. The grammar of skipping be-
tween English words is completely invalid. According to the re-
sults of the three tracks aforementioned, traditional ASR trained
by Kaldi chain model outperformed the E2E models, but the
gap is quickly narrowing. The result has highlighted that the
detail of pronunciation lexicon and neural network effect a lot.
In track 2, text generation is proved to be the most effective way
to augment the language model, both word substitution accord-
ing to grammatical rules and generative neural network help in
data expansion. It is worth noting that RNN-LM did not re-
place N-gram LM but complemented it. As to E2E models,
it turns out that attention based models performed more com-
petitive and language identification help the model distinguish
languages. Besides, spec-augment is proved a robust method of
data augmentation with obvious performance gain.

In this challenge, however, only recognition accuracy is
considered in the evaluation. In the future, higher and more
comprehensive requirements will be put forward, like streaming
ASR system and ASR under complex acoustic environments.
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